EP0558607A1 - Dispositif integre d'acheminement de liquide intraveineux - Google Patents

Dispositif integre d'acheminement de liquide intraveineux

Info

Publication number
EP0558607A1
EP0558607A1 EP92900610A EP92900610A EP0558607A1 EP 0558607 A1 EP0558607 A1 EP 0558607A1 EP 92900610 A EP92900610 A EP 92900610A EP 92900610 A EP92900610 A EP 92900610A EP 0558607 A1 EP0558607 A1 EP 0558607A1
Authority
EP
European Patent Office
Prior art keywords
fluid
intravenous
intravenous fluid
spike
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92900610A
Other languages
German (de)
English (en)
Inventor
Dean L. Kamen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deka Products LP
Original Assignee
Deka Products LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deka Products LP filed Critical Deka Products LP
Publication of EP0558607A1 publication Critical patent/EP0558607A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/162Needle sets, i.e. connections by puncture between reservoir and tube ; Connections between reservoir and tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • F16K31/005Piezoelectric benders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M2005/1401Functional features
    • A61M2005/1403Flushing or purging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/24Check- or non-return valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/28Clamping means for squeezing flexible tubes, e.g. roller clamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/36Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests with means for eliminating or preventing injection or infusion of air into body

Definitions

  • the invention relates generally to intravenous fluid delivery systems, and more particularly to integrated fluid delivery systems.
  • Integrated spike/drip chamber structures are well known.
  • the spike is inserted into the intravenous fluid reservoir, and the drip chamber is connected to a tube, through which the intravenous fluid flows to the patient.
  • a puncture site is provided along this tubing, so that a second source of intravenous fluid (containing, for example, medication) can be provided to the patient. If it is desired to provide the second source of intravenous fluid to the patient in lieu of the first until the second source is exhausted, the arrangement shown in Fig. 1 may be used.
  • a duckbill (one ⁇ way) valve 14 is provided in the tubing above the puncture site 15 and below the drip chamber 12 for the first source of intravenous fluid 11, and the second source 17 is hung at a higher level than the first 11. With this arrangement, the higher head pressure of the second source 17 forces the duckbill valve 14 closed so that only the second fluid flows to the patient until the second fluid is exhausted. At this point the duckbill valve 14 opens and allows the first fluid to flow to the patient.
  • a clamp 16 may be placed below the puncture site 15.
  • clamps are simply placed on the tubing 19 and control the flow by squeezing the tubing 19. Placing the clamp 15 between the puncture site 15 and the drip chamber 12 may cause problems in the administration of intravenous fluid.
  • the various components e.g., the duckbill valve 14, the filter 13 and the puncture site 15
  • the various components are each separately disposed in the intravenous tubing 19, such that both ends of each component must be cemented to the tubing 19.
  • the present invention provides for a compact, integrated intravenous fluid delivery device.
  • the invention is used with an intravenous fluid source and an intravenous fluid line.
  • the invention includes a housing, through which a fluid passageway is disposed.
  • the fluid passageway passes through a spike, which is used for connecting the rigid housing to the intravenous fluid source.
  • the passageway also passes through a rigid drip chamber, and a priming element that may be repeatedly compressed to urge fluid from the intravenous fluid source into the drip chamber and through the intravenous fluid line.
  • the priming element includes a base and a priming membrane.
  • the intravenous fluid line is mounted on the housing, such that the fluid passageway leads into the intravenous fluid line.
  • This embodiment may further include a valve chamber disposed in the housing, such that the fluid passageway leads into and out of the valve chamber through first and second mouths, with a valve membrane attached to the housing and disposed over the valve chamber so that the valve membrane may be urged to cover at least one of said first and second mouths, such that flow through the fluid passageway may be stopped.
  • a cap having a hole defined therethrough may be disposed on the housing over the valve membrane, such that gas may be supplied through the hole to urge the valve membrane to cover at least one of said first and second mouths.
  • the invention may be used with first and second intravenous fluid sources and an intravenous fluid line.
  • This embodiment includes a spike for connecting the device to the first intravenous fluid source.
  • a fluid passageway passes through the spike.
  • a puncture site connects the device to the second intravenous fluid source.
  • This embodiment further includes an adjustable valve, which includes a flexible tube mounted so that fluid may pass from the fluid passageway in the spike, from the puncture site, and through the tube.
  • the valve includes an actuator mounted with respect to the tube so that it may be urged to compress the tube.
  • This embodiment also includes a drip chamber, through which the fluid may flow to the intravenous fluid line.
  • the spike, the adjustable valve, and the drip chamber form an integral device.
  • This embodiment may further include a one-way valve mounted below the spike and above the puncture site, so that intravenous fluid may flow from the fluid passageway through the one-way valve, and so that fluid from the second fluid source may flow to the intravenous fluid line, but may not flow through the fluid passageway in the spike.
  • the adjustable valve in this embodiment may also include a rigid threaded seat disposed about the tube, a levered arm mounted on the threaded seat so that it may be urged to compress the tube, and a threaded nut engagedly and concentrically mounted on and about the seat, so that as the nut is turned it may urge the levered arm to compress the tube.
  • the tube may be made of silicone.
  • the invention may include a spike, having a fluid passageway disposed therethrough, for connecting the device to the intravenous fluid source, a one-way valve mounted below the spike, so that intravenous fluid may flow from the fluid passageway through the one-way valve, a puncture site mounted below the one-way valve, so that a second fluid may be introduced into the device and flow to the intravenous fluid line, but may not flow through the fluid passageway in the spike, and a drip chamber, through which the fluid may flow.
  • the spike, the one-way valve, the puncture site, the drip chamber and the receiving means form an integral device.
  • the invention includes a spike, a drip chamber, and an adjustable valve, which includes a flexible tube, a rigid threaded seat disposed about the tube, a levered actuator mounted on the threaded seat so that it may be urged to compress the tube, and a threaded nut engagedly and concentrically mounted on and about the seat, so that as the nut is turned it may urge the levered actuator to compress the tube.
  • an adjustable valve which includes a flexible tube, a rigid threaded seat disposed about the tube, a levered actuator mounted on the threaded seat so that it may be urged to compress the tube, and a threaded nut engagedly and concentrically mounted on and about the seat, so that as the nut is turned it may urge the levered actuator to compress the tube.
  • the invention may be made of two substantially flat sections, such that when placed together, the two sections form a passageway, through which intravenous fluid may pass, the passageway having at least two expanded sections, one expanded section forming a drip chamber, and the second expanded section providing an area where filter material may be located.
  • the length of the fluid passageway is more than twice the length of the housing, and the housing is made of a transparent thermoplastic material.
  • the invention may include a valve for automatically shutting off the flow of fluid.
  • This valve includes a housing having a chamber disposed therein, a protrusion from the housing into the chamber, a fluid input through the housing into the chamber, a fluid output from the chamber through the protrusion and through the housing, and a membrane disposed on the housing, such that one side is exposed to the chamber and the second side is exposed to atmosphere.
  • the membrane is disposed with respect to the mouth on the protrusion, such that the membrane may seal off the fluid output when the pressure of the fluid in the fluid input drops to a certain level.
  • This valve may further include a cap having a hole defined therethrough, the cap being disposed on the housing over the membrane such that the second side may be exposed to atmosphere.
  • the invention may also include an adjustable valve for controlling the flow of fluid.
  • This valve includes a flexible, multiple-lumen element disposed in the line such that fluid may pass through the multiple lumens, and an apparatus for squeezing the multiple-lumen element so as to constrict the multiple lumens.
  • the multiple-lumen element may be made of silicone.
  • FIG. 1 shows a prior art fluid delivery system.
  • Fig. 2 is an exploded view of one embodiment of the invention.
  • Fig. 3 is a cross-sectional view of the top portion of the device shown in Fig. 2.
  • Fig. 4 is a cross-sectional view of the top portion of an alternative embodiment of the invention.
  • Fig. 5 shows the device of Fig. 2 assembled.
  • Fig. 6 shows a front view of another embodiment of the invention.
  • Fig. 7 shows a side view of the device shown in Fig. 6.
  • Fig. 8 shows a cross-section of an automatic shut-off valve.
  • Fig. 9a shows a cross section of a multi-lumen tube.
  • Fig. 9b shows a cross-section of a typical tube.
  • Figure 2 shows how the components of one embodiment of the invention are assembled.
  • Figure 3 shows a cross section of the upper portion of such an embodiment.
  • This structure includes a spike 21, a filter 22, a duckbill valve 23, puncture sites 241 and 242, an adjustable valve 20, and a drip chamber 27.
  • the duckbill valve 23 is mounted above the cap 24 on which the puncture sites 241 and 242 are located.
  • the puncture sites 241 and 242 are located above the adjustable valve 20.
  • Various embodiments are possible, as shown, for example, in Figure 4, wherein the filter 22 is put in a different position. Alternatively, other embodiments may dispense with one or more of the components or may include additional components.
  • the adjustable valve 20 includes a flexible tube 201 mounted so that fluid may pass from the spike 21, and from the puncture sites 241 and 242, and then through the tube
  • the valve 24 includes a levered actuator 204 mounted with respect to the tube 201 so that it may be urged to compress the tube 201.
  • a rigid threaded seat 202 is disposed about the tube 201, and the levered actuator 204 is mounted on the threaded seat 202.
  • a threaded nut 203 is engagedly and concentrically mounted on and about the seat
  • the invention has several other advantages. Because all the components are connected directly to each other, it is easier and cheaper to manufacture than the conventional intravenous delivery systems, wherein the components must be cemented to the tubing 19. Also, in order to adjust the flow rate, a clamp 16 is not placed on the conventional intravenous tubing 19; instead silicone tubing 201, which provides much better properties for clamping, may be used in the adjustable valve 20. Thus, the adjustable valve 20 of the invention can be more effective in controlling the flow rate than the clamps used in the conventional systems.
  • a further advantage is that a single system that counts drops in order to measure the flow rate may be used, instead of two such systems (one for the first source of intravenous fluid and a second for the second source of intravenous fluid) that are required to continuously measure flow in the conventional intravenous fluid delivery systems.
  • This is possible because the puncture sites 241 and 242 are located above the canula 26 in the drip chamber 27, and therefore the fluid from both sources flow through the same canula 26.
  • Fig. 5 shows an assembled embodiment.
  • Figs. 6 and 7 show an alternative embodiment of the invention.
  • Fig. 6 shows a front view of the embodiment, and
  • Fig. 7 shows a side view.
  • a spike 601 is mounted at the top end of the housing 60.
  • a fluid passageway 602 is disposed inside the housing 60 and the spike 601. The spike 601 is used to connect the device to a fluid source. Fluid from the fluid source passes through the fluid passageway 602 through the device and out of the device to the intravenous fluid line 19, which is connected to the device where the fluid passageway 602 exits the device.
  • two automatic shut-off valves 611 and 612 Disposed along the fluid passageway are two automatic shut-off valves 611 and 612, a drip chamber 63 located between the automatic shut- off valves 611 and 612, a one-way (duckbill) valve 66, two puncture sites 671 and 672, an adjustable control valve 68 located between the two puncture sites 671 and 672 and a filter 69.
  • Other embodiments may not include all of these items, and the order that these items are disposed along the fluid passageway may be varied. It should be noted though that having the puncture sites 671 and 672 located downstream from the one-way valve 66 permits one to add a second fluid source in a manner similar to that shown in Fig. 1.
  • the automatic shut-off valves 611 and 612 close when there is little or no fluid left upstream of the valve. Thus, when the fluid source empties, automatic shut-off valve 611 will close, thereby stopping the flow of fluid through the fluid passageway 602 and the intravenous line
  • FIG. 8 shows a cross-section of an embodiment of the automatic shut-off valve. Fluid enters the valve through an input 81 located at the top of the housing 83, and exits from the output 82 located at the bottom of the housing. The output 82 is connected, directly or indirectly, to an intravenous line. A chamber 87 is located in the housing.
  • Fluid from the input 81 enters the chamber. Fluid exits from the chamber through a protrusion 86, from which the fluid flows to the output 82.
  • a flexible membrane 84 is disposed across the chamber 87 opposite the protrusion 86.
  • a cap 85 having an air hole 88 is mounted to the housing 83 so as to protect the membrane 84 from being accidentally torn.
  • the suction caused by the fluid flowing out of the output 82 and through the intravenous line will cause the membrane 84 to seal over the mouth on the protrusion 86, thereby preventing any more fluid from exiting through the output 82.
  • the tension of the membrane 84 and the position of the membrane with respect to the protrusion may be altered so as to control when the valve will automatically shut off.
  • the automatic shut-off valves 611 and 612 may double as control valves, shown as items A and B in Fig. 12 of co- pending U.S. patent application Serial No. 345,387, referenced above.
  • the membrane 84 can be urged against or away from the protrusion 86 so as to control whether fluid may flow through the valve, by placing the automatic shut- off valves against a control unit that supplies a gas through the automatic shut-off valve's air hole 88, so as to apply a pressure to the membrane 84.
  • the device shown in Fig. 6 also has a drip chamber 63.
  • This drip chamber 63 may be made of the same relatively rigid material that the rest of the housing 60 is made of.
  • drip chambers are made of a flexible, resilient material, so that the drip chamber may be repeatedly squeezed in order to prime the intravenous line.
  • a special primer 64 is used in order to prime the intravenous line 19 using the device shown in Fig. 6 .
  • the primer 64 consists of a flexible, resilient material 641 that forms an expande area in the fluid passageway and that may be repeatedly squeezed in order to prime the intravenous line. It is preferable that this flexible, resilient material 641 protrude away from the surface of the housing 60 in order t make it easier to squeeze.
  • a protective rigid annulus 642 can be mounted to the housing 60 around the flexible material 641 of the primer 64.
  • the primer 64 can double as the pressure conduction chamber shown as item 2 in Fig. 12 of co-pending U.S. patent application Serial No. 345,387, discussed above.
  • the primer 64 and the two automatic shut-off valves 611 and 612 can function like the disposable system shown as item 124 in Fig. 12 of this co-pending application, simply by using the device with an appropriate central unit (similar to item 125 of Fig. 12 of this co- pending application) that can apply gas pressure to the membranes of the automatic shut-off valves 611 and 612 and the flexible, resilient material of the primer 64.
  • the primer 64 which is doubling as a pressure conduction chamber, must be completely filled with liquid, and must not be in pressure communication with any other chamber that may have air in it.
  • the primer 64 may either be isolated from the drip chamber 63 by placing another valve between the primer 64 and the drip chamber 63, or the drip chamber 63 can be completely filled with liquid.
  • the device can also be used with a system that measures the flow rate by counting the number of drops that fall in the drip chamber.
  • the adjustable valve 68 shown in Fig. 6 includes a multi-lumen tube 683, preferably made of silicone, a finger
  • FIG. 9a A cross-section of the multi- lumen tube is shown in Fig. 9a.
  • the tube has seven passages, through which fluid may pass.
  • a multi- lumen tube shown in cross-section in Fig. 9b, one can control the fluid flow with greater precision.
  • a conventional intravenous tube is compressed, although it does tend to flatten, there is very little effect on the flow rate until the tube it is almost completely shut; at that point the flow rate drops off very quickly.
  • the flow rate decreases more gradually over a wider range of compression. It is believed that the individual lumens are squeezed shut at different points during the compression.
  • the multi-lumen tube therefore, provides greater control at intermediate flow rates.
  • the fluid passageway 602 After passing through the automatic shut-off valves 611 and 612, the drip chamber 63 and the primer 64, the fluid passageway 602 passes through the one-way valve 66 and then heads up through the control valve 68 and- the filter 69 before coming back down to connect with the intravenous tube 19.
  • the fluid passageway 602 snake back and forth across the length of the device, the device is sturdier than if it were constructed with a straight passageway.
  • the passageway did not have a bend or two, the resulting device would be relatively long and narrow, and more prone to breaking.
  • the passageway 602 By bending the passageway 602 several times, the device is sturdier and more compact. In the embodiment shown in Fig. 6 the fluid passageway traverses the length of the device nearly three times.
  • the device shown in Fig. 6 is preferably made of a clear thermoplastic material. Making the device transparent assists the user in making sure the intravenous fluid is properly flowing through the device.
  • the device can be made from two relatively flat halves 71 and 72 as shown in Fig. 7.
  • the fluid passageway can be formed by placing a groove on either one, or both, of the two halves.
  • the drip chamber's canula 62, the primer's flexible material 641, the one-way valve 66, the control valve's cam 681, finger 682 and tube 683, and the filter material 69 can be placed on one of the halves, and the second half can be attached to the first, securing these items in place.
  • the cam wheel 681 and the finger 682 may be initially attached to each other; after they have been inserted into one of the halves of the device, the finger 682 can be broken off the cam wheel 681, when the device is assembled.
  • prior art systems connected the various components together by tubing. The cementing of each component to the tubing is a relatively slow procedure. By placing all the components in a single housing that can be assembled by merely attaching two halves together one can produce a complete intravenous delivery systems much more cheaply.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

Dispositif compact et intégré d'acheminement de liquide intraveineux. L'invention peut être utilisée avec une source de liquide intraveineux et un conduit de liquide intraveineux. Dans ce mode de réalisation, l'invention comprend un logement (60) à travers lequel est disposé un passage (602) de fluide. Ledit passage de fluide passe à travers une pointe (601) utilisée afin de relier le logement rigide à la source de fluide intraveineux. Ledit passage passe également à travers une chambre de perfusion rigide (63), ainsi qu'un élément d'amorçage (64) pouvant être comprimé de manière répétée afin de faire passer du liquide de la source de liquide intraveineux dans la chambre de perfusion (63) et à travers le conduit de liquide intraveineux. Ledit élément d'amorçage (64) comprend une base (642) ainsi qu'une membrane d'amorçage (641). Le conduit de liquide intraveineux est monté sur le logement (60) de manière que le passage de fluide conduit dans ledit conduit de liquide intraveineux. La pointe (601), la chambre de perfusion (63), la base de l'élément d'amorçage (64) ainsi que le moyen récepteur forment tous une pièce intégrée en matière rigide. Ce mode de réalisation peut également comprendre une chambre à clapet (611) disposée dans le logement, de sorte que le passage de liquide conduit dans et hors de la chambre à clapet par l'intermédiaire de premier et de second becs, une membrane de clapet étant fixée au logement et disposée sur ladite chambre à clapet de manière que la membrane du clapet peut être poussée afin de recouvrir au moins un desdits premier et second becs.
EP92900610A 1990-11-19 1991-11-15 Dispositif integre d'acheminement de liquide intraveineux Withdrawn EP0558607A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61480690A 1990-11-17 1990-11-17
US614806 1990-11-19

Publications (1)

Publication Number Publication Date
EP0558607A1 true EP0558607A1 (fr) 1993-09-08

Family

ID=24462779

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92900610A Withdrawn EP0558607A1 (fr) 1990-11-19 1991-11-15 Dispositif integre d'acheminement de liquide intraveineux

Country Status (3)

Country Link
EP (1) EP0558607A1 (fr)
JP (1) JPH06502789A (fr)
WO (1) WO1992008503A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2793417B1 (fr) * 1999-05-10 2001-09-21 Jean Gautier Dispositif pour permettre l'administration totale en toute securite de produits injectables par perfusion intraveineuse lente
JP2005006709A (ja) * 2003-06-16 2005-01-13 Naigai Kasei Kk 医療用キャップ
KR100675913B1 (ko) * 2005-02-14 2007-01-29 이상대 경보기 또는 무선호출장치와 저장백을 구비하는 액체차단장치 및 액체차단 모니터링 장치
US10226614B2 (en) 2009-03-19 2019-03-12 Illinois Tool Works Inc. One-way check valve

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH378056A (fr) * 1961-03-29 1964-05-31 Abbott Lab Appareil pour commander l'écoulement de deux liquides fournis par deux sources indépendantes
US3204632A (en) * 1961-08-14 1965-09-07 Sterilon Corp Intravenous valve device
US3556157A (en) * 1968-11-22 1971-01-19 Corning Glass Works Linear fluid restrictor having a variable coefficient of restriction and method for making the same
DE2509444A1 (de) * 1975-03-05 1976-09-16 Kiehl Paul Sicherheits-infusionsgeraet
US4038983A (en) * 1976-01-26 1977-08-02 Baxter Travenol Laboratories, Inc. Fluid infusion pump
US4142523A (en) * 1976-03-31 1979-03-06 Koninklijke Emballage Industrie Van Leer B.V. Flow control device for the intravenous administration of liquids
US4055176A (en) * 1976-05-24 1977-10-25 Valleylab Universal drip chamber and spike assembly
US4326957A (en) * 1978-07-21 1982-04-27 Pall Corporation Vented filter spigot for intravenous liquid administration apparatus
US4430074A (en) * 1981-07-02 1984-02-07 Samuel Ernest Douglass Method for the intravenous administration of plural solutions through a common flow monitoring station
US4976162A (en) * 1987-09-03 1990-12-11 Kamen Dean L Enhanced pressure measurement flow control system
US4778451A (en) * 1986-03-04 1988-10-18 Kamen Dean L Flow control system using boyle's law

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9208503A2 *

Also Published As

Publication number Publication date
WO1992008503A3 (fr) 1992-10-01
WO1992008503A2 (fr) 1992-05-29
JPH06502789A (ja) 1994-03-31

Similar Documents

Publication Publication Date Title
US5364371A (en) Intravenous fluid delivery device
US5195986A (en) Integral intravenous fluid delivery device
US4140118A (en) Cassette chamber for intravenous delivery system
AU654796B2 (en) Self priming tubing set for an infusion device
US5356376A (en) Flow controllers for fluid infusion sets
US4535818A (en) Valve assembly
US5356379A (en) Disposable ambulatory infusion pump assembly
US4210173A (en) Syringe pumping system with valves
US6981967B2 (en) Large volume bolus device and method
US5396925A (en) Anti-free flow valve, enabling fluid flow as a function of pressure and selectively opened to enable free flow
US5224934A (en) Patient controlled bolus dosage infuser
US7267669B2 (en) Two site infusion apparatus
US5027798A (en) Water jet teeth flossing apparatus
US4142523A (en) Flow control device for the intravenous administration of liquids
ATE188132T1 (de) Einweg-kassette zum anschliessen an eine infusionspumpe für ein flüssiges arzneimittel
US8870834B2 (en) Controlled flow administration set
WO1997047339A1 (fr) Ensemble de perfusion par gravite pour perfusions medicales
JPH0445184B2 (fr)
US20230011520A1 (en) Priming System for Infusion Devices
CA1092467A (fr) Dispositif de reglage du debit par exemple pour les appareils a perfusion intraveineuse
EP0558607A1 (fr) Dispositif integre d'acheminement de liquide intraveineux
JPH05253295A (ja) 精密放出注入器
KR100399644B1 (ko) 주사 수액 공급 조절 장치
AU657089B2 (en) Flow controllers for fluid infusion sets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19931208

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950601