EP0556875B1 - Procédé de décarbonatation et de dégazolinage simultanés d'un mélange gazeux constitué principalement d'hydrocarbures consistant en méthane et hydrocarbures en C2 et plus et renfermant également CO2 - Google Patents

Procédé de décarbonatation et de dégazolinage simultanés d'un mélange gazeux constitué principalement d'hydrocarbures consistant en méthane et hydrocarbures en C2 et plus et renfermant également CO2 Download PDF

Info

Publication number
EP0556875B1
EP0556875B1 EP93107550A EP93107550A EP0556875B1 EP 0556875 B1 EP0556875 B1 EP 0556875B1 EP 93107550 A EP93107550 A EP 93107550A EP 93107550 A EP93107550 A EP 93107550A EP 0556875 B1 EP0556875 B1 EP 0556875B1
Authority
EP
European Patent Office
Prior art keywords
solvent
rich
hydrocarbons
methane
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93107550A
Other languages
German (de)
English (en)
Other versions
EP0556875A3 (en
EP0556875A2 (fr
Inventor
Claude Blanc
Henri Paradowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elf Exploration Production SAS
Original Assignee
Societe National Elf Aquitaine
Societe Nationale Elf Aquitaine Production SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe National Elf Aquitaine, Societe Nationale Elf Aquitaine Production SA filed Critical Societe National Elf Aquitaine
Publication of EP0556875A2 publication Critical patent/EP0556875A2/fr
Publication of EP0556875A3 publication Critical patent/EP0556875A3/fr
Application granted granted Critical
Publication of EP0556875B1 publication Critical patent/EP0556875B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • C10G5/04Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas with liquid absorbents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas

Definitions

  • the invention relates to a process for the simultaneous decarbonation and degassing of a gaseous mixture consisting mainly of hydrocarbons consisting of methane and C2 and higher hydrocarbons and also containing CO2 and optionally one or more non-sulfurized compounds with low boiling point such as H2, CO, N2 and argon.
  • decarbonation and degassing operations are generally carried out separately and are part of a succession of operations carried out on the gas mixture to be treated and mainly comprising a elimination of the acid gas CO2 drying, adsorption of water on an appropriate solid such as a molecular sieve, separation by cryogenic distillation between -30 ° C and -90 ° C associated or not with an extraction by a solvent in order to obtain the cut of natural gas liquid, and finally a reheating of the treated gas to ambient temperature in order, generally, to supply the commercial gas network.
  • the dehydrated and refrigerated natural gas is separated, in a first column (demethanizer) at the head of which is injected an additive consisting of a liquid fraction of C4 hydrocarbons and more, into a gas phase containing methane and lighter compounds and a liquid fraction containing C en and higher hydrocarbons and CO2.
  • This liquid fraction is separated, in a second column (de-ethanizer) into which a certain amount of the additive is also introduced, into a top fraction consisting of CO2 and a bottom fraction containing the hydrocarbons in C2 and more.
  • Said tail fraction is then separated, in a third column, into an overhead fraction consisting of a liquid cut of C2 to C4 hydrocarbons and into a tail fraction consisting of a liquid cut of C4 and higher hydrocarbons, which contains the major part of the butanes and higher hydrocarbons present in the treated natural gas and of which the appropriate quantity is taken to constitute the additive injected in the first and second columns.
  • This additive avoids the crystallization of CO2 at the top of the demethanizer and ensures the rupture of the azeotrope which forms between ethane and CO2 and facilitates the separation of these compounds in the deethanizer.
  • the aforementioned process is therefore essentially based on serial distillation operations.
  • the invention provides a process for simultaneous decarbonation and degassing of gas mixtures, which are available under an absolute pressure greater than 0.5 MPa and consist mainly of hydrocarbons consisting of methane and C2 and higher hydrocarbons and also contain CO2 and optionally one or more non-sulfurized compounds with low boiling point such as H2, CO, N2 and argon, such gas mixtures being for example of the natural gas type, said process making it possible to reach more easily and at lower cost, by comparison with known processes, the objective of separating the gaseous mixture into the three components, namely treated gas consisting mainly of methane, liquid cut of hydrocarbons with predominantly C3 and more hydrocarbons and containing as required a quantity more or less important ethane and CO2 current, which have the specifications defined above.
  • the method according to the invention is of the type of the method which is described in the US-A-3770622 citation and in which the gas mixture is brought into contact, in a washing zone, with a solvent consisting of a liquid which preferentially dissolves CO2 and hydrocarbons in C2 and above and which has on the one hand, at atmospheric pressure, a boiling temperature greater than 40 ° C and on the other hand, at - 30 ° C, a viscosity less than 0.1 Pa .s, operating at a sufficiently low temperature and with a ratio of the flow rates of the gaseous mixture to be treated and of the solvent such that a treated gas consisting mainly of methane and having a molar CO2 content is produced at most equal to 2% and, on the other hand, a liquid phase called rich solvent and formed of the solvent enriched in CO2 and in a fraction of C en hydrocarbons and more containing at least 80 mol% of the C en hydrocarbons and more present in the ga mixture zeux to be treated, the rich solvent
  • the process according to the invention differs from the process of the US-A-3770622 citation, and is therefore characterized in that the treatment of the demethanized rich solvent is carried out by subjecting said demethanized rich solvent to a regeneration (33) by stripping producing the regenerated solvent (34) and a gaseous mixture (42) containing the CO2 as well as the C2 hydrocarbons and more present in the demethanized rich solvent (27), then by washing said mixture gaseous (42) using a solvent C5 and higher hydrocarbon, in a washing space (47) operating at low temperature, with the production, on the one hand, of an acid gas stream rich in CO2, constituting the acid gas stream (44) and consisting of almost all of the CO2 present in the demethanized rich solvent containing, expressed in methane equivalent, less than 10 mol% of hydrocarbons relative to CO2, and, on the other hand, a rich hydrocarbon solvent (45) containing almost all of the C2 and higher hydrocarbons present in the gas mixture (42) and by distilling said hydrocarbon solvent rich
  • methane equivalent is meant according to the invention as many pseudo-molecules with a single carbon atom as there are carbon atoms in the considered hydrocarbon molecule.
  • the solvent which is generally defined above for bringing into contact with the gaseous mixture to be treated for the purpose of absorbing CO2 and C en and higher hydrocarbons, preferably has a viscosity of less than 0.05 Pa.s.
  • the solvent according to the invention may consist in particular of one or more liquid absorbents which are selective for CO2 and used in anhydrous form or in mixture with water, the said solvent (s) being chosen from the amides of formulas aldehydes of formula formula esters Ccan to C4 alkanols, diethers of formula diether alcohols of formula R9O- C2H4- O - C2H4 - OH the lactones of formula and propylene carbonate, with in these formulas R1 and R2, identical or different, designating a hydrogen atom or a C1 or C2 alkyl radical, R3 being a C3 or C4 alkyl radical, R6 being a C2 alkyl radical to C4 or a radical with R8 denoting a C1 or C2 alkyl radical and n being equal to 1 or 2, R7 being a C1 or C2 alkyl radical or a radical R9 denoting a C radical to C4 alkyl radical and p being an integer ranging from
  • Nonlimiting examples of liquid organic absorbents corresponding to the above formulas are such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethoxymethane, diethoxymethane, dimethoxy-1,1 ethane, methanol, ethanol, ethylene dimethyl ether glycol, diethylene glycol dimethyl ether, ethylene glycol monomethyl ether, butyrolactone, propiolactone and propylene carbonate.
  • the contacting temperature of the gas mixture to be treated with the solvent, in the washing zone is preferably between 0 ° C and -45 ° C.
  • the washing zone advantageously consists of one or more washing columns containing the appropriate number of theoretical washing stages, said columns being, for example, of the type of tray columns or also packed columns.
  • the temperature in each of the washing columns is kept substantially constant by indirect heat exchange, carried out at one or more points of the column in question, between the fluid medium contained in this column and a cooling fluid.
  • the demethanization treatment applied to the rich solvent is carried out, in particular, in two stages, namely a first step in which said rich solvent is subjected to a first expansion at an intermediate pressure capable of releasing a large fraction of the methane dissolved in said solvent to demethanize and produce a first methane-rich gas and a premethanized fluid and a second step in which the premethanized fluid is subjected to a second expansion and then to distillation so as to produce a second methane-rich gas and the demethanized rich solvent, the second methane-rich gas being compressed to the pressure of the first methane-rich gas and then mixed with the latter to form the methane-rich gas phase.
  • the methane-rich gas phase resulting from the demethanization treatment applied to the rich solvent, is advantageously compressed to the pressure of the gas mixture to be treated, then it is cooled and mixed with the gas mixture to be treated before the latter is brought into contact. with the solvent in the washing area.
  • the regeneration of the demethanized rich solvent is carried out by reheating said solvent to a temperature close to ambient, by dividing the reheated solvent into first and second streams, directing the first stream directly to a regeneration zone , by directing the second stream to said regeneration zone after having heated it by indirect heat exchange with the regenerated solvent, and by subjecting the solvent to distillation in the regeneration zone.
  • Said distillation can be carried out in the presence of a stream of inert gas, for example nitrogen, injected into the regeneration zone.
  • the gaseous mixture to be treated contains water and / or C5 and higher hydrocarbons, it is advantageously subjected to a pretreatment intended to remove all or part of these compounds before being brought into contact with the solvent in the zone of washing.
  • This pretreatment can consist of a distillation possibly carried out in the presence of solvent, taken from the solvent injected into the washing zone, to produce the pretreated gas mixture having a C6 hydrocarbon content and more than 0.1% by weight, a fraction of so-called heavy hydrocarbons containing almost all of the hydrocarbons in C6 and more and all or part C5 hydrocarbons and, optionally, a liquid consisting of a mixture of solvent and water.
  • Said distillation of the gas mixture is carried out at a temperature at least equal to the temperature prevailing in the washing zone.
  • the gaseous mixture to be treated arriving via line 1 is introduced into the lower part of a distillation column 2, in which said gaseous mixture is optionally distilled in the presence of solvent withdrawn, through an opening pipe 41 in the upper part of column 2, on the regenerated solvent 38 brought to the washing column 5, before passage of said solvent in a refrigeration zone 39 mounted on the conduit 6 for injecting the regenerated solvent into said washing column 5, so as to produce on the one hand a dried gaseous mixture, evacuated from column 2 by a line 3 and the hydrocarbon content of C6 and more is less than 0.1% by weight, and on the other hand a hydrocarbon fraction containing almost all of the C6 hydrocarbons and more and possibly all or part of the C5 hydrocarbons, drawn off from column 2 by a pipe 4 and possibly a liquid drawn off from column 2 via a conduit 54 and consisting of a mixture of solvent and water.
  • the dried gas mixture leaving column 2 through line 3 is introduced into the lower part of a washing column 5, for example of the plate column type, in which it is brought into contact, countercurrently, with cold solvent. regenerated injected into the upper part of column 5 through line 6, after passage through the coolant 39, this contacting being carried out at a temperature of, for example, between 0 ° C and -45 ° C, said temperature being controlled by passing the liquid medium contained in column 5 through refrigerants 7.
  • a treated gas consisting mainly of methane and depleted in CO2 is removed via a pipe 8, said treated gas being heated in a heating system 9 and then directed, by a pipe 10, to a zone of use, while at the bottom of said column 5 is drawn off, through a conduit 11, a liquid phase consisting of the solvent enriched in CO2 and other compounds absorbed and called rich solvent.
  • the dried gas mixture is brought into contact with the solvent in the washing column 5 at an appropriate temperature in the range O ° C to -45 ° C and with a ratio of the flow rates of the gas mixture to be treated and of solvent such that on the one hand the treated gas collected, via line 8, at the head of column 5 has a molar CO2 content of at most equal to 2% and that on the other hand the rich solvent flowing through line 11 , contains at least 80 mol% of C3 and higher hydrocarbons present in the dried gas mixture introduced in column 5.
  • the rich solvent circulating in the conduit 11 is introduced, after passing through the expansion valve 12, into the upper part of an expansion tank 13 in which a first gas rich in methane separates, which is removed at the head of the flask 13 by a conduit 14, and a rich predemethanized solvent, which is drawn off at the bottom of the flask 13 by a conduit 15.
  • Said predemethanized rich solvent is subjected to a second expansion through an expansion valve 16 followed by a distillation in a distillation column 17 provided with a reboiler 18, so as to produce a second gas rich in methane, which is evacuated at the top of the column 17 by a conduit 19, and a liquid phase depleted in methane, called demethanized rich solvent, which is drawn off at the bottom of the column 17 by a pipe 27.
  • the second methane-rich gas circulating in the pipe 19 is caused to pass into a compressor 20 from which it leaves, via a pipe 21, to a pressure substantially equal to that of the first methane-rich gas passing through line 14, then these two methane-rich gases are mixed in line 22 and the gas phase resulting from this mixture is recycled, via a compressor 23, the outlet of which is extended by a pipe 24, a cooler 25 and a pipe 26, in the pipe 3 for supplying the dried gas mixture to the washing column 5.
  • the regeneration can be carried out in the presence of a stream of inert gas, in particular a stream of nitrogen, injected into the lower part of the column 33 through a pipe 43.
  • Said regeneration produces, on the one hand, a regenerated solvent withdrawn from the bottom of the column 33, through a conduit 34, and used in the heat exchanger 35, to heat the second stream 31 of demethanized rich solvent to be regenerated, before being recycled, by the pump 37 and the conduit 38, to the washing column 5, and on the other hand a gas mixture discharged at the head of the column 33, by a conduit 42, and containing the CO2 as well as the C2 and more hydrocarbons present in the demethanized rich solvent.
  • the gas mixture passing through the conduit 42 is washed against the current, in a washing tower 47 provided with a condenser 46 at the head and a reboiler 70 at the bottom and operating at low temperature, using a hydrocarbon solvent. in C5 and more brought to the washing tower 47 by a conduit 53, said washing producing, on the one hand, a stream 44 of acid gas rich in CO2, which contains almost all of the CO2 present in the rich solvent demethanized and has, expressed in methane equivalent, a hydrocarbon content of less than 10 mol% relative to CO2, and, on the other hand, a rich hydrocarbon solvent 45 practically free of CO2 and containing almost all C2 and higher hydrocarbons present in the gas mixture arriving through line 42.
  • the rich hydrocarbon solvent 45 is brought to a regeneration column 49 in which said solvent 45 is subjected to distillation to produce, on the one hand, a fraction of hydrocarbons 48 constituting the cut of C2 hydrocarbons and more containing at least 80 mol% of the C3 hydrocarbons and higher contained in the gas to be treated brought to the washing column 5 by the line 3, and, on the other hand, a regenerated hydrocarbon solvent 50, which is recycled, by the pump 51, to the washing tower column 47 after refrigeration in the system 52 and passage through the conduit 53.
  • the gaseous mixture to be treated arriving via line 1 with a flow rate of 10,000 kmol / h, a temperature of 30 ° C and a pressure of 5,000 kPa was introduced into column 2 for removal of C6 and higher hydrocarbons.
  • the gas mixture to be treated being dry, no addition of solvent was carried out via line 41.
  • the pretreated gas mixture was contacted with 6000 kmol / h of solvent consisting of a mixture of methanol and water in a molar ratio equal to 95: 5 and having a pressure of 5000 kPa and a temperature equal to -30 ° C. , said contacting being carried out in a washing column 5 comprising 14 plates and operating at - 30 ° C under a pressure of 4900 kPa.
  • the refrigerants 7 fitted to the washing column 5 made it possible to maintain the temperature in said column at the desired value.
  • the heated treated gas is directed through line 10 to an expedition pipeline.
  • the demethanization of the rich solvent firstly involved a first expansion of said solvent at a pressure of 3000 kPa, the expanded relaxed solvent supplying the expansion tank 13 in which 362 kmol / h of a first gas containing 68 mol% of methane were produced. , which was discharged at the head of the flask 13 through line 14, and a predemethanized rich solvent withdrawn from said flask through line 15 and whose molar methane content was reduced from 6.11% to 3.57%.
  • the premethanized rich solvent the temperature of which was equal to -33.6 ° C., was expanded in the valve 16 and then fed to the distillation column 17 comprising 10 plates and operating at 1800 kPa.
  • the demethanized rich solvent had the following molar composition: . CO2 20.16% . Methane 0.03% . Ethane 3.37% . Propane 1.98% . Butane 1.67% . Methanol 69.13% . Water 3.64%
  • the second methane-rich gas was compressed in compressor 20 to the pressure of the first methane-rich gas, namely 3000 kPa.
  • the compressed gas leaving the compressor 20, via the conduit 21, was mixed with the first methane-rich gas to constitute the methane-rich gas phase 22, which was then compressed, in the compressor 23, until the pressure of the gas mixture a treating, namely 5000 kPa, said compressed gas phase being added through line 24, the refrigerant 25 and line 26, to the pretreated gas mixture circulating in line 3.
  • the compressed methane-rich gas phase passing through line 26 had a temperature of -20 ° C, a pressure of 5,000 kPa and a flow rate of 938 kmol / h.
  • the molar composition of said methane-rich gas phase flowing in line 26 was as follows: . CO2 29.80% . Methane 59.50% . Ethane 9.45% . Propane 0.97% . Butane 0.26% . Methanol 0.02%
  • the demethanized rich solvent after expansion in the valve 29 and heating in the heating system 28, had a temperature of 10 ° C and a pressure of 800 kpa. Said heated solvent was then divided into a first stream 30 having a flow rate of 4533 kmol / h, which was directed directly to the regeneration column 33, and into a second stream 31, which was heated to 70 ° C. in the heat exchanger. heat 35 before being conveyed to the regeneration column 33.
  • This column operated under a pressure of 700 kPa and had 18 plates, the currents 30 and 31 being injected respectively at the plates 8 and 12, counted from the top of the column.
  • the regeneration column 33 produced at the head a gaseous mixture containing CO2 and the hydrocarbons in C2 and plus, which was discharged through line 42 with a temperature of -14 ° C, a pressure of 700 kPa and a flow rate of 2244 kmol / h and at the bottom a regenerated solvent withdrawn from the regeneration column 33 through line 34.
  • the gas mixture passing through line 42 had the following molar composition: . CO2 74.07% . Methane 0.12% . Ethane 12.36% . Propane 7.28% . Butane 6.13% . Hexane 0.04%
  • the regenerated solvent is cooled by passage through the heat exchanger 35, then recompressed to a pressure of 5000 kPa by the pump 37, and it is then directed through the conduit 38 on the one hand in a major quantity to the washing column 5 , through the refrigerant 39 and the conduit 6.
  • the gaseous mixture passing through the conduit 42 was washed against the current in the washing tower 47 using a hydrocarbon solvent consisting mainly of hexane.
  • Tower 47 had 35 trays and operated under a pressure of 700 kPa with a temperature of -30 ° C at the head at the level of refrigerant 46.
  • the washing tower 47 produced at the head an acid gas stream 44 rich in CO2 and having a hydrocarbon content, expressed in methane equivalent, of less than 10 mol% relative to CO2, said acid gas stream having a temperature of -30 ° C, a pressure of 650 kPa and a flow rate of 1685 kmol / h, and in the background a hydrocarbon solvent 45 with reduced CO2 content having a temperature of 95.8 ° C, a pressure of 730 kPa and a flow rate of 5059 kmol / h.
  • the molar composition of the acid gas stream 44 was as follows: . CO2 98.65% . Methane 0.15% . Ethane 0.98% . Butane 0.05% . Hexane 0.17%
  • the rich hydrocarbon solvent 45 had the following molar composition: . Ethane 5.16% . Propane 3.23% . Butane 3.69% . Hexane 87.91%
  • the fractionation of the rich hydrocarbon solvent 45 in column 49 provided with 28 trays and operating under a pressure of 600 kPa produced at the head 561 kmol / h of a cut of hydrocarbons 48 in C2 and more having a temperature of 18 ° C and a pressure of 600 kPa and at the bottom 4500 kmol / h of regenerated hydrocarbon solvent having a temperature of 142.7 ° C and a pressure of 670 kPa, said solvent containing, in mole, 98.89% of hexane and 1.11 % butane.
  • the molar composition of the C2 and higher hydrocarbon cut 48 was as follows: . CO2 0.02% . Ethane 46.49% . Propane 29.10% . Butane 24.37% . Hexane 0.02%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

  • L'invention concerne un procédé de décarbonatation et de dégazolinage simultanés d'un mélange gazeux constitué principalement d'hydrocarbures consistant en méthane et hydrocarbures en C₂ et plus et renfermant également CO₂ et éventuellement un ou plusieurs composés non sulfurés à bas point d'ébullition tels que H₂, CO,N₂ et argon.
  • Le procédé selon l'invention permet de séparer directement un mélange gazeux du type précité en trois composantes, à savoir :
    • un gaz traité consistant principalement en méthane et hydrocarbures en C₂ et dont la teneur molaire en CO₂ est au plus égale à 2 %,
    • une coupe d'hydrocarbures contenant au moins 80 % molaire des hydrocarbures en C₃ et plus présents dans le mélange gazeux à traiter, et
    • un courant de gaz acide consistant en CO₂ renfermant moins de 10 % molaire d'hydrocarbures, exprimés en équivalent méthane, par rapport au CO₂.
  • On connait plusieurs procédés, utilisés industriellement, pour le traitement de mélanges gazeux tels que définis plus haut et dont les principaux exemples sont représentés par les divers gaz naturels, qui comportent une opération de décarbonatation, c'est-à-dire une élimination du CO₂, et une opération de dégazolinage, c'est-à-dire une séparation des hydrocarbures lourds par exemple en C₃ et plus, du mélange gazeux et permettent de réaliser le fractionnement dudit mélange gazeux en les trois composantes mentionnées ci-dessus.
  • Ces opérations de décarbonatation et de dégazolinage sont généralement mises en oeuvre de manière séparée et font partie d'une succession d'opérations réalisées sur le mélange gazeux à traiter et comportant principalement une élimination du gaz acide CO₂ un séchage, une adsorption de l'eau sur un solide approprié tel qu'un tamis moléculaire, une séparation par distillation cryogénique entre -30°C et -90°C associée ou non à une extraction par un solvant afin d'obtenir la coupe de liquide de gaz naturel, et enfin un réchauffage du gaz traité jusqu'à la température ambiante pour, généralement, alimenter le réseau de gaz commercial.
  • Dans un tel schéma de traitement d'un mélange gazeux du type gaz naturel renfermant les constituants précités, l'abaissement de la température du mélange gazeux est imposé par la seule production de la coupe de liquide de gaz naturel, aucune autre opération n'étant effectuée à ce niveau de température.
  • Dans ce type de schéma de traitement, la réalisation en série d'opérations, qui s'appuient sur des principes très différents et sont conduites à des niveaux de température divers, présente de sérieux inconvénients. Il n'y a que peu de possibilité d'intégration thermique, ce qui rend ledit schéma de traitement extrêmement onéreux au plan énergétique et au plan des investissements.
  • On connait également des procédés de traitement de mélanges gazeux du type des gaz naturels, qui permettent de réaliser simultanément l'élimination du CO₂ contenu dans le mélange gazeux et la production d'hydrocarbures gazeux et d'hydrocarbures liquides et dont le type est le procédé connu sous le nom de procédé RYAN-HOLMES et décrit, notamment, par J. RYAN et F. SCHAFFERT dans la revue CHEMICAL ENGINEERING PROGRESS, Octobre 1984, pages 53 à 56. Dans un tel procédé, le gaz naturel à traiter, après avoir été déshydraté de manière conventionnelle puis réfrigéré, est soumis à une distillation à basse température mise en oeuvre en trois ou quatre étapes successives.
  • Dans le mode de réalisation en trois étapes, le gaz naturel déshydraté et réfrigéré est séparé, dans une première colonne (déméthaniseur) en tête de laquelle est injecté un additif consistant en une fraction liquide d'hydrocarbures en C₄ et plus, en une phase gazeuse renfermant le méthane et les composés plus légers et une fraction liquide contenant les hydrocarbures en C₂ et plus et le CO₂. Cette fraction liquide est séparée, dans une deuxième colonne (dé-éthaniseur) dans laquelle on introduit également une certaine quantité de l'additif, en une fraction de tête consistant en CO₂ et en une fraction de queue renfermant les hydrocarbures en C₂ et plus.
    Ladite fraction de queue est ensuite séparée, dans une troisième colonne, en une fraction de tête consistant en une coupe liquide d'hydrocarbures en C₂ à C₄ et en une fraction de queue consistant en une coupe liquide d'hydrocarbures en C₄ et plus, qui contient la majeure partie des butanes et des hydrocarbures supérieurs présents dans le gaz naturel traité et dont on prélève la quantité appropriée pour constituer l'additif injecté dans les première et seconde colonnes. L'utilisation de cet additif évite la cristallisation de CO₂ en tête du déméthaniseur et assure la rupture de l'azéotrope qui se forme entre l'éthane et CO₂ et facilite la séparation de ces composés dans le dééthaniseur. Le procédé précité repose donc pour l'essentiel sur des opérations de distillation en série.
  • L'invention propose un procédé de décarbonatation et de dégazolinage simultanés de mélanges gazeux, qui sont disponibles sous une pression absolue supérieure à 0,5 MPa et sont constitués principalement d'hydrocarbures consistant en méthane et hydrocarbures en C₂ et plus et renferment également CO₂ et éventuellement un ou plusieurs composés non sulfurés à bas point d'ébullition tels que H₂, CO, N₂ et argon, de tels mélanges gazeux étant par exemple du type des gaz naturels, ledit procédé permettant d'atteindre plus facilement et à moindre coût, en comparaison aux procédés connus, l'objectif d'une séparation du mélange gazeux en les trois composantes, à savoir gaz traité consistant principalement en méthane, coupe liquide d'hydrocarbures à majorité d'hydrocarbures en C₃ et plus et renfermant selon les besoins une quantité plus au moins importante d'éthane et courant de CO₂, qui ont les spécifications définies plus haut.
  • Le procédé selon l'invention est du type du procéde qui est décrit dans la citation US-A-3770622 et dans lequel on met le mélange gazeux en contact, dans une zone de lavage, avec un solvant consistant en un liquide qui dissout préférentiellement CO₂ et les hydrocarbures en C₂ et plus et qui possède d'une part, à la pression atmosphérique, une température d'ébullition supérieure à 40°C et d'autre part, à - 30°C, une viscosité inférieure à 0,1 Pa.s, en opérant à une température suffisamment basse et avec un rapport des débits de mélange gazeux à traiter et de solvant tel que l'on produise, d'une part, un gaz traité consistant principalement en méthane et présentant une teneur molaire en CO₂ au plus égale à 2 % et, d'autre part, une phase liquide appelée solvant riche et formée du solvant enrichi en CO₂ et en une fraction d'hydrocarbures en C₂ et plus renfermant au moins 80 % molaire des hydrocarbures en C₃ et plus présents dans le mélange gazeux à traiter, on soumet le solvant riche à un traitement de déméthanisation au moins partielle, par détente séparant ledit solvant riche en une phase liquide appauvrie en méthane et appelée solvant riche déméthanisé et en une phase gazeuse riche en méthane, qui peut être éventuellement réunie au mélange gazeux à traiter avant la mise en contact de ce dernier avec le solvant, et on soumet le solvant riche déméthanisé à un traitement produisant un courant de gaz acide, qui renferme le CO₂ présent dans le solvant riche déméthanisé, produisant également un mélange d'hydrocarbures appelé coupe d'hydrocarbures et produisant enfin un solvant régénéré, qui est recyclé vers la zone de lavage.
  • Le procédé selon l'invention se distingue du procédé de la citation US-A-3770622, et se caractérise donc, en ce que le traitement du solvant riche déméthanisé est réalisé en soumettant ledit solvant riche déméthanisé
       à une régénération (33) par stripage produisant le solvant régénéré (34) et un mélange gazeux (42) contenant le CO₂ ainsi que les hydrocarbures en C₂ et plus présents dans le solvant riche déméthanisé (27), puis en effectuant un lavage dudit mélange gazeux (42) au moyen d'un solvant hydrocarboné en C₅ et plus, dans un espace de lavage (47) opérant à basse température, avec production, d'une part, d'un courant de gaz acide riche en CO₂, constituant le courant de gaz acide (44) et consistant en la quasi totalité du CO₂ présent dans le solvant riche déméthanisé renfermant, exprimé en équivalent méthane, moins de 10 % molaire d'hydrocarbures par rapport au CO₂, et, d'autre part, d'un solvant hydrocarboné riche (45) contenant la presque totalité des hydrocarbures en C₂ et plus présents dans le mélange gazeux (42) et en fractionnant par distillation ledit solvant hydrocarboné riche en une fraction d'hydrocarbures, qui constitue la coupe d'hydrocarbures (48) et renferme au moins 80 % molaire des hydrocarbures en C₃ et plus présents dans le gaz à traiter, et en un solvant hydrocarboné régénéré (50) en C₅ et plus, que l'on recycle à l'espace de lavage (47) après l'avoir réfrigéré (52).
  • Par "équivalent méthane", on désigne suivant l'invention autant de pseudo-molécules à un seul atome de carbone qu'il y a d'atomes de carbone dans la molécule considérée d'hydrocarbure.
  • Le solvant, qui est défini généralement ci-dessus pour la mise en contact avec le mélange gazeux à traiter aux fins d'absorption du CO₂ et des hydrocarbures en C₂ et plus, possède de préférence une viscosité inférieure à 0,05 Pa.s.
  • Le solvant suivant l'invention peut consister en particulier en un ou plusieurs absorbants liquides sélectifs du CO₂ et utilisés sous forme anhydre ou en mélange avec de l'eau, le ou lesdits solvants étant choisis parmi les amides de formules
    Figure imgb0001

    les aldéhydes de formule
    Figure imgb0002

    les esters de formules
    Figure imgb0003

    les alcanols en C₁ à C₄, les diéthers de formule
    Figure imgb0004

    les diéthers alcools de formule R₉O- C₂H₄- O - C₂H₄ - OH les lactones de formule
    Figure imgb0005

    et le carbonate de propylène, avec dans ces formules R₁ et R₂, identiques ou différents, désignant un atome d'hydrogène ou un radical alcoyle en C₁ ou C₂, R₃ étant un radical alcoyle en C₃ ou C₄, R₆ étant un radical alcoyle en C₂ à C₄ ou un radical
    Figure imgb0006

    avec R₈ désignant un radical alcoyle en C₁ ou C₂ et n étant égal à 1 ou 2, R₇ étant un radical alcoyle en C₁ ou C₂ ou un radical
    Figure imgb0007

    R₉ désignant un radical alcoyle en C₁ à C₄ et p étant un nombre entier allant de 2 à 4.
  • Des exemples non limitatifs d'absorbants organiques liquides répondant aux formules ci-dessus sont tels que N,N-diméthylformamide, N,N-diméthylacétamide, diméthoxyméthane, diéthoxyméthane, diméthoxy-1,1 éthane, méthanol, éthanol, diméthyléther de l'éthylène glycol, diméthyléther du diéthylèneglycol, monométhyléther de l'éthylèneglycol, butyrolactone, propiolactone et carbonate de propylène.
  • La température de mise en contact du mélange gazeux à traiter avec le solvant, dans la zone de lavage, est de préférence comprise entre 0°C et -45°C.
  • La zone de lavage consiste avantageusement en une ou plusieurs colonnes de lavage renfermant le nombre approprié d'étages théoriques de lavage, lesdites colonnes étant, par exemple, du type des colonnes à plateaux ou encore des colonnes à garnissage. Avantageusement on maintient substantiellement constante la température dans chacune des colonnes de lavage par échange indirect de chaleur, effectué en un ou plusieurs points de la colonne considérée, entre le milieu fluide contenu dans cette colonne et un fluide réfrigérant.
  • Le traitement de déméthanisation appliqué au solvant riche est réalisé, en particulier, en deux étapes, à savoir une première étape dans laquelle ledit solvant riche est soumis à une première détente à une pression intermédiaire propre à libérer une fraction importante du méthane dissous dans ledit solvant à déméthaniser et à produire un premier gaz riche en méthane et un fluide prédéméthanisé et une seconde étape dans laquelle le fluide prédéméthanisé est soumis à une seconde détente puis à une distillation de manière à produire un second gaz riche en méthane et le solvant riche déméthanisé, le second gaz riche en méthane étant comprimé jusqu'à la pression du premier gaz riche en méthane puis mélangé à ce dernier pour constituer la phase gazeuse riche en méthane.
  • La phase gazeuse riche en méthane, résultant du traitement de déméthanisation appliqué au solvant riche, est avantageusement comprimée jusqu'à la pression du mélange gazeux à traiter, puis elle est refroidie et mélangée au mélange gazeux à traiter avant la mise en contact de ce dernier avec le solvant dans la zone de lavage.
  • Avantageusement la régénération du solvant riche déméthanisé est mise en oeuvre en réchauffant ledit solvant jusqu'à une température proche de l'ambiante, en partageant le solvant réchauffé en un premier et un second courants, en dirigeant le premier courant directement vers une zone de régénération, en dirigeant le second courant vers ladite zone de régénération après l'avoir réchauffé par échange indirect de chaleur avec le solvant régénéré, et en soumettant le solvant à une distillation dans la zone de régénération. La dite distillation peut être effectuée en présence d'un courant de gaz inerte, par exemple azote, injecté dans la zone de régénération.
  • Lorsque le mélange gazeux à traiter renferme de l'eau et/ou des hydrocarbures en C₅ et plus, il est avantageusement soumis à un prétraitement destiné à éliminer tout ou partie de ces composés avant d'être mis en contact avec le solvant dans la zone de lavage.
  • Ce prétraitement peut consister en une distillation réalisée éventuellement en présence de solvant, prélevé sur le solvant injecté dans la zone de lavage, pour produire le mélange gazeux prétraité présentant une teneur en hydrocarbures en C₆ et plus inférieure à 0,1 % en poids, une fraction d'hydrocarbures dits lourds renfermant la quasitotalité des hydrocarbures en C₆ et plus et tout ou partie des hydrocarbures en C₅ et, éventuellement, un liquide consistant en un mélange de solvant et d'eau. Ladite distillation du mélange gazeux est effectuée à une température au moins égale à la température régnant dans la zone de lavage.
  • L'invention sera mieux comprise à la lecture de la description donnée ci-après de l'une de ses formes de mise en oeuvre faisant appel à l'installation schématisée sur la figure du dessin annexé.
  • En se référant à la figure, le mélange gazeux a traiter arrivant par le conduit 1 est introduit dans la partie inférieure d'une colonne 2 de distillation, dans laquelle ledit mélange gazeux est distillé éventuellement en présence de solvant prélevé, par un conduit 41 débouchant dans la partie supérieure de la colonne 2, sur le solvant régénéré 38 amené à la colonne 5 de lavage, avant passage dudit solvant dans une zone 39 de réfrigération montée sur le conduit 6 d'injection du solvant régénéré dans ladite colonne 5 de lavage, de manière à produire d'une part un mélange gazeux séché, évacué de la colonne 2 par un conduit 3 et dont la teneur en hydrocarbures en C₆ et plus est inférieure à 0,1 % en poids, et d'autre part une coupe hydrocarbonée renfermant la quasi-totalité des hydrocarbures en C₆ et plus et éventuellement tout ou partie des hydrocarbures en C₅, soutirée de la colonne 2 par un conduit 4 et éventuellement un liquide soutiré de la colonne 2 par un conduit 54 et consistant en un mélange de solvant et l'eau.
  • Le mélange gazeux séché sortant de la colonne 2 par le conduit 3 est introduit dans la partie inférieure d'une colonne 5 de lavage, par exemple du type colonne à plateaux, dans laquelle il est mis en contact, à contrecourant, avec du solvant froid régénéré injecté dans la partie supérieure de la colonne 5 par le conduit 6, après passage dans le réfrigérant 39, cette mise en contact étant effectuée à une température comprise, par exemple, entre O°C et -45°C, ladite température étant contrôlée par passage du milieu liquide contenu dans la colonne 5 dans des réfrigérants 7. En tête de la colonne 5 on évacue, par un conduit 8, un gaz traité consistant principalement en méthane et appauvri en CO₂, ledit gaz traité étant réchauffé dans un système 9 de réchauffage puis dirigé, par un conduit 10, vers une zone d'utilisation, tandis qu'en fond de ladite colonne 5 on soutire, par un conduit 11, une phase liquide constituée du solvant enrichi en CO₂ et autres composés absorbés et appelée solvant riche.
  • On réalise la mise en contact du mélange gazeux séché avec le solvant dans la colonne 5 de lavage à une température appropriée dans l'intervalle O°C à -45°C et avec un rapport des débits de mélange gazeux à traiter et de solvant tel que d'une part le gaz traité recueilli, par le conduit 8, en tête de la colonne 5 ait une teneur molaire en CO₂ au plus égale à 2 % et que d'autre part le solvant riche, s'écoulant par le conduit 11, renferme au moins 80 % molaire des hydrocarbures en C₃ et plus présents dans le mélange gazeux séché introduit dans la colonne 5.
  • Le solvant riche circulant dans le conduit 11 est introduit, après passage à travers la vanne 12 de détente, dans la partie supérieure d'un ballon de détente 13 dans lequel se sépare un premier gaz riche en méthane, que l'on évacue en tête du ballon 13 par un conduit 14, et un solvant riche prédéméthanisé, que l'on soutire en fond du ballon 13 par un conduit 15. Ledit solvant riche prédéméthanisé est soumis à une seconde détente à travers une vanne de détente 16 suivie d'une distillation dans une colonne 17 de distillation pourvue d'un rebouilleur 18, de manière à produire un second gaz riche en méthane, que l'on évacue en tête de la colonne 17 par un conduit 19, et une phase liquide appauvrie en méthane, appelée solvant riche déméthanisé, qui est soutirée en fond de la colonne 17 par un conduit 27. Le second gaz riche en méthane circulant dans le conduit 19 est amené à passer dans un compresseur 20 d'où il sort, par un conduit 21, à une pression sensiblement égale à celle du premier gaz riche en méthane passant dans le conduit 14, puis ces deux gaz riches en méthane sont mélangés dans le conduit 22 et la phase gazeuse résultant de ce mélange est recyclée, par l'intermédiaire d'un compresseur 23 dont la sortie est prolongée par un conduit 24, un réfrigérant 25 et un conduit 26, dans le conduit 3 d'amenée du mélange gazeux séché à la colonne 5 de lavage.
  • Le solvant riche déméthanisé, soutiré de la colonne 17 par le conduit 27, traverse une vanne de détente 29 puis un système 28 de réchauffage, dans lequel il est amené à une température proche de l'ambiante, puis il est amené à une colonne 33 de régénération pourvue d'un rebouilleur 40 après avoir été partagé en un premier courant 30, qui est introduit directement dans la colonne 33 de régénération, et un second courant 31, qui est introduit dans ladite colonne de régénération après avoir été réchauffé dans un échangeur indirect de chaleur 35. La régénération peut être réalisée en présence d'un courant de gaz inerte, notamment un courant d'azote, injecté dans la partie inférieure de la colonne 33 par un conduit 43. Ladite régénération produit, d'une part, un solvant régénéré soutiré en fond de la colonne 33, par un conduit 34, et utilisé dans l'échangeur de chaleur 35, pour réchauffer le second courant 31 de solvant riche déméthanisé à régénérer, avant d'être recyclé, par la pompe 37 et le conduit 38, vers la colonne 5 de lavage, et d'autre part un mélange gazeux évacué en tête de la colonne 33, par un conduit 42, et contenant le CO₂ ainsi que les hydrocarbures en C₂ et plus présents dans le solvant riche déméthanisé.
  • Le mélange gazeux passant dans le conduit 42 est lavé à contre-courant, dans une tour de lavage 47 munie d'un réfrigérant 46 en tête et d'un rebouilleur 70 en fond et opérant à basse température, au moyen d'un solvant hydrocarboné en C₅ et plus amené à la tour de lavage 47 par un conduit 53, ledit lavage produisant, d'une part, un courant 44 de gaz acide riche en CO₂, qui renferme la quasi-totalité du CO₂ présent dans le solvant riche déméthanisé et possède, exprimée en équivalent méthane, une teneur en hydrocarbures inférieure à 10 % molaire par rapport au CO₂, et, d'autre part, un solvant hydrocarboné riche 45 pratiquement exempt de CO₂ et contenant la presque totalité des hydrocarbures en C₂ et plus présents dans le mélange gazeux arrivant par le conduit 42.
  • Le solvant hydrocarboné riche 45 est amené à une colonne 49 de régénération dans laquelle ledit solvant 45 est soumis à une distillation pour produire, d'une part, une fraction d'hydrocarbures 48 constituant la coupe d'hydrocarbures en C₂ et plus renfermant au moins 80 % molaire des hydrocarbures en C₃ et plus contenus dans le gaz à traiter amené à la colonne 5 de lavage par le conduit 3, et, d'autre part, un solvant hydrocarboné 50 régénéré, qui est recyclé, par la pompe 51, à la colonne tour de lavage 47 après réfrigération dans le système 52 et passage dans le conduit 53.
  • Pour compléter la description qui précède, on donne ci-après, à titre non limitatif, un exemple de mise en oeuvre du procédé selon l'invention.
  • EXEMPLE:
  • En faisant appel à une installation analogue à celle schématisée sur la figure du dessin annexé et fonctionnant comme décrit précédemment, on traitait un mélange gazeux ayant la composition molaire suivante :
    . CO₂ 18 %
    . Méthane 71,5 %
    . Ethane 5,1 %
    . Propane 1,8 %
    . Butane 1,8 %
    . Hexane 1,8 %
  • Le mélange gazeux à traiter, arrivant par le conduit 1 avec un débit de 10 000 kmoles/h, une température de 30°C et une pression de 5 000 kPa était introduit dans la colonne 2 d'élimination des hydrocarbures en C₆ et plus. Dans cet exemple, le mélange gazeux à traiter étant sec, aucune addition de solvant n'était réalisée par le conduit 41.
  • Par le conduit 4 de la colonne 2, on évacuait 352 kmoles/h d'une coupe hydrocarbonée lourde ayant une pression de 5 000 kPa et une température égale à 30°C, ladite coupe ayant la composition suivante :
    . CO₂ 9,26 %
    . Méthane 18 %
    . Ethane 5,01 %
    . Propane 4,71 %
    . Butane 12,05 %
    . Hexane 50,97 %
  • Par le conduit 3 en tête de la colonne 2 on évacuait 9648 kmoles/h d'un mélange gazeux prétraité ayant une températeur de -20°C et une pression de 4950 kPa, ledit mélange gazeux prétraité ayant la composition molaire suivante :
    . CO₂ 18,32 %
    . Méthane 73,45 %
    . Ethane 5,10 %
    . Propane 1,69 %
    . Butane 1,43 %
    . Hexane 0,01 %
  • Le mélange gazeux prétraité était mis en contact avec 6000 kmoles/h de solvant consistant en un mélange de méthanol et d'eau dans un rapport molaire égal à 95:5 et présentant une pression de 5000 kPa et une température égale à -30°C, ladite mise en contact étant réalisée dans une colonne 5 de lavage comportant 14 plateaux et opérant à - 30°C sous une pression de 4900 kPa. Les réfrigérants 7 équipant la colonne 5 de lavage permettaient de maintenir la température dans ladite colonne à la valeur désirée.
  • En tête de la colonne 5, on évacuait, par le conduit 8, 7405 kmoles/h d'un gaz traité ayant une pression de 4900 kPa et une température de -30°C, ledit gaz traité ayant la composition molaire suivante :
    . CO₂ 1,42 %
    . Méthane 95,67 %
    . Ethane 2,90 %
    . Méthanol 0,01 %
  • En fond de la colonne 5 de lavage, on soutirait, par le conduit 11, 9182 kmoles/h de solvant riche ayant une température de -30°C et une pression de 4900 kPa, ledit solvant riche ayant la composition molaire ci-après:
    . CO₂ 21,15 %
    . Méthane 6,11 %
    . Ethane 3,99 %
    . Propane 1,88 %
    . Butane 1,52 %
    . Méthanol 62,07 %
    . Eau 3,27 %
  • Le gaz traité, évacué par le conduit 8, était réchauffé jusqu'à température ambiante dans le système échangeur de chaleur 9, ce qui permet d'assurer la réfrigération du solvant dans le réfrigérant 39. Le gaz traité réchauffé est dirigé par le conduit 10 vers un gazoduc d'expédition.
  • La déméthanisation du solvant riche comportait tout d'abord une première détente dudit solvant à une pression de 3000 kPa, le solvant riche détendu alimentant le ballon 13 de détente dans lequel on produisait 362kmoles/h d'un premier gaz renfermant 68 % molaire de méthane, que l'on évacuait en tête du ballon 13 par le conduit 14, et un solvant riche prédéméthanisé soutiré dudit ballon par le conduit 15 et dont la teneur molaire en méthane a été réduite de 6,11 % à 3,57 %. Le solvant riche prédéméthanisé, dont la température était égale à -33,6°C, était détendu dans la vanne 16 et alimentait ensuite la colonne 17 de distillation comportant 10 plateaux et opérant à 1800 kPa. La colonne 17 produisait 577 kmoles/h d'un second gaz riche en méthane, évacué par le conduit 19 sous une pression de 1800 kPa et une température de -37°C, et un solvant riche déméthanisé soutiré de la colonne 17 par le conduit 27 avec un débit de 8243 kmoles/h, une pression de 1800 kPa et une température de -8,2°C.
  • Le solvant riche déméthanisé avait la composition molaire suivante :
    . CO₂ 20,16 %
    . Méthane 0,03 %
    . Ethane 3,37 %
    . Propane 1,98 %
    . Butane 1,67 %
    . Méthanol 69,13 %
    . Eau 3,64 %
  • Le second gaz riche en méthane était comprimé, dans le compresseur 20, jusqu'à la pression du premier gaz riche en méthane, à savoir 3000 kPa. Le gaz comprimé sortant du compresseur 20, par le conduit 21, était mélangé au premier gaz riche en méthane pour constituer la phase gazeuse riche en méthane 22, qui était ensuite comprimée, dans le compresseur 23, jusqu'à la pression du mélange gazeux a traiter, à savoir 5000 kPa, ladite phase gazeuse comprimée étant ajoutée à travers le conduit 24, le réfrigérant 25 et le conduit 26, au mélange gazeux prétraité circulant dans le conduit 3.
  • La phase gazeuse comprimée riche en méthane passant dans le conduit 26 avait une température de -20°C, une pression de 5 000 kPa et un débit de 938 kmoles/h.
  • La composition molaire de ladite phase gazeuse riche en méthane circulant dans le conduit 26 était la suivante :
    . CO₂ 29,80 %
    . Méthane 59,50 %
    . Ethane 9,45 %
    . Propane 0,97 %
    . Butane 0,26 %
    . Méthanol 0,02 %
  • Le solvant riche déméthanisé, après détente dans la vanne 29 et réchauffage dans le système 28 de réchauffage, avait une température de 10°C et une pression de 800 kpa. Ledit solvant réchauffé était alors partagé en un premier courant 30 ayant un débit de 4533 kmoles/h, qui était dirigé directement vers la colonne 33 de régénération, et en un second courant 31, qui était réchauffé à 70°C dans l'échangeur de chaleur 35 avant d'être acheminé vers la colonne de régénération 33. Cette colonne opérait sous une pression de 700 kPa et comportait 18 plateaux, les courants 30 et 31 étant injectés respectivement au niveau des plateaux 8 et 12, comptés à partir du sommet de la colonne.
  • La colonne de régénération 33 produisait en tête un mélange gazeux renfermant CO₂ et les hydrocarbures en C₂ et plus, qui était évacué par le conduit 42 avec une température de -14°C, une pression de 700 kPa et un débit de 2244 kmoles/h et en fond un solvant régénéré soutiré de la colonne de régénération 33 par le conduit 34.
  • Le mélange gazeux passant dans le conduit 42 avait la composition molaire suivante :
    . CO₂ 74,07 %
    . Méthane 0,12 %
    . Ethane 12,36 %
    . Propane 7,28 %
    . Butane 6,13 %
    . Hexane 0,04 %
  • Le solvant régénéré est refroidi par passage dans l'échangeur de chaleur 35, puis recomprimé à une pression de 5000 kPa par la pompe 37, et il est ensuite dirigé par le conduit 38 d'une part en quantité majeure vers la colonne 5 de lavage, à travers le réfrigérant 39 et le conduit 6.
  • Le mélange gazeux passant dans le conduit 42 était lavé à contre courant dans la tour de lavage 47 à l'aide d'un solvant hydrocarboné consistant en majorité en hexane. La tour 47 comportait 35 plateaux et opérait sous une pression de 700 kPa avec une température de -30°C en tête au niveau du réfrigérant 46.
  • L'alimentation de la tour 47 en solvant, par le conduit 53, et en mélange gazeux, par le conduit 42, était effectuée respectivement sur le premier plateau et sur le plateau 21 de ladite tour. La tour de lavage 47 produisait en tête un courant de gaz acide 44 riche en CO₂ et ayant une teneur en hydrocarbures, exprimée en équivalent méthane, inférieure à 10 % molaire par rapport au CO₂, ledit courant de gaz acide ayant une température de -30°C, une pression de 650 kPa et un débit de 1685 kmoles/h, et en fond un solvant hydrocarboné 45 à teneur réduite en CO₂ ayant une température de 95,8°C, une pression de 730 kPa et un débit de 5059 kmoles/h.
  • La composition molaire du courant de gaz acide 44 était la suivante :
    . CO₂ 98,65 %
    . Méthane 0,15 %
    . Ethane 0,98 %
    . Butane 0,05 %
    . Hexane 0,17 %
  • Le solvant riche hydrocarboné 45 avait la composition molaire suivante :
    . Ethane 5,16 %
    . Propane 3,23 %
    . Butane 3,69 %
    . Hexane 87,91 %
  • Le fractionnement du solvant riche hydrocarboné 45 dans la colonne 49 pourvue de 28 plateaux et opérant sous une pression de 600 kPa produisait en tête 561 kmoles/h d'une coupe d'hydrocarbures 48 en C₂ et plus ayant une température de 18°C et une pression de 600 kPa et en fond 4500 kmoles/h de solvant hydrocarboné régénéré ayant une température de 142,7°C et une pression de 670 kPa, ledit solvant renfermant, en mole, 98,89 % d'hexane et 1,11 % de butane.
  • La composition molaire de la coupe d'hydrocarbures 48 en C₂ et plus était la suivante :
    . CO₂ 0,02 %
    . Ethane 46,49 %
    . Propane 29,10 %
    . Butane 24,37 %
    . Hexane 0,02 %

Claims (9)

  1. Procédé de décarbonatation et de dégazolinage simultanés d'un mélange gazeux, qui possède une pression absolue supérieure à 0,5 MPa et renferme principalement des hydrocarbures consistant en méthane et hydrocarbures en C₂ et plus et comporte également CO₂ et éventuellement un ou plusieurs composés non sulfurés à bas point d'ébullition tels que H₂, CO, N₂ et Ar, dans lequel on met le mélange gazeux en contact, dans une zone de lavage (5), avec un solvant (6) consistant en un liquide, qui dissout préférentiellement CO₂ et les hydrocarbures en C₂ et plus et qui possède d'une part, à la pression atmosphérique, une température d'ébullition supérieure à 40°C et d'autre part, à -30°C, une viscosité inférieure à 0,1 Pa.s, en opérant à une température suffisamment basse et avec un rapport des débits de mélange gazeux à traiter et de solvant tel que l'on produise, d'une part, un gaz traité (8) consistant principalement en méthane et présentant une teneur molaire en CO₂ au plus égale à 2 % et, d'autre part, une phase liquide appelée solvant riche (11) et formée du solvant enrichi en CO₂ et en une fraction d'hydrocarbures en C₂ et plus renfermant au moins 80 % molaire des hydrocarbures en C₃ et plus présents dans le mélange gazeux à traiter, on soumet le solvant riche à un traitement de déméthanisation au moins partielle (12, 17) par détente séparant ledit solvant riche en une phase liquide appauvrie en méthane et appelée solvant riche déméthanisé (27) et en une phase gazeuse riche en méthane (22) et on soumet le solvant riche déméthanisé à un traitement produisant un courant de gaz acide (44), qui renferme le CO₂ présent dans le solvant riche déméthanisé, produisant également un mélange d'hydrocarbures appelé coupe d'hydrocarbures (48) et produisant enfin un solvant régénéré (34), qui est recyclé vers la zone (5) de lavage, ledit procédé se caractérisant en ce que le traitement du solvant riche déméthanisé est réalisé en soumettant ledit solvant à une régénération (33) par stripage produisant le solvant régénéré (34) et un mélange gazeux (42) contenant le CO₂ ainsi que les hydrocarbures en C₂ et plus présents dans le solvant riche déméthanisé (27), puis en effectuant un lavage dudit mélange gazeux (42) au moyen d'un solvant hydrocarboné en C₅ et plus, dans un espace de lavage (47) opérant à basse température, avec production, d'une part, d'un courant de gaz acide riche en CO₂, constituant le courant de gaz acide (44) et consistant en la quasi totalité du CO₂ présent dans le solvant riche déméthanisé renfermant, exprimé en équivalent méthane, moins de 10 % molaire d'hydrocarbures par rapport au CO₂, et, d'autre part, d'un solvant hydrocarboné riche (45) contenant la presque totalité des hydrocarbures en C₂ et plus présents dans le mélange gazeux (42) et en fractionnant par distillation ledit solvant hydrocarboné riche en une fraction d'hydrocarbures, qui constitue la coupe d'hydrocarbures (48) et renferme au moins 80 % molaire des hydrocarbures en C₃ et plus présents dans le gaz à traiter, et en un solvant hydrocarboné régénéré (50) en C₅ et plus, que l'on recycle à l'espace de lavage (47) après l'avoir réfrigéré (52).
  2. Procédé selon la revendication 1, caractérisé en ce que le solvant mis en contact avec le mélange gazeux a traiter a une viscosité, à -30°C, inférieure à 0,05 Pa.s.
  3. Procédé selon la revendication 1 ou 2 caractérisé en ce que le solvant mis en contact avec le mélange gazeux à traiter dans la zone (5) de lavage consiste en un ou plusieurs absorbants organiques liquides, utilisés sous forme anhydre ou en mélange avec l'eau, le ou lesdits absorbants étant choisis parmi les amides de formules
    Figure imgb0008
    les aldéhydes de formule
    Figure imgb0009
    les esters de formules
    Figure imgb0010
    les alcanols en C₁ à C₄, les diéthers de formule
    Figure imgb0011
    les diéthers alcools de formule R₉O - C₂H₄ - O - C₂H₄-OH, les lactones de formule
    Figure imgb0012
    et le carbonate de propylène, avec dans ces formules R₁ et R₂, identiques ou différents, désignant un atome d'hydrogène ou un radical alcoyle en C₁ ou C₂, R₃ étant un radical alcoyle en C₃ ou C₄, R₆ étant un radical alcoyle en C₂ à C₄ ou un radical
    Figure imgb0013
    avec R₈ désignant un radical alcoyle en C₁ ou C₂ et n représentant 1 ou 2, R₇ étant un radical alcoyle en C₁ ou C₂ ou un radical
    Figure imgb0014
    R₉ désignant un radical alcoyle en C₁ à C₄ et p étant un nombre entier allant de 2 à 4.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la température de mise en contact du mélange gazeux à traiter avec le solvant, dans la zone (5) de lavage, est comprise entre 0°C et -45°C.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le traitement de déméthanisation appliqué au solvant riche (11) est réalisé en deux étapes, à savoir une première étape dans laquelle ledit solvant riche est soumis à une première détente (12, 13) propre à libérer une fraction importante du méthane dissous dans ledit solvant et à produire un premier gaz riche en méthane (14) et un fluide prédéméthanisé (15) et une seconde étape dans laquelle le fluide prédéméthanisé est soumis à une seconde détente (16) puis à une distillation (17) de manière à produire un second gaz riche en méthane (19) et le solvant riche déméthanisé (27), le second gaz riche en méthane étant comprimé jusqu'à la pression du premier gaz riche en méthane puis mélangé à ce dernier pour constituer la phase gazeuse (22) riche en méthane.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la phase gazeuse (22) riche en méthane est comprimée jusqu'à la pression du mélange gazeux a traiter, puis elle est refroidie (25) et mélangée au mélange gazeux à traiter avant la mise en contact de ce dernier avec le solvant dans la zone de lavage (5).
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que l'on effectue la régénération du solvant riche déméthanisé en réchauffant (28) ledit solvant jusqu'à une température proche de l'ambiante, puis en partageant le solvant réchauffé en un premier (30) et un second (31) courants, en dirigeant le premier courant (30) directement vers une zone de régénération (33), en dirigeant le second courant (31) vers ladite zone de régénération après l'avoir réchauffé par échange indirect de chaleur (35) avec le solvant régénéré (34) et en soumettant le solvant à une distillation dans la zone (33) de régénération.
  8. Procédé selon la revendication 7, caractérisé en ce que la distillation du solvant dans la zone (33) de régénération s'effectue en présence d'un courant de gaz inerte (43), par exemple azote, injecté dans ladite zone.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que, le mélange gazeux à traiter renfermant de l'eau et/ou des hydrocarbures en C₅ et plus, ledit mélange gazeux est soumis à un prétraitement consistant en une distillation (2) effectuée à une température au moins égale à celle régnant dans la zone (5) de lavage et, éventuellement, en présence de solvant, prélevé sur le solvant amené à la zone (5) de lavage, pour produire une fraction (4) d'hydrocarbures dits lourds et renfermant la quasi-totalité des hydrocarbures en C₆ et plus et éventuellement tout ou partie des hydrocarbures en C₅, un mélange gazeux prétraité (3) présentant une teneur en hydrocarbures en C₆ et plus inférieure à 0,1 % en poids et, éventuellement, un liquide (54) consistant en un mélange de solvant et d'eau.
EP93107550A 1988-11-15 1989-11-14 Procédé de décarbonatation et de dégazolinage simultanés d'un mélange gazeux constitué principalement d'hydrocarbures consistant en méthane et hydrocarbures en C2 et plus et renfermant également CO2 Expired - Lifetime EP0556875B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR888814784A FR2641542B1 (fr) 1988-11-15 1988-11-15 Procede de decarbonatation et de degazolinage simultanes d'un melange gazeux constitue principalement d'hydrocarbures consistant en methane et hydrocarbures en c2 et plus et renfermant egalement co2
FR8814784 1988-11-15
EP89403123A EP0373983B1 (fr) 1988-11-15 1989-11-14 Procédé de décarbonatation et de dégazolinage simultanés d'un mélange gazeux constitué principalement d'hydrocarbures consistant en méthane et hydrocarbures en C2 et plus et renfermant également du CO2

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP89403123.6 Division 1989-11-14

Publications (3)

Publication Number Publication Date
EP0556875A2 EP0556875A2 (fr) 1993-08-25
EP0556875A3 EP0556875A3 (en) 1993-11-10
EP0556875B1 true EP0556875B1 (fr) 1995-07-12

Family

ID=9371828

Family Applications (2)

Application Number Title Priority Date Filing Date
EP89403123A Expired - Lifetime EP0373983B1 (fr) 1988-11-15 1989-11-14 Procédé de décarbonatation et de dégazolinage simultanés d'un mélange gazeux constitué principalement d'hydrocarbures consistant en méthane et hydrocarbures en C2 et plus et renfermant également du CO2
EP93107550A Expired - Lifetime EP0556875B1 (fr) 1988-11-15 1989-11-14 Procédé de décarbonatation et de dégazolinage simultanés d'un mélange gazeux constitué principalement d'hydrocarbures consistant en méthane et hydrocarbures en C2 et plus et renfermant également CO2

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP89403123A Expired - Lifetime EP0373983B1 (fr) 1988-11-15 1989-11-14 Procédé de décarbonatation et de dégazolinage simultanés d'un mélange gazeux constitué principalement d'hydrocarbures consistant en méthane et hydrocarbures en C2 et plus et renfermant également du CO2

Country Status (14)

Country Link
US (1) US5298156A (fr)
EP (2) EP0373983B1 (fr)
JP (1) JP2742328B2 (fr)
AT (1) ATE124987T1 (fr)
AU (1) AU627250B2 (fr)
BR (1) BR8907193A (fr)
CA (1) CA2002826C (fr)
DE (2) DE68923459T2 (fr)
ES (2) ES2077452T3 (fr)
FR (1) FR2641542B1 (fr)
NO (1) NO180687C (fr)
RU (1) RU1836407C (fr)
UA (1) UA26318A (fr)
WO (1) WO1990005766A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO302567B1 (no) * 1994-02-14 1998-03-23 Norsk Hydro As Mateanordning
FR2743083B1 (fr) * 1995-12-28 1998-01-30 Inst Francais Du Petrole Procede de deshydratation, de desacidification et de degazolinage d'un gaz naturel, utilisant un melange de solvants
JP5383338B2 (ja) 2009-06-17 2014-01-08 三菱重工業株式会社 Co2回収装置及びco2回収方法
GB201520405D0 (en) * 2015-11-19 2016-01-06 Isis Innovation Ltd And King Abdulaziz City For Science And Technology Hydrocarbon separation process

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1838444A (en) * 1930-04-03 1931-12-29 Wehrle Co Towel bar
US1898579A (en) * 1930-05-30 1933-02-21 Union Oil Co Method and apparatus for absorption of constituents from gases and vaporous mixtures
US1953043A (en) * 1930-10-24 1934-03-27 Texas Co Recovery of gasoline from natural gas
US1972060A (en) * 1930-10-24 1934-08-28 Texas Co Recovery of gasoline from natural gas
US2487576A (en) * 1945-11-13 1949-11-08 Phillips Petroleum Co Process for the removal of acidic material from a gaseous mixture
US2930752A (en) * 1952-06-12 1960-03-29 Socony Mobil Oil Co Inc Process for stripping of absorption liquids
US3210270A (en) * 1961-12-01 1965-10-05 Phillips Petroleum Co Fluid separation and gas dehydration process
US3247649A (en) * 1963-04-29 1966-04-26 Union Oil Co Absorption process for separating components of gaseous mixtures
US3347621A (en) * 1964-11-02 1967-10-17 Shell Oil Co Method of separating acidic gases from gaseous mixtures
US3702296A (en) * 1970-12-23 1972-11-07 Atlantic Richfield Co Oil and gas treatment
US3770622A (en) * 1970-12-28 1973-11-06 Fluor Corp Treatment of wet natural gas mixtures to recover liquid hydrocarbons
US3829521A (en) * 1972-07-03 1974-08-13 Stone & Webster Eng Corp Process for removing acid gases from a gas stream
JPS562985B2 (fr) * 1975-03-20 1981-01-22
DE2909335A1 (de) * 1979-03-09 1980-09-18 Linde Ag Verfahren und vorrichtung zur zerlegung von erdgas
US4293322A (en) * 1980-04-23 1981-10-06 Helix Technology Corporation Distillative separation of carbon dioxide from hydrogen sulfide
JPS5710378A (en) * 1980-06-19 1982-01-19 Satake Eng Co Ltd Wind supplying and discharging device for cereal grain selector
DE3148475A1 (de) * 1981-02-23 1982-09-23 Gebrüder Bühler AG, 9240 Uzwil "trennvorrichtung fuer getreide und aehnliches korngut"
DE3112661A1 (de) * 1981-03-31 1982-10-14 Basf Ag, 6700 Ludwigshafen Verfahren zur abtrennung von kondensierbaren aliphatischen kohlenwasserstoffen und sauren gasen aus erdgasen
CA1215217A (fr) * 1983-06-24 1986-12-16 Yuv R. Mehra Procede de fractionnement de gaz naturels grace a des solvants physiques
US4568452A (en) * 1984-06-15 1986-02-04 Exxon Research And Engineering Co. Process for upgrading a contaminated absorbent oil
US4654062A (en) * 1986-07-11 1987-03-31 Air Products And Chemicals, Inc. Hydrocarbon recovery from carbon dioxide-rich gases
US4747858A (en) * 1987-09-18 1988-05-31 Air Products And Chemicals, Inc. Process for removal of carbon dioxide from mixtures containing carbon dioxide and methane
US4775396A (en) * 1987-11-05 1988-10-04 Union Carbide Corporation Selective adsorption of CO2 on zeolites
DE3829878A1 (de) * 1988-09-02 1990-03-08 Metallgesellschaft Ag Verfahren zum behandeln eines kohlenwasserstoffe und h(pfeil abwaerts)2(pfeil abwaerts)s enthaltenden erdgases

Also Published As

Publication number Publication date
FR2641542A1 (fr) 1990-07-13
NO903128L (no) 1990-09-11
AU627250B2 (en) 1992-08-20
DE68912746D1 (de) 1994-03-10
EP0556875A3 (en) 1993-11-10
CA2002826A1 (fr) 1990-05-15
AU4637589A (en) 1990-06-12
JP2742328B2 (ja) 1998-04-22
EP0373983B1 (fr) 1994-01-26
EP0556875A2 (fr) 1993-08-25
US5298156A (en) 1994-03-29
EP0373983A1 (fr) 1990-06-20
DE68923459D1 (de) 1995-08-17
RU1836407C (ru) 1993-08-23
DE68912746T2 (de) 1994-08-11
CA2002826C (fr) 1999-06-29
JPH03503779A (ja) 1991-08-22
ES2077452T3 (es) 1995-11-16
ATE124987T1 (de) 1995-07-15
NO180687C (no) 1997-05-28
BR8907193A (pt) 1991-03-05
NO903128D0 (no) 1990-07-13
NO180687B (no) 1997-02-17
FR2641542B1 (fr) 1994-06-24
ES2050833T3 (es) 1994-06-01
DE68923459T2 (de) 1996-04-04
UA26318A (uk) 1999-08-30
WO1990005766A1 (fr) 1990-05-31

Similar Documents

Publication Publication Date Title
EP0291401B1 (fr) Procédé cryogénique de désulfuration sélective et de dégazolinage simultanés d'un mélange gazeux consistant principalement en méthane et renfermant également H2S ainsi que des hydrocarbures en C2 et plus
US4563202A (en) Method and apparatus for purification of high CO2 content gas
US4370156A (en) Process for separating relatively pure fractions of methane and carbon dioxide from gas mixtures
KR100441039B1 (ko) 천연가스를 액화하고 가공하는 방법 및 장치
CA2364354C (fr) Procede et installation pour la recuperation et la purification de l'ethylene produit par pyrolyse d'hydrocarbures, et gaz obtenus par ce procede
EP0848982B1 (fr) Procédé et dispositif de traitement d'un gaz par refrigeration et mise en contact avec un solvant
EP0393029A1 (fr) Traitement de gaz riches en azote, hydrogene et olefines avec des solvants physiques.
US4710211A (en) Cryogenic process for the selective removal of acidic gases from mixtures of gases by solvents
US4971607A (en) Cryogenic process for the removal of acidic gases from mixtures of gases by solvent
US4576615A (en) Carbon dioxide hydrocarbons separation process
FR2539321A1 (fr) Procede cryogenique permettant l'elimination selective de gaz acides de melanges de gaz au moyen d'un solvant
EP0556875B1 (fr) Procédé de décarbonatation et de dégazolinage simultanés d'un mélange gazeux constitué principalement d'hydrocarbures consistant en méthane et hydrocarbures en C2 et plus et renfermant également CO2
EP3013924B1 (fr) Procédé de récupération d'un courant d'éthylène à partir d'un courant de charge riche en monoxyde de carbone
CA1242383A (fr) Distillation extrative en colonne fractionnee
US4601738A (en) Process for freeze protection and purification of natural gas liquid product streams produced by the Mehra process
EP0768106B1 (fr) Procédé de fractionnement d'un fluide contenant plusieurs constituants séparables, tel qu'un gaz naturel
NZ201064A (en) A cryogenic process for removing acidic gases from natural or synthesized gases using low molecular weight esters and ethers
US3267028A (en) Separation of wet pyrolysis gases by sorbent treating and fractionation
EP0233220A1 (fr) Traitement de courants de gaz naturel riche en gaz inertes
RU2039329C1 (ru) Способ криогенного разделения газовых смесей и устройство для его осуществления
BE556607A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 373983

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE ES FR GB GR IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE ES FR GB GR IT NL

17P Request for examination filed

Effective date: 19931201

17Q First examination report despatched

Effective date: 19941222

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 373983

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB GR IT NL

REF Corresponds to:

Ref document number: 124987

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68923459

Country of ref document: DE

Date of ref document: 19950817

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951017

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077452

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3017623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: ELF EXPLORATION PRODUCTION

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021023

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20021029

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021104

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021113

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021126

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031028

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031029

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041114

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041114

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051114