EP0556875B1 - Verfahren zur gleichzeitigen Ausscheidung von CO2 und Benzin aus Methan, C2 und höheren Kohlenwasserstoffen und CO2 enthaltenden gasförmigen Kohlenwasserstoffen - Google Patents

Verfahren zur gleichzeitigen Ausscheidung von CO2 und Benzin aus Methan, C2 und höheren Kohlenwasserstoffen und CO2 enthaltenden gasförmigen Kohlenwasserstoffen Download PDF

Info

Publication number
EP0556875B1
EP0556875B1 EP93107550A EP93107550A EP0556875B1 EP 0556875 B1 EP0556875 B1 EP 0556875B1 EP 93107550 A EP93107550 A EP 93107550A EP 93107550 A EP93107550 A EP 93107550A EP 0556875 B1 EP0556875 B1 EP 0556875B1
Authority
EP
European Patent Office
Prior art keywords
solvent
rich
hydrocarbons
methane
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93107550A
Other languages
English (en)
French (fr)
Other versions
EP0556875A3 (en
EP0556875A2 (de
Inventor
Claude Blanc
Henri Paradowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elf Exploration Production SAS
Original Assignee
Societe National Elf Aquitaine
Societe Nationale Elf Aquitaine Production SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe National Elf Aquitaine, Societe Nationale Elf Aquitaine Production SA filed Critical Societe National Elf Aquitaine
Publication of EP0556875A2 publication Critical patent/EP0556875A2/de
Publication of EP0556875A3 publication Critical patent/EP0556875A3/fr
Application granted granted Critical
Publication of EP0556875B1 publication Critical patent/EP0556875B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • C10G5/04Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas with liquid absorbents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas

Definitions

  • the invention relates to a process for the simultaneous decarbonation and degassing of a gaseous mixture consisting mainly of hydrocarbons consisting of methane and C2 and higher hydrocarbons and also containing CO2 and optionally one or more non-sulfurized compounds with low boiling point such as H2, CO, N2 and argon.
  • decarbonation and degassing operations are generally carried out separately and are part of a succession of operations carried out on the gas mixture to be treated and mainly comprising a elimination of the acid gas CO2 drying, adsorption of water on an appropriate solid such as a molecular sieve, separation by cryogenic distillation between -30 ° C and -90 ° C associated or not with an extraction by a solvent in order to obtain the cut of natural gas liquid, and finally a reheating of the treated gas to ambient temperature in order, generally, to supply the commercial gas network.
  • the dehydrated and refrigerated natural gas is separated, in a first column (demethanizer) at the head of which is injected an additive consisting of a liquid fraction of C4 hydrocarbons and more, into a gas phase containing methane and lighter compounds and a liquid fraction containing C en and higher hydrocarbons and CO2.
  • This liquid fraction is separated, in a second column (de-ethanizer) into which a certain amount of the additive is also introduced, into a top fraction consisting of CO2 and a bottom fraction containing the hydrocarbons in C2 and more.
  • Said tail fraction is then separated, in a third column, into an overhead fraction consisting of a liquid cut of C2 to C4 hydrocarbons and into a tail fraction consisting of a liquid cut of C4 and higher hydrocarbons, which contains the major part of the butanes and higher hydrocarbons present in the treated natural gas and of which the appropriate quantity is taken to constitute the additive injected in the first and second columns.
  • This additive avoids the crystallization of CO2 at the top of the demethanizer and ensures the rupture of the azeotrope which forms between ethane and CO2 and facilitates the separation of these compounds in the deethanizer.
  • the aforementioned process is therefore essentially based on serial distillation operations.
  • the invention provides a process for simultaneous decarbonation and degassing of gas mixtures, which are available under an absolute pressure greater than 0.5 MPa and consist mainly of hydrocarbons consisting of methane and C2 and higher hydrocarbons and also contain CO2 and optionally one or more non-sulfurized compounds with low boiling point such as H2, CO, N2 and argon, such gas mixtures being for example of the natural gas type, said process making it possible to reach more easily and at lower cost, by comparison with known processes, the objective of separating the gaseous mixture into the three components, namely treated gas consisting mainly of methane, liquid cut of hydrocarbons with predominantly C3 and more hydrocarbons and containing as required a quantity more or less important ethane and CO2 current, which have the specifications defined above.
  • the method according to the invention is of the type of the method which is described in the US-A-3770622 citation and in which the gas mixture is brought into contact, in a washing zone, with a solvent consisting of a liquid which preferentially dissolves CO2 and hydrocarbons in C2 and above and which has on the one hand, at atmospheric pressure, a boiling temperature greater than 40 ° C and on the other hand, at - 30 ° C, a viscosity less than 0.1 Pa .s, operating at a sufficiently low temperature and with a ratio of the flow rates of the gaseous mixture to be treated and of the solvent such that a treated gas consisting mainly of methane and having a molar CO2 content is produced at most equal to 2% and, on the other hand, a liquid phase called rich solvent and formed of the solvent enriched in CO2 and in a fraction of C en hydrocarbons and more containing at least 80 mol% of the C en hydrocarbons and more present in the ga mixture zeux to be treated, the rich solvent
  • the process according to the invention differs from the process of the US-A-3770622 citation, and is therefore characterized in that the treatment of the demethanized rich solvent is carried out by subjecting said demethanized rich solvent to a regeneration (33) by stripping producing the regenerated solvent (34) and a gaseous mixture (42) containing the CO2 as well as the C2 hydrocarbons and more present in the demethanized rich solvent (27), then by washing said mixture gaseous (42) using a solvent C5 and higher hydrocarbon, in a washing space (47) operating at low temperature, with the production, on the one hand, of an acid gas stream rich in CO2, constituting the acid gas stream (44) and consisting of almost all of the CO2 present in the demethanized rich solvent containing, expressed in methane equivalent, less than 10 mol% of hydrocarbons relative to CO2, and, on the other hand, a rich hydrocarbon solvent (45) containing almost all of the C2 and higher hydrocarbons present in the gas mixture (42) and by distilling said hydrocarbon solvent rich
  • methane equivalent is meant according to the invention as many pseudo-molecules with a single carbon atom as there are carbon atoms in the considered hydrocarbon molecule.
  • the solvent which is generally defined above for bringing into contact with the gaseous mixture to be treated for the purpose of absorbing CO2 and C en and higher hydrocarbons, preferably has a viscosity of less than 0.05 Pa.s.
  • the solvent according to the invention may consist in particular of one or more liquid absorbents which are selective for CO2 and used in anhydrous form or in mixture with water, the said solvent (s) being chosen from the amides of formulas aldehydes of formula formula esters Ccan to C4 alkanols, diethers of formula diether alcohols of formula R9O- C2H4- O - C2H4 - OH the lactones of formula and propylene carbonate, with in these formulas R1 and R2, identical or different, designating a hydrogen atom or a C1 or C2 alkyl radical, R3 being a C3 or C4 alkyl radical, R6 being a C2 alkyl radical to C4 or a radical with R8 denoting a C1 or C2 alkyl radical and n being equal to 1 or 2, R7 being a C1 or C2 alkyl radical or a radical R9 denoting a C radical to C4 alkyl radical and p being an integer ranging from
  • Nonlimiting examples of liquid organic absorbents corresponding to the above formulas are such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethoxymethane, diethoxymethane, dimethoxy-1,1 ethane, methanol, ethanol, ethylene dimethyl ether glycol, diethylene glycol dimethyl ether, ethylene glycol monomethyl ether, butyrolactone, propiolactone and propylene carbonate.
  • the contacting temperature of the gas mixture to be treated with the solvent, in the washing zone is preferably between 0 ° C and -45 ° C.
  • the washing zone advantageously consists of one or more washing columns containing the appropriate number of theoretical washing stages, said columns being, for example, of the type of tray columns or also packed columns.
  • the temperature in each of the washing columns is kept substantially constant by indirect heat exchange, carried out at one or more points of the column in question, between the fluid medium contained in this column and a cooling fluid.
  • the demethanization treatment applied to the rich solvent is carried out, in particular, in two stages, namely a first step in which said rich solvent is subjected to a first expansion at an intermediate pressure capable of releasing a large fraction of the methane dissolved in said solvent to demethanize and produce a first methane-rich gas and a premethanized fluid and a second step in which the premethanized fluid is subjected to a second expansion and then to distillation so as to produce a second methane-rich gas and the demethanized rich solvent, the second methane-rich gas being compressed to the pressure of the first methane-rich gas and then mixed with the latter to form the methane-rich gas phase.
  • the methane-rich gas phase resulting from the demethanization treatment applied to the rich solvent, is advantageously compressed to the pressure of the gas mixture to be treated, then it is cooled and mixed with the gas mixture to be treated before the latter is brought into contact. with the solvent in the washing area.
  • the regeneration of the demethanized rich solvent is carried out by reheating said solvent to a temperature close to ambient, by dividing the reheated solvent into first and second streams, directing the first stream directly to a regeneration zone , by directing the second stream to said regeneration zone after having heated it by indirect heat exchange with the regenerated solvent, and by subjecting the solvent to distillation in the regeneration zone.
  • Said distillation can be carried out in the presence of a stream of inert gas, for example nitrogen, injected into the regeneration zone.
  • the gaseous mixture to be treated contains water and / or C5 and higher hydrocarbons, it is advantageously subjected to a pretreatment intended to remove all or part of these compounds before being brought into contact with the solvent in the zone of washing.
  • This pretreatment can consist of a distillation possibly carried out in the presence of solvent, taken from the solvent injected into the washing zone, to produce the pretreated gas mixture having a C6 hydrocarbon content and more than 0.1% by weight, a fraction of so-called heavy hydrocarbons containing almost all of the hydrocarbons in C6 and more and all or part C5 hydrocarbons and, optionally, a liquid consisting of a mixture of solvent and water.
  • Said distillation of the gas mixture is carried out at a temperature at least equal to the temperature prevailing in the washing zone.
  • the gaseous mixture to be treated arriving via line 1 is introduced into the lower part of a distillation column 2, in which said gaseous mixture is optionally distilled in the presence of solvent withdrawn, through an opening pipe 41 in the upper part of column 2, on the regenerated solvent 38 brought to the washing column 5, before passage of said solvent in a refrigeration zone 39 mounted on the conduit 6 for injecting the regenerated solvent into said washing column 5, so as to produce on the one hand a dried gaseous mixture, evacuated from column 2 by a line 3 and the hydrocarbon content of C6 and more is less than 0.1% by weight, and on the other hand a hydrocarbon fraction containing almost all of the C6 hydrocarbons and more and possibly all or part of the C5 hydrocarbons, drawn off from column 2 by a pipe 4 and possibly a liquid drawn off from column 2 via a conduit 54 and consisting of a mixture of solvent and water.
  • the dried gas mixture leaving column 2 through line 3 is introduced into the lower part of a washing column 5, for example of the plate column type, in which it is brought into contact, countercurrently, with cold solvent. regenerated injected into the upper part of column 5 through line 6, after passage through the coolant 39, this contacting being carried out at a temperature of, for example, between 0 ° C and -45 ° C, said temperature being controlled by passing the liquid medium contained in column 5 through refrigerants 7.
  • a treated gas consisting mainly of methane and depleted in CO2 is removed via a pipe 8, said treated gas being heated in a heating system 9 and then directed, by a pipe 10, to a zone of use, while at the bottom of said column 5 is drawn off, through a conduit 11, a liquid phase consisting of the solvent enriched in CO2 and other compounds absorbed and called rich solvent.
  • the dried gas mixture is brought into contact with the solvent in the washing column 5 at an appropriate temperature in the range O ° C to -45 ° C and with a ratio of the flow rates of the gas mixture to be treated and of solvent such that on the one hand the treated gas collected, via line 8, at the head of column 5 has a molar CO2 content of at most equal to 2% and that on the other hand the rich solvent flowing through line 11 , contains at least 80 mol% of C3 and higher hydrocarbons present in the dried gas mixture introduced in column 5.
  • the rich solvent circulating in the conduit 11 is introduced, after passing through the expansion valve 12, into the upper part of an expansion tank 13 in which a first gas rich in methane separates, which is removed at the head of the flask 13 by a conduit 14, and a rich predemethanized solvent, which is drawn off at the bottom of the flask 13 by a conduit 15.
  • Said predemethanized rich solvent is subjected to a second expansion through an expansion valve 16 followed by a distillation in a distillation column 17 provided with a reboiler 18, so as to produce a second gas rich in methane, which is evacuated at the top of the column 17 by a conduit 19, and a liquid phase depleted in methane, called demethanized rich solvent, which is drawn off at the bottom of the column 17 by a pipe 27.
  • the second methane-rich gas circulating in the pipe 19 is caused to pass into a compressor 20 from which it leaves, via a pipe 21, to a pressure substantially equal to that of the first methane-rich gas passing through line 14, then these two methane-rich gases are mixed in line 22 and the gas phase resulting from this mixture is recycled, via a compressor 23, the outlet of which is extended by a pipe 24, a cooler 25 and a pipe 26, in the pipe 3 for supplying the dried gas mixture to the washing column 5.
  • the regeneration can be carried out in the presence of a stream of inert gas, in particular a stream of nitrogen, injected into the lower part of the column 33 through a pipe 43.
  • Said regeneration produces, on the one hand, a regenerated solvent withdrawn from the bottom of the column 33, through a conduit 34, and used in the heat exchanger 35, to heat the second stream 31 of demethanized rich solvent to be regenerated, before being recycled, by the pump 37 and the conduit 38, to the washing column 5, and on the other hand a gas mixture discharged at the head of the column 33, by a conduit 42, and containing the CO2 as well as the C2 and more hydrocarbons present in the demethanized rich solvent.
  • the gas mixture passing through the conduit 42 is washed against the current, in a washing tower 47 provided with a condenser 46 at the head and a reboiler 70 at the bottom and operating at low temperature, using a hydrocarbon solvent. in C5 and more brought to the washing tower 47 by a conduit 53, said washing producing, on the one hand, a stream 44 of acid gas rich in CO2, which contains almost all of the CO2 present in the rich solvent demethanized and has, expressed in methane equivalent, a hydrocarbon content of less than 10 mol% relative to CO2, and, on the other hand, a rich hydrocarbon solvent 45 practically free of CO2 and containing almost all C2 and higher hydrocarbons present in the gas mixture arriving through line 42.
  • the rich hydrocarbon solvent 45 is brought to a regeneration column 49 in which said solvent 45 is subjected to distillation to produce, on the one hand, a fraction of hydrocarbons 48 constituting the cut of C2 hydrocarbons and more containing at least 80 mol% of the C3 hydrocarbons and higher contained in the gas to be treated brought to the washing column 5 by the line 3, and, on the other hand, a regenerated hydrocarbon solvent 50, which is recycled, by the pump 51, to the washing tower column 47 after refrigeration in the system 52 and passage through the conduit 53.
  • the gaseous mixture to be treated arriving via line 1 with a flow rate of 10,000 kmol / h, a temperature of 30 ° C and a pressure of 5,000 kPa was introduced into column 2 for removal of C6 and higher hydrocarbons.
  • the gas mixture to be treated being dry, no addition of solvent was carried out via line 41.
  • the pretreated gas mixture was contacted with 6000 kmol / h of solvent consisting of a mixture of methanol and water in a molar ratio equal to 95: 5 and having a pressure of 5000 kPa and a temperature equal to -30 ° C. , said contacting being carried out in a washing column 5 comprising 14 plates and operating at - 30 ° C under a pressure of 4900 kPa.
  • the refrigerants 7 fitted to the washing column 5 made it possible to maintain the temperature in said column at the desired value.
  • the heated treated gas is directed through line 10 to an expedition pipeline.
  • the demethanization of the rich solvent firstly involved a first expansion of said solvent at a pressure of 3000 kPa, the expanded relaxed solvent supplying the expansion tank 13 in which 362 kmol / h of a first gas containing 68 mol% of methane were produced. , which was discharged at the head of the flask 13 through line 14, and a predemethanized rich solvent withdrawn from said flask through line 15 and whose molar methane content was reduced from 6.11% to 3.57%.
  • the premethanized rich solvent the temperature of which was equal to -33.6 ° C., was expanded in the valve 16 and then fed to the distillation column 17 comprising 10 plates and operating at 1800 kPa.
  • the demethanized rich solvent had the following molar composition: . CO2 20.16% . Methane 0.03% . Ethane 3.37% . Propane 1.98% . Butane 1.67% . Methanol 69.13% . Water 3.64%
  • the second methane-rich gas was compressed in compressor 20 to the pressure of the first methane-rich gas, namely 3000 kPa.
  • the compressed gas leaving the compressor 20, via the conduit 21, was mixed with the first methane-rich gas to constitute the methane-rich gas phase 22, which was then compressed, in the compressor 23, until the pressure of the gas mixture a treating, namely 5000 kPa, said compressed gas phase being added through line 24, the refrigerant 25 and line 26, to the pretreated gas mixture circulating in line 3.
  • the compressed methane-rich gas phase passing through line 26 had a temperature of -20 ° C, a pressure of 5,000 kPa and a flow rate of 938 kmol / h.
  • the molar composition of said methane-rich gas phase flowing in line 26 was as follows: . CO2 29.80% . Methane 59.50% . Ethane 9.45% . Propane 0.97% . Butane 0.26% . Methanol 0.02%
  • the demethanized rich solvent after expansion in the valve 29 and heating in the heating system 28, had a temperature of 10 ° C and a pressure of 800 kpa. Said heated solvent was then divided into a first stream 30 having a flow rate of 4533 kmol / h, which was directed directly to the regeneration column 33, and into a second stream 31, which was heated to 70 ° C. in the heat exchanger. heat 35 before being conveyed to the regeneration column 33.
  • This column operated under a pressure of 700 kPa and had 18 plates, the currents 30 and 31 being injected respectively at the plates 8 and 12, counted from the top of the column.
  • the regeneration column 33 produced at the head a gaseous mixture containing CO2 and the hydrocarbons in C2 and plus, which was discharged through line 42 with a temperature of -14 ° C, a pressure of 700 kPa and a flow rate of 2244 kmol / h and at the bottom a regenerated solvent withdrawn from the regeneration column 33 through line 34.
  • the gas mixture passing through line 42 had the following molar composition: . CO2 74.07% . Methane 0.12% . Ethane 12.36% . Propane 7.28% . Butane 6.13% . Hexane 0.04%
  • the regenerated solvent is cooled by passage through the heat exchanger 35, then recompressed to a pressure of 5000 kPa by the pump 37, and it is then directed through the conduit 38 on the one hand in a major quantity to the washing column 5 , through the refrigerant 39 and the conduit 6.
  • the gaseous mixture passing through the conduit 42 was washed against the current in the washing tower 47 using a hydrocarbon solvent consisting mainly of hexane.
  • Tower 47 had 35 trays and operated under a pressure of 700 kPa with a temperature of -30 ° C at the head at the level of refrigerant 46.
  • the washing tower 47 produced at the head an acid gas stream 44 rich in CO2 and having a hydrocarbon content, expressed in methane equivalent, of less than 10 mol% relative to CO2, said acid gas stream having a temperature of -30 ° C, a pressure of 650 kPa and a flow rate of 1685 kmol / h, and in the background a hydrocarbon solvent 45 with reduced CO2 content having a temperature of 95.8 ° C, a pressure of 730 kPa and a flow rate of 5059 kmol / h.
  • the molar composition of the acid gas stream 44 was as follows: . CO2 98.65% . Methane 0.15% . Ethane 0.98% . Butane 0.05% . Hexane 0.17%
  • the rich hydrocarbon solvent 45 had the following molar composition: . Ethane 5.16% . Propane 3.23% . Butane 3.69% . Hexane 87.91%
  • the fractionation of the rich hydrocarbon solvent 45 in column 49 provided with 28 trays and operating under a pressure of 600 kPa produced at the head 561 kmol / h of a cut of hydrocarbons 48 in C2 and more having a temperature of 18 ° C and a pressure of 600 kPa and at the bottom 4500 kmol / h of regenerated hydrocarbon solvent having a temperature of 142.7 ° C and a pressure of 670 kPa, said solvent containing, in mole, 98.89% of hexane and 1.11 % butane.
  • the molar composition of the C2 and higher hydrocarbon cut 48 was as follows: . CO2 0.02% . Ethane 46.49% . Propane 29.10% . Butane 24.37% . Hexane 0.02%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (9)

  1. Verfahren zur gleichzeitigen Entfernung von Carbonat und Benzin aus einem Gasgemisch, das einen absoluten Druck von über 0,5 MPa besitzt und hauptsächlich Kohlenwasserstoffe, bestehend aus Methan und Kohlenwasserstoffen mit zwei und mehr C-Atomen, sowie außerdem CO₂ und gegebenenfalls eine oder mehrere nichtschwefelhaltige Verbindungen mit niedrigem Siedepunkt wie H₂, CO, N₂ und Ar enthält, wobei man das Gasgemisch in einer Waschzone (5) mit einem Lösungsmittel (6) in Berührung bringt, das aus einer Flüssigkeit besteht, die bevorzugt CO₂ und die Kohlenwasserstoffe mit zwei und mehr C-Atomen löst und einerseits bei Atmosphärendruck eine Siedetemperatur von über 40°C und andererseits bei -30°C eine Viskosität von unter 0,1 Pa·s besitzt` indem man bei einer ausreichend tiefen Temperatur und bei einem solchen Verhältnis des Durchsatzes des zu behandelnden Gasgemisches zum Lösungsmittel arbeitet, daß man einerseits ein behandeltes Gas (8), das in der Hauptsache aus Methan besteht und einen Molargehalt an CO₂ von höchstens 2% aufweist, und andererseits eine Flüssigphase erzeugt, die als reiches Lösungsmittel (11) bezeichnet wird und aus dem Lösungsmittel gebildet wird, das mit CO₂ und einer Fraktion aus Kohlenwasserstoffen mit zwei und mehr C-Atomen angereichert ist, die wenigstens 80 Mol-% der in dem zu behandelnden Gasgemisch enthaltenen Kohlenwasserstoffe mit drei und mehr C-Atomen enthält, man das reiche Lösungsmittel wenigstens teilweise durch Entspannung entmethanisiert (12, 17), indem man das reiche Lösungsmittel in eine Flüssigphase, die einen verminderten Methangehalt aufweist und als entmethanisiertes reiches Lösungsmittel (27) bezeichnet wird, und in eine an Methan reiche Gasphase (22) auftrennt und das entmethanisierte reiche Lösungsmittel einer Behandlung unterzieht, durch die ein Strom an saurem Gas (44), welcher das im entmethanisierten reichen Lösungsmittel vorliegende CO₂ enthält, ferner ein als Kohlenwasserstofffraktion (48) bezeichnetes Kohlenwasserstoffgemisch und schließlich ein regeneriertes Lösungsmittel (34) erzeugt werden, das wieder der Waschzone (5) zugeführt wird, dadurch gekennzeichnet, daß die Behandlung des entmethanisierten reichen Lösungsmittels durchgeführt wird, indem man das Lösungsmittel durch Strippen regeneriert (33), wodurch man das regenerierte Lösungsmittel (34) und ein Gasgemisch (42) erzeugt, das CO₂ sowie die im entmethanisierten reichen Lösungsmittel (27) vorliegenden Kohlenwasserstoffe mit zwei und mehr C-Atomen enthält, man dann das Gasgemisch (42) mit Hilfe eines Kohlenwasserstofflösungsmittels mit fünf und mehr C-Atomen in einem Waschraum (47) bei tiefer Temperatur wäscht, wodurch einerseits ein Strom aus an CO₂ reichem saurem Gas, welcher den Strom des sauren Gases (44) bildet und fast aus der gesamten Menge an CO₂ besteht, das im entmethanisierten reichen Lösungsmittel vorliegt, das ausgedrückt in Methanäquivalent, bezogen auf CO₂, wenigstens 10 Mol.-% Kohlenwasserstoffe enthält, und andererseits ein reiches Kohlenwasserstofflösungsmittel (45), das fast die gesamte Menge der im Gasgemisch (42) vorliegenden Kohlenwasserstoffe mit zwei und mehr C-Atomen enthält, erzeugt werden, und man das reiche Kohlenwasserstofflösungsmittel durch Destillation in eine Kohlenwasserstofffraktion, welche die Kohlenwasserstofffraktion (48) bildet und wenigstens 80 Mol-% der in dem zu behandelnden Gas vorliegenden Kohlenwasserstoffe mit drei und mehr C-Atomen enthält, und in ein regeneriertes Kohlenwasserstofflösungsmittel (50) mit fünf und mehr C-Atomen auftrennt, das man wieder dem Waschraum (47) nach Abkühlung (52) zuführt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das mit dem zu behandelnden Gasgemisch in Berührung gebrachte Lösungsmittel eine Viskosität bei -30°C von unter 0,05 Pa·s aufweist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das mit dem zu behandelnden Gasgemisch in der Waschzone (5) in Berührung gebrachte Lösungsmittel aus einem oder mehreren flüssigen organischen Absorptionsmitteln besteht, die in wasserfreier Form oder im Gemisch mit Wasser verwendet werden, wobei das oder die Absorptionsmittel ausgewählt werden unter Amiden der Formeln
    Figure imgb0022
    Aldehyden der Formel
    Figure imgb0023
    Estern der Formeln
    Figure imgb0024
    C₁₋₄-Alkanolen, Diethern der Formel
    Figure imgb0025
    Dietheralkoholen der Formel R₉O - C₂H₄ - O - C₂H₄-OH, Lactonen der Formel
    Figure imgb0026
    und Propylencarbonat, wobei R₁ und R₂ in diesen Formeln identisch oder unterschiedlich sind und ein Wasserstoffatom oder einen C₁₋₂-Alkylrest bedeuten, R₃ einen C₃₋₄-Alkylrest, R₆ einen C₂₋₄-Alkylrest oder einen Rest
    Figure imgb0027
    bedeuten, wobei R₈ einen C₁₋₂-Alkylrest und n 1 oder 2 bedeuten, R₇ einen C₁₋₂-Alkylrest oder einen Rest
    Figure imgb0028
    bedeutet, R₉ einen C₁₋₄-Alkylrest und p eine ganze Zahl von 2 bis 4 bedeuten.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Temperatur für die Kontaktierung des zu behandelnden Gasgemisches mit dem Lösungsmittel in der Waschzone (5) zwischen 0 und -45°C liegt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Entmethanisierung des reichen Lösungsmittels (11) in zwei Stufen durchgeführt wird, wobei auf der ersten Stufe das reiche Lösungsmittel einer ersten Entspannung (12, 13) unterworfen wird, die geeignet ist, eine starke Fraktion an im Lösungsmittel gelöstem Methan freizusetzen und ein erstes mit Methan angereichertes Gas (14) und eine vorentmethanisierte Flüssigkeit (15) zu erzeugen, und auf der zweiten Stufe die vorentmethanisierte Flüssigkeit einer zweiten Entspannung (16) und dann einer Destillation (17) unterworfen wird, wodurch ein zweites mit Methan angereichertes Gas (19) und das entmethanisierte reiche Lösungsmittel (27) erzeugt werden, wobei das zweite mit Methan angereicherte Gas bis zum Druck des ersten mit Methan angereichten Gases komprimiert und dann mit diesem gemischt wird, um die mit Methan angereicherte Gasphase (22) zu bilden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die mit Methan angereicherte Gasphase (22) bis zum Druck des zu behandelnden Gases komprimiert, dann abgekühlt (25) und mit dem zu behandelnden Gasgemisch vor der Kontaktierung des letzteren mit dem Lösungsmittel in der Waschzone (5) gemischt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man die Regenerierung des entmethanisierten reichen Lösungsmittels durchführt, indem man das Lösungsmittel bis zu einer Temperatur im Bereich der Umgebungstemperatur wiedererwärmt (28), das wiedererwärmte Lösungsmittel in einen ersten Strom (30) und einen zweiten Strom (31) aufteilt, den ersten Strom (30) unmittelbar einer Regenerierungszone (33) zuführt, den zweiten Strom (31) dieser Regenerierungszone nach erneuter Erwärmung durch indirekten Wärmeaustausch (35) mit dem regenerierten Lösungsmittel (34) zuführt und das Lösungsmittel in der Regenerierungszone (33) destilliert.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Destillation des Lösungsmittels in der Regenerierungszone (33) in Anwesenheit eines in diese Zone eingespritzten Stroms eines inerten Gases (43), wie z.B. von Stickstoff, durchgeführt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das zu behandelnde Gasgemisch, das Wasser und/oder Kohlenwasserstoffe mit fünf oder mehr C-Atomen enthält, einer Vorbehandlung unterworfen wird, die in einer Destillation (2) besteht, die bei einer Temperatur, die zumindest der in der Waschzone (5) herrschenden Temperatur entspricht, und gegebenenfalls in Anwesenheit von Lösungsmittel durchgeführt wird, das aus dem der Waschzone (5) zugeführten Lösungsmittel abgezogen wurde, um eine Fraktion (4) aus sogenannten schweren Kohlenwasserstoffen, welche fast die gesamte Menge an Kohlenwasserstoffen mit sechs und mehr C-Atomen und gegebenenfalls die gesamte Menge oder einen Teil der Kohlenwasserstoffe mit fünf C-Atomen enthalten, ein vorbehandeltes Gasgemisch (3) mit einem Gehalt an Kohlenwasserstoffen mit sechs und mehr C-Atomen von unter 0,1 Gew.-% und gegebenenfalls eine Flüssigkeit (54) zu erzeugen, die ein Gemisch aus Lösungsmittel und Wasser darstellt.
EP93107550A 1988-11-15 1989-11-14 Verfahren zur gleichzeitigen Ausscheidung von CO2 und Benzin aus Methan, C2 und höheren Kohlenwasserstoffen und CO2 enthaltenden gasförmigen Kohlenwasserstoffen Expired - Lifetime EP0556875B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR8814784 1988-11-15
FR888814784A FR2641542B1 (fr) 1988-11-15 1988-11-15 Procede de decarbonatation et de degazolinage simultanes d'un melange gazeux constitue principalement d'hydrocarbures consistant en methane et hydrocarbures en c2 et plus et renfermant egalement co2
EP89403123A EP0373983B1 (de) 1988-11-15 1989-11-14 Verfahren zur gleichzeitigen Ausscheidung von CO2 und Bearin aus Methan, C2 und höheren Kohlenwasserstoffen und CO2 enthatenden gasförmigen Kohlenwasserstoffen

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP89403123.6 Division 1989-11-14

Publications (3)

Publication Number Publication Date
EP0556875A2 EP0556875A2 (de) 1993-08-25
EP0556875A3 EP0556875A3 (en) 1993-11-10
EP0556875B1 true EP0556875B1 (de) 1995-07-12

Family

ID=9371828

Family Applications (2)

Application Number Title Priority Date Filing Date
EP89403123A Expired - Lifetime EP0373983B1 (de) 1988-11-15 1989-11-14 Verfahren zur gleichzeitigen Ausscheidung von CO2 und Bearin aus Methan, C2 und höheren Kohlenwasserstoffen und CO2 enthatenden gasförmigen Kohlenwasserstoffen
EP93107550A Expired - Lifetime EP0556875B1 (de) 1988-11-15 1989-11-14 Verfahren zur gleichzeitigen Ausscheidung von CO2 und Benzin aus Methan, C2 und höheren Kohlenwasserstoffen und CO2 enthaltenden gasförmigen Kohlenwasserstoffen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP89403123A Expired - Lifetime EP0373983B1 (de) 1988-11-15 1989-11-14 Verfahren zur gleichzeitigen Ausscheidung von CO2 und Bearin aus Methan, C2 und höheren Kohlenwasserstoffen und CO2 enthatenden gasförmigen Kohlenwasserstoffen

Country Status (14)

Country Link
US (1) US5298156A (de)
EP (2) EP0373983B1 (de)
JP (1) JP2742328B2 (de)
AT (1) ATE124987T1 (de)
AU (1) AU627250B2 (de)
BR (1) BR8907193A (de)
CA (1) CA2002826C (de)
DE (2) DE68912746T2 (de)
ES (2) ES2077452T3 (de)
FR (1) FR2641542B1 (de)
NO (1) NO180687C (de)
RU (1) RU1836407C (de)
UA (1) UA26318A (de)
WO (1) WO1990005766A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO302567B1 (no) * 1994-02-14 1998-03-23 Norsk Hydro As Mateanordning
FR2743083B1 (fr) * 1995-12-28 1998-01-30 Inst Francais Du Petrole Procede de deshydratation, de desacidification et de degazolinage d'un gaz naturel, utilisant un melange de solvants
JP5383338B2 (ja) * 2009-06-17 2014-01-08 三菱重工業株式会社 Co2回収装置及びco2回収方法
GB201520405D0 (en) * 2015-11-19 2016-01-06 Isis Innovation Ltd And King Abdulaziz City For Science And Technology Hydrocarbon separation process

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1838444A (en) * 1930-04-03 1931-12-29 Wehrle Co Towel bar
US1898579A (en) * 1930-05-30 1933-02-21 Union Oil Co Method and apparatus for absorption of constituents from gases and vaporous mixtures
US1953043A (en) * 1930-10-24 1934-03-27 Texas Co Recovery of gasoline from natural gas
US1972060A (en) * 1930-10-24 1934-08-28 Texas Co Recovery of gasoline from natural gas
US2487576A (en) * 1945-11-13 1949-11-08 Phillips Petroleum Co Process for the removal of acidic material from a gaseous mixture
US2930752A (en) * 1952-06-12 1960-03-29 Socony Mobil Oil Co Inc Process for stripping of absorption liquids
US3210270A (en) * 1961-12-01 1965-10-05 Phillips Petroleum Co Fluid separation and gas dehydration process
US3247649A (en) * 1963-04-29 1966-04-26 Union Oil Co Absorption process for separating components of gaseous mixtures
US3347621A (en) * 1964-11-02 1967-10-17 Shell Oil Co Method of separating acidic gases from gaseous mixtures
US3702296A (en) * 1970-12-23 1972-11-07 Atlantic Richfield Co Oil and gas treatment
US3770622A (en) * 1970-12-28 1973-11-06 Fluor Corp Treatment of wet natural gas mixtures to recover liquid hydrocarbons
US3829521A (en) * 1972-07-03 1974-08-13 Stone & Webster Eng Corp Process for removing acid gases from a gas stream
JPS562985B2 (de) * 1975-03-20 1981-01-22
DE2909335A1 (de) * 1979-03-09 1980-09-18 Linde Ag Verfahren und vorrichtung zur zerlegung von erdgas
US4293322A (en) * 1980-04-23 1981-10-06 Helix Technology Corporation Distillative separation of carbon dioxide from hydrogen sulfide
JPS5710378A (en) * 1980-06-19 1982-01-19 Satake Eng Co Ltd Wind supplying and discharging device for cereal grain selector
DE3148475A1 (de) * 1981-02-23 1982-09-23 Gebrüder Bühler AG, 9240 Uzwil "trennvorrichtung fuer getreide und aehnliches korngut"
DE3112661A1 (de) * 1981-03-31 1982-10-14 Basf Ag, 6700 Ludwigshafen Verfahren zur abtrennung von kondensierbaren aliphatischen kohlenwasserstoffen und sauren gasen aus erdgasen
CA1215217A (en) * 1983-06-24 1986-12-16 Yuv R. Mehra Process for extracting natural gas streams with physical solvents
US4568452A (en) * 1984-06-15 1986-02-04 Exxon Research And Engineering Co. Process for upgrading a contaminated absorbent oil
US4654062A (en) * 1986-07-11 1987-03-31 Air Products And Chemicals, Inc. Hydrocarbon recovery from carbon dioxide-rich gases
US4747858A (en) * 1987-09-18 1988-05-31 Air Products And Chemicals, Inc. Process for removal of carbon dioxide from mixtures containing carbon dioxide and methane
US4775396A (en) * 1987-11-05 1988-10-04 Union Carbide Corporation Selective adsorption of CO2 on zeolites
DE3829878A1 (de) * 1988-09-02 1990-03-08 Metallgesellschaft Ag Verfahren zum behandeln eines kohlenwasserstoffe und h(pfeil abwaerts)2(pfeil abwaerts)s enthaltenden erdgases

Also Published As

Publication number Publication date
EP0556875A3 (en) 1993-11-10
JPH03503779A (ja) 1991-08-22
DE68923459T2 (de) 1996-04-04
CA2002826A1 (fr) 1990-05-15
WO1990005766A1 (fr) 1990-05-31
DE68923459D1 (de) 1995-08-17
EP0373983A1 (de) 1990-06-20
US5298156A (en) 1994-03-29
AU627250B2 (en) 1992-08-20
EP0556875A2 (de) 1993-08-25
NO903128L (no) 1990-09-11
NO903128D0 (no) 1990-07-13
ES2077452T3 (es) 1995-11-16
DE68912746D1 (de) 1994-03-10
EP0373983B1 (de) 1994-01-26
JP2742328B2 (ja) 1998-04-22
ATE124987T1 (de) 1995-07-15
BR8907193A (pt) 1991-03-05
DE68912746T2 (de) 1994-08-11
ES2050833T3 (es) 1994-06-01
CA2002826C (fr) 1999-06-29
RU1836407C (ru) 1993-08-23
NO180687B (no) 1997-02-17
NO180687C (no) 1997-05-28
FR2641542A1 (fr) 1990-07-13
UA26318A (uk) 1999-08-30
FR2641542B1 (fr) 1994-06-24
AU4637589A (en) 1990-06-12

Similar Documents

Publication Publication Date Title
EP0291401B1 (de) Kryogen-Verfahren zur gleichzeitigen selektiven Entschwefelung und Entfernung von Benzin aus einer Gasmischung, die hauptsächlich Methan und auch H2S und C2+Kohlenwasserstoff enthält
US4563202A (en) Method and apparatus for purification of high CO2 content gas
US4370156A (en) Process for separating relatively pure fractions of methane and carbon dioxide from gas mixtures
KR100441039B1 (ko) 천연가스를 액화하고 가공하는 방법 및 장치
CA2364354C (fr) Procede et installation pour la recuperation et la purification de l'ethylene produit par pyrolyse d'hydrocarbures, et gaz obtenus par ce procede
EP0848982B1 (de) Verfahren und Vorrichtung zur Gasbehandlung durch Kühlen und Berührung mit einem Lösungsmittel
EP0393029A1 (de) Behandlung stickstoffreicher, wasserstofffreier und olefinreicher gas mittels physikalischer lösungsmittel.
US4710211A (en) Cryogenic process for the selective removal of acidic gases from mixtures of gases by solvents
US4971607A (en) Cryogenic process for the removal of acidic gases from mixtures of gases by solvent
US4576615A (en) Carbon dioxide hydrocarbons separation process
FR2539321A1 (fr) Procede cryogenique permettant l'elimination selective de gaz acides de melanges de gaz au moyen d'un solvant
EP0556875B1 (de) Verfahren zur gleichzeitigen Ausscheidung von CO2 und Benzin aus Methan, C2 und höheren Kohlenwasserstoffen und CO2 enthaltenden gasförmigen Kohlenwasserstoffen
EP3013924B1 (de) Verfahren zur rückgewinnung eines ethylenstroms aus einem kohlenmonoxidreichen zufuhrstrom
CA1242383A (en) Split-column extractive distillation
US4601738A (en) Process for freeze protection and purification of natural gas liquid product streams produced by the Mehra process
EP0768106B1 (de) Verfahren zur Fraktionierung eines mehrere trennbare Komponenten enthaltenden Fluids wie z.B. Erdgas
NZ201064A (en) A cryogenic process for removing acidic gases from natural or synthesized gases using low molecular weight esters and ethers
US3267028A (en) Separation of wet pyrolysis gases by sorbent treating and fractionation
EP0233220A1 (de) Verfahren zur aufbereitung von inertgas enthaltendem erdgas
RU2039329C1 (ru) Способ криогенного разделения газовых смесей и устройство для его осуществления
BE556607A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 373983

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE ES FR GB GR IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE ES FR GB GR IT NL

17P Request for examination filed

Effective date: 19931201

17Q First examination report despatched

Effective date: 19941222

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 373983

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB GR IT NL

REF Corresponds to:

Ref document number: 124987

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68923459

Country of ref document: DE

Date of ref document: 19950817

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951017

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077452

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3017623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: ELF EXPLORATION PRODUCTION

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021023

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20021029

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021104

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021113

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021126

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031028

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031029

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041114

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041114

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051114