EP0554943A2 - Detergent composition - Google Patents
Detergent composition Download PDFInfo
- Publication number
- EP0554943A2 EP0554943A2 EP93200217A EP93200217A EP0554943A2 EP 0554943 A2 EP0554943 A2 EP 0554943A2 EP 93200217 A EP93200217 A EP 93200217A EP 93200217 A EP93200217 A EP 93200217A EP 0554943 A2 EP0554943 A2 EP 0554943A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- carbon atoms
- alkyl
- composition according
- surfactant
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 106
- 239000003599 detergent Substances 0.000 title claims description 24
- 239000004094 surface-active agent Substances 0.000 claims abstract description 42
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 27
- 102000035195 Peptidases Human genes 0.000 claims abstract description 19
- 108091005804 Peptidases Proteins 0.000 claims abstract description 19
- 150000002191 fatty alcohols Chemical class 0.000 claims abstract description 19
- 238000004851 dishwashing Methods 0.000 claims abstract description 17
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 13
- 229910021653 sulphate ion Inorganic materials 0.000 claims abstract description 13
- 229930182470 glycoside Natural products 0.000 claims abstract description 11
- 150000002338 glycosides Chemical class 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 125000003342 alkenyl group Chemical group 0.000 claims abstract description 10
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 10
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 10
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 10
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 10
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 10
- 239000002689 soil Substances 0.000 claims abstract description 9
- 239000004115 Sodium Silicate Substances 0.000 claims abstract description 8
- 229910052911 sodium silicate Inorganic materials 0.000 claims abstract description 8
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims abstract description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 6
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000460 chlorine Substances 0.000 claims abstract description 6
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims abstract description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 50
- 125000004432 carbon atom Chemical group C* 0.000 claims description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- -1 alkyl sulphate Chemical compound 0.000 claims description 22
- 239000003945 anionic surfactant Substances 0.000 claims description 12
- 150000001768 cations Chemical class 0.000 claims description 12
- 239000013530 defoamer Substances 0.000 claims description 12
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 11
- 239000007844 bleaching agent Substances 0.000 claims description 11
- 238000005406 washing Methods 0.000 claims description 11
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 10
- 239000000194 fatty acid Substances 0.000 claims description 10
- 229930195729 fatty acid Natural products 0.000 claims description 10
- 150000004665 fatty acids Chemical class 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- 229910019142 PO4 Inorganic materials 0.000 claims description 6
- 150000002148 esters Chemical class 0.000 claims description 6
- 239000002736 nonionic surfactant Substances 0.000 claims description 6
- 108010065511 Amylases Proteins 0.000 claims description 5
- 102000013142 Amylases Human genes 0.000 claims description 5
- 239000004111 Potassium silicate Substances 0.000 claims description 5
- 235000019418 amylase Nutrition 0.000 claims description 5
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 claims description 5
- 229910052913 potassium silicate Inorganic materials 0.000 claims description 5
- 235000019353 potassium silicate Nutrition 0.000 claims description 5
- 239000004382 Amylase Substances 0.000 claims description 4
- 150000004996 alkyl benzenes Chemical class 0.000 claims description 4
- 230000002209 hydrophobic effect Effects 0.000 claims description 4
- 239000010452 phosphate Substances 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 3
- 102000004882 Lipase Human genes 0.000 claims description 2
- 108090001060 Lipase Proteins 0.000 claims description 2
- 239000004367 Lipase Substances 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 150000002402 hexoses Chemical class 0.000 claims description 2
- 125000001165 hydrophobic group Chemical group 0.000 claims description 2
- 235000019421 lipase Nutrition 0.000 claims description 2
- 150000002972 pentoses Chemical class 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 2
- 102000004169 proteins and genes Human genes 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 claims description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims description 2
- 230000002195 synergetic effect Effects 0.000 abstract description 7
- 125000000129 anionic group Chemical group 0.000 abstract description 4
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 abstract 1
- 102000002322 Egg Proteins Human genes 0.000 description 29
- 108010000912 Egg Proteins Proteins 0.000 description 29
- 235000013345 egg yolk Nutrition 0.000 description 29
- 210000002969 egg yolk Anatomy 0.000 description 29
- 102000004190 Enzymes Human genes 0.000 description 28
- 108090000790 Enzymes Proteins 0.000 description 28
- 229940088598 enzyme Drugs 0.000 description 28
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 21
- 108010020132 microbial serine proteinases Proteins 0.000 description 16
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 16
- 108010056079 Subtilisins Proteins 0.000 description 14
- 102000005158 Subtilisins Human genes 0.000 description 14
- 229920001983 poloxamer Polymers 0.000 description 14
- 239000000344 soap Substances 0.000 description 14
- 239000002562 thickening agent Substances 0.000 description 12
- 238000009472 formulation Methods 0.000 description 11
- 238000004140 cleaning Methods 0.000 description 10
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 9
- 229930182478 glucoside Natural products 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 229920005996 polystyrene-poly(ethylene-butylene)-polystyrene Polymers 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- 239000004365 Protease Substances 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 239000006260 foam Substances 0.000 description 6
- LERLVVJWRNTZMD-UHFFFAOYSA-N hexasodium;trioxido(trioxidosilyloxy)silane;hydrate Chemical compound O.[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])O[Si]([O-])([O-])[O-] LERLVVJWRNTZMD-UHFFFAOYSA-N 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 229910052573 porcelain Inorganic materials 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 229960000999 sodium citrate dihydrate Drugs 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 244000061456 Solanum tuberosum Species 0.000 description 5
- 235000002595 Solanum tuberosum Nutrition 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 235000011950 custard Nutrition 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 150000008131 glucosides Chemical class 0.000 description 5
- 150000002576 ketones Chemical class 0.000 description 5
- 235000011962 puddings Nutrition 0.000 description 5
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 4
- QTDIEDOANJISNP-UHFFFAOYSA-N 2-dodecoxyethyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOCCOS(O)(=O)=O QTDIEDOANJISNP-UHFFFAOYSA-N 0.000 description 4
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 4
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 4
- 235000013162 Cocos nucifera Nutrition 0.000 description 4
- 244000060011 Cocos nucifera Species 0.000 description 4
- 239000005642 Oleic acid Substances 0.000 description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 4
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 235000019832 sodium triphosphate Nutrition 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 108010075550 termamyl Proteins 0.000 description 4
- 239000001993 wax Substances 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 3
- 238000001007 flame atomic emission spectroscopy Methods 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 108010003855 mesentericopeptidase Proteins 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 150000004682 monohydrates Chemical class 0.000 description 3
- 159000000001 potassium salts Chemical class 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- FRPJTGXMTIIFIT-UHFFFAOYSA-N tetraacetylethylenediamine Chemical group CC(=O)C(N)(C(C)=O)C(N)(C(C)=O)C(C)=O FRPJTGXMTIIFIT-UHFFFAOYSA-N 0.000 description 3
- DSEKYWAQQVUQTP-XEWMWGOFSA-N (2r,4r,4as,6as,6as,6br,8ar,12ar,14as,14bs)-2-hydroxy-4,4a,6a,6b,8a,11,11,14a-octamethyl-2,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydro-1h-picen-3-one Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)C(C)(C)CC[C@]1(C)CC[C@]2(C)[C@H]4CC[C@@]1(C)[C@H]3C[C@@H](O)C(=O)[C@@H]1C DSEKYWAQQVUQTP-XEWMWGOFSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007046 ethoxylation reaction Methods 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000012669 liquid formulation Substances 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 235000019271 petrolatum Nutrition 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000005315 stained glass Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 2
- 150000003751 zinc Chemical class 0.000 description 2
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- WREFNFTVBQKRGZ-UHFFFAOYSA-N 2-decylbutanediperoxoic acid Chemical compound CCCCCCCCCCC(C(=O)OO)CC(=O)OO WREFNFTVBQKRGZ-UHFFFAOYSA-N 0.000 description 1
- JBNHKYQZNSPSOR-UHFFFAOYSA-N 4-(carboxymethylperoxy)-4-oxobutanoic acid Chemical class OC(=O)CCC(=O)OOCC(O)=O JBNHKYQZNSPSOR-UHFFFAOYSA-N 0.000 description 1
- LMYSNFBROWBKMB-UHFFFAOYSA-N 4-[2-(dipropylamino)ethyl]benzene-1,2-diol Chemical compound CCCN(CCC)CCC1=CC=C(O)C(O)=C1 LMYSNFBROWBKMB-UHFFFAOYSA-N 0.000 description 1
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical group [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- WQZGKKKJIJFFOK-CBPJZXOFSA-N D-Gulose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-CBPJZXOFSA-N 0.000 description 1
- WQZGKKKJIJFFOK-WHZQZERISA-N D-aldose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-WHZQZERISA-N 0.000 description 1
- WQZGKKKJIJFFOK-IVMDWMLBSA-N D-allopyranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-IVMDWMLBSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- QEVGZEDELICMKH-UHFFFAOYSA-N Diglycolic acid Chemical class OC(=O)COCC(O)=O QEVGZEDELICMKH-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- SHBUUTHKGIVMJT-UHFFFAOYSA-N Hydroxystearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OO SHBUUTHKGIVMJT-UHFFFAOYSA-N 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical class OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VSOAQEOCSA-N L-altropyranose Chemical compound OC[C@@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-VSOAQEOCSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical group [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 108090000787 Subtilisin Proteins 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000005024 alkenyl aryl group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- SRBFZHDQGSBBOR-STGXQOJASA-N alpha-D-lyxopyranose Chemical compound O[C@@H]1CO[C@H](O)[C@@H](O)[C@H]1O SRBFZHDQGSBBOR-STGXQOJASA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 230000003254 anti-foaming effect Effects 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000001175 calcium sulphate Substances 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 239000004204 candelilla wax Substances 0.000 description 1
- 235000013868 candelilla wax Nutrition 0.000 description 1
- 229940073532 candelilla wax Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- UNWDCFHEVIWFCW-UHFFFAOYSA-N decanediperoxoic acid Chemical compound OOC(=O)CCCCCCCCC(=O)OO UNWDCFHEVIWFCW-UHFFFAOYSA-N 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- HLGRRZFWTBVGMM-UHFFFAOYSA-L disodium;sulfate;dihydrate Chemical compound O.O.[Na+].[Na+].[O-]S([O-])(=O)=O HLGRRZFWTBVGMM-UHFFFAOYSA-L 0.000 description 1
- BRDYCNFHFWUBCZ-UHFFFAOYSA-N dodecaneperoxoic acid Chemical compound CCCCCCCCCCCC(=O)OO BRDYCNFHFWUBCZ-UHFFFAOYSA-N 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940083159 ethylene distearamide Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000013538 functional additive Substances 0.000 description 1
- 150000002303 glucose derivatives Chemical class 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical class [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000005020 hydroxyalkenyl group Chemical group 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 150000002454 idoses Chemical class 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000012184 mineral wax Substances 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 1
- 229920001206 natural gum Polymers 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical class OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- XCRBXWCUXJNEFX-UHFFFAOYSA-N peroxybenzoic acid Chemical compound OOC(=O)C1=CC=CC=C1 XCRBXWCUXJNEFX-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229940071207 sesquicarbonate Drugs 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Chemical group [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003890 succinate salts Chemical group 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical group OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 239000011686 zinc sulphate Substances 0.000 description 1
- 235000009529 zinc sulphate Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3947—Liquid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/28—Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/662—Carbohydrates or derivatives
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/72—Ethers of polyoxyalkylene glycols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/08—Silicates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38618—Protease or amylase in liquid compositions only
Definitions
- the present invention relates to an aqueous liquid detergent product particularly adapted for use in a machine dishwasher.
- Liquid automatic dishwasher detergent compositions both aqueous and non-aqueous, have recently received much attention and the aqueous products have achieved commercial popularity.
- a mild and yet quite effective aqueous liquid machine dishwashing detergent composition can be formulated based on certain surfactants and proteolytic enzymes wherein there is an apparent synergistic effect between the active and the protease enzyme, especially in the removal of protein soil.
- glycosides in detergent compositions has been disclosed in a number of documents.
- WO 86/05187 discloses laundry detergent compositions comprising glycoside surfactant and enzyme. Various enzymes are mentioned.
- DE 38 33 047 discloses acidic powdered dishwashing compositions containing alkyl glycoside in combination with other surfactant and amylase. These compositions are acidic and have solution pH below 6.
- a chlorine bleach-free aqueous liquid machine dishwashing detergent composition comprising:
- this invention provides a method of washing crockery and/or glassware comprising exposing the crockery and/or glassware to a mixture of water and a detergent composition as specified above.
- the invention provides use of such a composition in machine dishwashing.
- Protease can, for example, be used in an amount ranging from about the order of 0.0002 to about the order of 0.05 Anson units per gram of the detergent composition, preferably 0.001 to 0.025 Anson units. Expressed in other units, the protease can also be included in the compositions in amounts of the order of from about 0.5 to 100 GU/mg of the detergent composition. Preferably, the amount ranges from 1 to 50, and particularly preferably from 2 or even 5 to 15 or 20 GU/mg of composition.
- a GU is a Glycine Unit, defined as the proteolytic enzyme activity which, under standard conditions, during a 15-minute incubation at 40°C with N-acetyl casein as substrate, produces an amount of NH2-group equivalent to 1 micromole of glycine.
- KNPU kilo Novo units
- protease enzyme to be used in the present compositions are the subtilisin varieties sold as Savinase (TM of Novo-Nordisk A/S) or Maxacal (TM of Gist-Brocades/IBIS) or as Opticlean (ex MKC) or AP122 (ex Showa Denko), which has pI approximately 10.
- Other useful examples of proteases include Maxatase, Esperase, Alcalase (Trade Marks), protinase K and subtilisin BPN'. Protinase K can also be used.
- G is a residue of a pentose or hexose
- R'O is an alkoxy group
- x is at least unity
- R is an organic hydrophobic group which is preferably aliphatic, either saturated or unsaturated, notably straight or branched alkyl, alkenyl, hydroxyalkyl or hydroxyalkenyl.
- R may include an aryl group, for example alkyl-aryl, alkenyl-aryl and hydroxyalkyl-aryl. It is envisaged that R may be from 6 to 20 carbon atoms.
- R is alkyl or alkenyl of 7 to 14 or 16 carbon atoms, especially 7 to 12.
- the value of t in the general formula above is preferably zero, so that the -(R'O) t - unit of the general formula is absent. In that case the general formula becomes : RO(G) x or If t is non-zero, it is preferred that R'O is an ethylene oxide residue. Other possibilities are propylene oxide and glycerol residues. If the parameter t is non-zero so that R'O is present, the value of t (which may be an average value) will preferably lie in the range from 0.5 to 10.
- the group G is typically derived from fructose, glucose, mannose, galactose, talose, gulose, allose, altrose, idose, arabinose, xylose, lyxose and/or ribose.
- the G is provided substantially exclusively by glucose units.
- Intersaccharide bonds may be from a 1-position to a 2, 3, 4 or 6-position of the adjoining saccharide.
- Hydroxyl groups on sugar residues may be substituted., e.g. etherified with short alkyl chains of 1 to 4 carbon atoms.
- a sugar residue bears no more than one such substituent.
- x which is an average, is usually termed the degree of polymerization. Desirably x varies between 1 and 8. Values of x may lie between 1 and 3, especially 1 and 1.8.
- Alkyl polyglycosides of formula RO(G) x i.e. a formula as given above in which t is zero, are available from BASF and Henkel.
- Alkyl polyglycosides of particular interest have x in the narrow range from 1 or 1.2 up to 1.4 or especially 1.3. If x exceeds 1.3, it preferably lies in the range from 1.3 or 1.4 to 1.8.
- R is C8 to C14 alkyl or alkenyl.
- O-alkanoyl glucosides are described in International Patent Application WO 88/10147 (Novo Industri A/S).
- the surfactants described therein are glucose esters with the acyl group attached in the 3- or 6-position such as 3-0-acyl-D-glucose or 6-0-acyl-D-glucose.
- 6-0-alkanoyl glucosides in which the alkanoyl group incorporates an alkyl or alkenyl group having from 7 to 13 preferably 7, 9 or 11 carbon atoms.
- the glucose residue may be alkylated in its 1-position with an alkyl group having from 1 to 4 carbon atoms, such as ethyl or isopropyl. Alkylation in the 1-position enables such compounds to be prepared by regiospecific enzymatic synthesis as described by Bjorkling et al. (J. Chem. Soc., Chem. Commun. 1989 p934).
- esters of glucose are contemplated especially, it is envisaged that corresponding materials based on other reducing sugars, such as galactose and mannose are also suitable.
- Preferred anionic surfactants are one or a mixture of: primary alkyl sulphate of formula: R1OSO3M where R1 is a primary alkyl group of 8 to 18 carbon atoms and M is a solubilising cation, fatty acid ester sulphonate of formula where R2 is an alkyl group of 6 to 16 carbon atoms, R3 is an alkyl group of 1 to 4 carbon atoms and M is a solubilising cation, alkyl benzene sulphonate of formula where R4 is an alkyl group of 10 to 16 carbon atoms and M is a solubilising cation, alkyl ether sulphate of formula R1O(CH2CH2O) n SO3M where R1 is a primary alkyl group of 8 to 18 carbon atoms, n has an average value in the range from 1 to 6 and M is a solubilising cation.
- R1OSO3M where R1 is a primary
- surfactant is primary alkyl sulphate.
- solubilising cation may be a range of cations which are general monovalent and confer water solubility.
- Alkali metal notably sodium, is especially envisaged.
- Other possibilities are ammonium and substituted ammonium, such as trialkanolammonium.
- the alkyl group R1 may have a mixture of chain lengths. It is preferred that at least two thirds of the R1 alkyl groups have a chain length of 8 to 14 carbon atoms. This will be the case if R1 is coconut alkyl, for example.
- solubilising cation M may be a range of cations as discussed above for alkyl sulphate.
- the group R2 may have a mixture of chain lengths. Preferably at least two thirds of these groups have 6 to 12 carbon atoms. This will be the case when the moiety: is derived from a coconut source, for instance.
- the group R3 may be any C1 to C4 alkyl group.
- Straight chain alkyl may be preferred, notably methyl or ethyl.
- the group R4 may be a mixture of chain lengths. Preferred are straight chains of 11 to 14 carbon atoms.
- alkyl ether sulphate R1O(CH2CH2O) n SO3M the group R1 is as discussed for alkyl sulphate.
- n has an average value of 2 to 5.
- Ethoxylated fatty alcohol may be used alone or in admixture with anionic surfactants, especially the preferred surfactants above. However, if it is used alone than the fatty alcohol must be of limited chain length so that average chain lengths of the alkyl group R in the general formula: RO(CH2CH2O) n H is from 6 to 12 carbon atoms. This is preferred in any event, and especially preferred if the weight of anionic surfactant is less than half the weight of ethoxulated fatty alcohol.
- group R may have chain lengths in a range from 9 to 11 carbon atoms.
- An ethoxylated fatty alcohol normally is a mixture of molecules with different numbers of ethylene oxide residues. Their average number, n, together with the alkyl chain length, determines whether the ethoxylated fatty alcohol has a hydrophobic character (low HLB value) or a hydrophilic character (high HLB value). For this invention the HLB value should be 10.5 or greater. This requires the average value of n to be at least 4, and possibly higher.
- the numbers of ethylene oxide residues may be a statistical distribution around the average value. However, as is known, the distribution can be affected by the manufacturing process or altered by fractionation after ethoxylation.
- Particularly preferred ethoxylated fatty alcohols have a group R which has 9 to 11 carbon atoms while n is from 5 to 8.
- the above surfactant may possibly be accompanied by some other detergent active, usually in a lesser quantity.
- the amount of any other detergent surfactant will be no more than one third of the total weight of detergent surfactant present, or even no more than one quarter.
- surfactant may be anionic or nonionic in character, or possibly amphoteric or zwitterionic. Cationic surfactant is possible if anionic is absent, but is not preferred. Soap may optionally be included, as well as non-soap surfactants.
- One significant possibility is the use of a surfactant or mixture of surfactants of the above specified anionic and/or nonionic types, together with glycoside surfactants of the above specified type.
- the amount of glycoside surfactant, anionic surfactant and/or ethoxylated fatty alcohol surfactant will be from 3 to 50% by weight of the composition. Desirably the total amount of surfactant lies in the same range. Preferred ranges, both for the specified surfactant and total surfactant are 3 to 30% by weight, more preferably, in the range from 5 or 10% to 25% by weight.
- the cleaning compositions of this invention can contain all manner of detergent builders commonly taught for use in automatic dishwashing or other cleaning compositions.
- the builders can include any of the conventional inorganic and organic water-soluble builder salts, also insoluble inorganic builders or mixtures thereof, and may comprise from 5 to 90% by weight of the detergent composition.
- Typical of the well-known inorganic builders are the sodium and potassium salts of the following: pyrophosphate, tripolyphosphate, orthophosphate, carbonate, bicarbonate, sesquicarbonate and borate.
- Other non-phosphorous salts including (insoluble) crystalline and amorphous aluminosilicates (e.g. zeolites) may be used as well.
- Preferred builders can be selected from the group consisting of sodium tripolyphosphate, sodium carbonate, sodium bicarbonate and mixtures thereof. When present in these compositions, sodium tripolyphosphate concentrations will usually range from 2% to 40%, preferably from 5% to 30%. Sodium carbonate and bicarbonate, when present, can range from 10% to 50%, preferably from 20% to 40% by weight of the cleaning compositions. Potassium pyrophosphate is a preferred builder in gel formulations, where it may be used at from 3 to 30%, preferably from 10 to 20%.
- Organic detergent builders can also be used in the present invention. They are generally sodium and potassium salts of the following: citrate, malonate or succinate substituted with a C8 to C24 alkyl group, nitrilotriacetates, phytates, polyphosponates, oxydisuccinates, oxydiacetates, carboxymethyloxy succinates, tetracarboxylates, starch, oxidized heteropolymeric polysaccharides, and polymeric polycarboxylates such as polyacrylates of molecular weight of from about 5,000 to about 200,000. Polyacetal carboxylates such as those described in U.S. Patent Nos. 4,144,226 and 4,146,495 may also be used.
- Non-phosphate builders are particularly preferred for environmental reasons.
- Sodium citrate is an especially preferred builder. When present, it is preferably used in an amount from about 1% to about 75% of the total weight of the detergent composition, especially 10 to 50% by weight.
- detergent builders are meant to illustrate but not limit the types of builder that can be employed in the present invention.
- compositions of this invention contain sodium or potassium silicate at a level of from about 1 to about 40% by weight of the cleaning composition, more preferably from 5 to 25%, even more preferably from 7 to 20%.
- This material is employed as a cleaning ingredient, source of alkalinity, metal corrosion inhibitor and protector of glaze on china tableware.
- the sodium or potassium silicate usuable herein will have a ratio of SiO2:Na2O or SiO2:K2O of from about 2.0 to about 3.2. Some of the silicate may be in solid form.
- Useful is sodium silicate having a ratio of SiO2 : Na2O of higher than 2.0, preferably at least 2.4.
- a composition contains less than 10% silicate, we prefer to include a zinc salt, such as zinc sulphate, especially if the composition dissolves to give an alkaline pH, e.g. pH over 8.5.
- a zinc salt serves to protect glassware from attack by an alkaline wash liquor, and may suitably be used in amounts from 0.1 to 3% by weight.
- compositions according to the present invention are free from chlorine bleach compounds but may contain a peroxygen bleach component. If present the amount will preferably lie in a range from 1 to 30% by weight.
- a peroxygen bleach which may be employed is for example sodium perborate. This is preferably accompanied by a bleach activator which allows the liberation of active oxygen species at a lower temperature.
- a preferred bleach activator is tetraacetyl ethylene diamine (TAED) but other activators for perborate are known and can be used.
- the amounts of peroxygen bleach and bleach activator in an individual composition preferably do not exceed 20% and 15% by weight respectively.
- peroxygen bleach is sodium percarbonate. Yet another is sodium monopersulphate. Further peroxygen bleaches which may be used are alkyl, alkenyl and aryl peroxy organic acids and their metal salts. Typical peroxy acids include
- Thickeners are often desirable for liquid cleaning compositions.
- Thixotropic thickeners such as smectite clays including montmorillonite (bentonite), hectorite, saponite, and the like may be used to impart viscosity to liquid cleaning compositions.
- Silica, silica gel, and aluminosilicate may also be used as thickeners.
- Use of clay thickeners for automatic dishwashing compositions is disclosed, for example, in U.S. Patents Nos. 4,431,559; 4,511,487; 4,740,327; 4,752,409.
- Use of salts of polymeric carboxylic acids is disclosed, for example, in UK Patent Application GB 2,164,350A.
- bentonite clays include Korthix H and VWH ex Combustion Engineering, Inc.; Polargel T ex American Colloid Co.; and Gelwhite clays (particularly Gelwhite GP and H) ex English China Clay Co.
- Polargel T is preferred as imparting a more intense white appearance to the composition than other clays.
- polymers may be included. These may in particular assist in detergency building or be polymeric thickeners, which may be used alone or jointly with other types of thickeners. Notable are polymers containing carboxylic or sulphonic acid groups in acid form or wholly or partially neutralised to sodium or potassium salts, the sodium salts being preferred. Preferred polymers are homopolymers and copolymers of acrylic acid and/or maleic acid or maleic anhydride. Of especial interest are polyacrylates, polyalphahydroxy acrylates, acrylic/maleic acid copolymers, and acrylic phosphinates. Other polymers which are especially preferred for use in liquid detergent compositions are deflocculating polymers such as for example disclosed in EP 346995.
- the molecular weights of homopolymers and copolymers are generally 1000 to 150,000, preferably 1500 to 100,000.
- Polyacylate thickeners may well have molecular weights from 300,000 up to 6 million.
- the amount of any polymer may lie in the range from 0.5 to 5% or even 10% by weight of the composition.
- a chlorine-stable polymeric thickener is particularly useful for liquid formulations with a "gel" appearance and rheology, particularly if a clear gel is desired.
- U.S. Patent No. 4,260,528 discloses natural gums and resins for use in clear autodish detergents, which are not chlorine-stable.
- Crosslinked acrylic acid polymers manufactured by B.F. Goodrich and sold under the trade name "Carbopol” have been found to be effective for production of clear gels, and Carbopol 940 having a molecular weight of about 4,000,000 is particularly preferred for maintaining high viscosity with excellent chlorine stability over extended periods.
- Further suitable chlorine-stable polymeric thickeners are described in U.S. Patent 4,867,896.
- the amount of thickener employed in the composition may range from 0 to 5%, preferably 1 to 3%.
- Stabilizers and/or co-structurants such as long-chain calcium and sodium soaps and C12 to C18 alkyl sulphates are detailed in U.S. Patents Nos. 3,956,158 and 4,271,030 and the use of other metal salts of long-chain soaps is detailed in U.S. Patent No. 4,752,409.
- the amount of stabilizer which may be used in the liquid cleaning compositions is from about 0.01 to about 5% by weight of the composition, preferably 0.1-2%. Such stabilizers are optional in gel formulations.
- Co-structurants which are found especially suitable for gels include trivalent metal ions at 0.01-4% of the composition and/or water-soluble structuring chelants at 1-60%. These co-structurants are more fully described in EP-A-323209.
- the agitation conditions in a dishwashing machine are more rigorous than those in a fabric washing machine and lead to foam formation.
- Foam if it forms, can cause air to be drawn into the circulating pump. This can interfere with proper water circulation and the supply of water to the heating element. Excessive foam generation can eventually lead to air locking of the pump, which could wreck the machine by stopping the water supply to the heating element.
- a composition of the invention may further include defoamer. Even if the cleaning composition has only low foaming surfactant, presence of a defoamer can assist to minimize foam which food soils can generate.
- compositions contain a nonionic surfactant which includes ethylene oxide and propylene oxide residues. These surfactants have cloud points below the operating temperature and they therefore form hydrophobic droplets which exert an antifoam action.
- Materials which may be utilised as defoamer in a composition of this invention include mono- and di- C8 to C22 alkyl phosphates and mineral oil/or wax. These may be used as a combination containing particles of the insoluble alkyl phosphate together with petroleum jelly. Possible alternatives to the alkyl phosphate include ethylene distearamide, calcium soap and finely divided silica, especially hydrophobed silica. Mineral oils and waxes which may be used include petroleum fractions, Fischer-Tropsch waxes, ozokerite, ceresin montan wax, beeswax, candelilla wax, camauba wax and mixtures thereof.
- ketones of formula R7COR8 wherein R7 and R8 are both alkyl or alkenyl groups containing 8 to 24 carbon atoms and such that the ketone contains 25 to 49 carbon atoms.
- Ketones of this type and their use as antifoam agents in (other) machine dishwashing compositions, are disclosed in EP-A-324339.
- soap or fatty acid which becomes neutralised to soap in use of the composition.
- Such soap or fatty acid should have an acyl group of 12 to 22 carbon atoms, especially 14 to 18 carbon atoms. If soap or fatty acid is used as defoamer some calcium salt may deliberately be included in the composition, thereby ensuring the presence of calcium ions to form a calcium soap which exerts the antifoaming action.
- the composition may include 0.1 to 30% by weight of defoamer, preferably other than nonionic surfactant.
- Non-soap defoamer may be used at levels towards the lower end of this range, e.g. 0.1 to 10%, preferably 0.5 to 2% or 5%.
- Soap or fatty acid can be used as defoamer, and if present may be used in amounts from 0.1 to 30% by weight, especially 0.5 to 10%.
- the surfactant is alkyl sulphate alone, it may be desirable to use a said ketone (in branched chain alcohol), soap or fatty acid as the defoamer and to avoid alkyl phosphates or mineral oil.
- Minor amounts of various other components may be present in the cleaning composition. These include anti-scalants, corrosion-inhibitors anti-redeposition agents, anti-tarnish agents, other enzymes (especially amylase and/or lipase at 0.05-2% by weight, preferably 0.5-1.5%) and other functional additives and perfume.
- compositions of this invention may take the form of a liquid or a gel.
- the composition is preferably formulated to give a pH in the range 7 to 11, even better 8 to 11 if added to deionized water at a concentration of 2.0 grams/litre.
- a particularly preferred pH is 9.0 to 9.5.
- This example demonstrates action of removing soil from glass slides.
- New glass slides, 5cm x 5cm were machine washed, repeatedly rinsed with demineralised water and soiled with about 55mg baked on egg-yolk per slide.
- Results were as follows:- % Egg-yolk removal Wash Time (minutes) No enzyme No APG Enzyme only APG only APG+Enzyme 1 1.7 1.5 0.8 1.2 5 1.5 2.0 0.9 1.7 10 1.9 3.1 0.4 4.4 20 2.0 4.4 -0.2 15.2 30 2.4 5.8 0.2 22.4 40 2.6 8.1 -0.6 31.3 50 2.5 12.8 -1.1 48.1 60 2.6 20.1 -1.4 70.6
- Example 2 The procedure was similar to Example 1. Several types of alkyl polyglycoside were employed. All solutions contained, per litre of water:- Sodium citrate dihydrate 0.60g Acrylic maleic copolymer 0.15g Sodium disilicate monohydrate 0.60g Alcalase 2.0T 30mg (giving activity 46 GU/ml of solution).
- alkyl polyglycoside of general formula RO(G) x where G denotes a glucose residue and R is an alkyl chain.
- the alkyl polyglycoside displayed various alkyl chain lengths R and various values of x, the degree of polymerisation.
- Some solutions also contained:- 30mg Alcalase 2.OT (giving an activity of 46 GU/ml) and/or 0.5g ethyl 6-O-decanoyl glucoside
- the solutions were used to wash glass slides stained with egg-yolk as in Example 1, or stainless steel slides stained with egg-yolk in the same way.
- Results were as follows:- % Egg yolk removal from glass Wash time (minutes) enzyme only Glucoside only Enzyme + glucoside 10 4 ⁇ 1 2 ⁇ 1 4 ⁇ 1 20 9 ⁇ 0 0 ⁇ 1 17 ⁇ 8 30 15 ⁇ 1 1 ⁇ 1 34 ⁇ 11 40 27 ⁇ 3 1 ⁇ 1 53 ⁇ 17 % Egg yolk removal from stainless steel Wash time (minutes) enzyme only Glucoside only Enzyme + glucoside 10 4 ⁇ 0 2 ⁇ 0 4 ⁇ 0 20 8 ⁇ 1 2 ⁇ 0 9 ⁇ 8 30 16 ⁇ 1 2 ⁇ 1 34 ⁇ 7 40 25 ⁇ 4 2 ⁇ 0 54 ⁇ 11
- a machine dishwashing formulation was a mixture containing: Amount by weight Percent by weight Na-citrate dihydrate 2.67g 18.5% Acrylic-maleic copolymer (Sokolan CP5) 0.67g 4.6% Na-disilicate monohydrate 2.67g 18.5% Oleic acid 3.44g 23.8% Ca-stearate 0.30g 2.1% Petroleum jelly 1.20g 8.3% APG 3.00g 20.7% Savinase 6.0CM (1544 GU/mg) 0.30g 2.1% Termamyl 6OT (4.8MU/mg) 0.20g 1.4%
- the alkyl polyglycoside was of the formula RO(G) x where G denotes glucose, R is a C12-C14 alkyl chain and x averages 1.8.
- This formulation was used to wash various stained glass slides using a Bosch S510 automatic dishwasher on its standard program and without salt added to the machine. The main wash temperature was 55°C, the final rinse temperature was 65°C. The water used tap water of 16° French Hardness.
- the glass slides were stained with potato, a custard pudding or egg yolk.
- the potato and custard pudding stains were aged at 30°C and 60% relative humidity for 16-24 hours.
- the egg yolk stain was baked-on at 120°C for two hours. Removal of the stain was determined as loss in weight.
- This example demonstrates synergistic action in removing soil from glass slides.
- New glass slides, 5cm x 5cm were machine washed, repeatedly rinsed with demineralised water and soiled with about 55mg baked on egg-yolk per slide.
- Results were as follows:- wt% Egg-yolk removal Wash Time (minutes) Enzyme only % SDS only % SDS+Enzyme % 10 1.3 -1.1 0.0 20 2.3 -1.0 6.5 30 2.1 -1.2 13.5 40 3.0 -3.3 23.8
- Example 7 was repeated, using a larger amount of enzyme and a larger amount of a different anionic surfactant.
- slides were removed from the wash solution they were replaced with a clean slide.
- the washing solutions received: 30mg Alcalase 2.OT (providing 45 GU/ml in solution) and/or 0.5g of Texin ES68 which is a fatty acid ester sulphonate of formula in which R2 is derived from tallow and so is predominantly C16 and C18 alkyl and R3 is methyl.
- Example 7 The procedure of Example 7 was repeated using SDS, and mixtures of SDS with equal weights of other surfactants. For each test the same total amount of surfactant (250mg/l) was used, and 20mg/l of Alcalase 2.OT was present.
- Dobanol 91-6 is an ethoxylated fatty alcohol where the fatty alcohol has chain length 9 to 11 carbon atoms and the average degree of ethoxylation is 6. It has an HLB value of 12.5
- Synperonic A7 is an ethoxylated fatty alcohol where the fatty alcohol has chain length 13 to 15 carbon atoms and the average number of ethylene oxide residues is 7. It has an HLB value of 12.2.
- APG 300 is an alkyl polyglycoside of formula R5O(G) x where R5 is alkyl of 9 to 11 carbon atoms and x has average value of 1.4.
- Example 7 was repeated using each of three nonionic surfactants in place of SDS.
- the results expressed as wt% egg-yolk removal after 30 minutes, were: wt% egg-yolk removal Synperonic A3 + enzyme 15 ⁇ 3 Synperonic A7 + enzyme 33 ⁇ 6
- Synperonic A3 is C13-C15 fatty alcohol ethoxylated with an average of 3 ethylene oxide residues. It has HLB value 7.9.
- Synperonic A7 is, as mentioned in the last example, C13-C15 alcohol with an average of 7 ethylene oxide residues. HLB value is 12.2.
- Dobanol 91-6 is a C9-C11 alcohol with an average of 6 ethylene oxide residues. HLB value is 12.5.
- Example 7 was repeated twice using a larger amount of enzyme (as in Example 8) and two ethoxylated nonionic surfactants. In consequence the washing solutions received: 30mg Alcalase 2.OT (providing 45 GU/ml in solution) and/or 0.4g of either Synperonic A7 or Dobanol 91-6.
- Example 7 was repeated using a larger amount of enzyme (as in Examples 8 and 11) and two anionic surfactants.
- the washing solutions received: 30mg Alcalase 2.OT (providing 45 GU/ml in solution) and/or 250mg of either Empicol LX or 250 mg/litre of either sodium lauryl ether sulphate (LES) with average 3 ethylene oxide residues, or middle cut coconut alkyl sulphate (Empicol LX).
- Termamyl is an amylase.
- the formulations contained sodium dodecyl sulphate in amounts which were 0.75g, 1.5g and 3.0g.
- Each formulation was used to wash various stained glass slides using a Bosch S510 automatic dishwasher on its standard program and without salt added to the machine.
- the main wash temperature was 55°C
- the final rinse temperature was 65°C.
- the water used was tap water of 16° French Hardness.
- the materials from which the various slides were made, the stains on them and the extent of removal are set out in the following table. In most instances the extent of removal was determined by weight loss. In a few instances the extent of removal was determined by visual inspection of the area which remains covered by the stain.
- a composition containing Dehypon KE 2429 foam inhibitor (believed to be a mixture of branched chain alcohol and ketone according to EP-A-324,339) was used to wash a stainless steel plate 20cm x 6cm with almost 0.8g baked-on egg-yolk, in a Bosch 5510 machine.
- the wash conditions were the same as for Example 12.
- the composition contained: Sodium citrate dihydrate 5.0g Sodium dodecyl sulphate 1.25g Alcalase 2.OT 0.20g Dehypon KE2429 0.50g
- Example 14 was repeated while also including 0.50g oleic acid in the composition.
- proteases were includes in these formulations which were then used to wash porcelain and stainless steel slides stained with baked-on egg-yolk. The results, which are determined by loss in weight, are set out in the following table.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Detergent Compositions (AREA)
Abstract
Description
- The present invention relates to an aqueous liquid detergent product particularly adapted for use in a machine dishwasher.
- Liquid automatic dishwasher detergent compositions, both aqueous and non-aqueous, have recently received much attention and the aqueous products have achieved commercial popularity.
- The acceptance and popularity of the liquid formulations as compared to the more conventional powdered products stems from the convenience and performance of the liquid products. However the currently available and proposed liquid product formulations are based on the concept of the conventional machine dishwashing powder compositions which are highly alkaline and highly built products containing a chlorine bleach (see for example EP-A-0,517,308 and EP-A-517,309).
- It has now surprisingly been found that a mild and yet quite effective aqueous liquid machine dishwashing detergent composition can be formulated based on certain surfactants and proteolytic enzymes wherein there is an apparent synergistic effect between the active and the protease enzyme, especially in the removal of protein soil.
- The use of glycosides in detergent compositions has been disclosed in a number of documents. WO 86/05187 (Staley) discloses laundry detergent compositions comprising glycoside surfactant and enzyme. Various enzymes are mentioned.
- DE 38 33 047 discloses acidic powdered dishwashing compositions containing alkyl glycoside in combination with other surfactant and amylase. These compositions are acidic and have solution pH below 6.
- According to the invention there is provided a chlorine bleach-free aqueous liquid machine dishwashing detergent composition comprising :
- (a) from 0.0002 to 0.05 Anson units per gram of the composition of a proteolytic enzyme;
- (b) from 5 to 90% by weight of a detergency builder;
- (c) from 1 to 40% by weight of sodium or potassium silicate having SiO₂:Na₂O or SiO₂:K₂O ratio of from about 2.0 to about 3.2.
- (d) from 3 to 50% by weight of an organic surfactant selected from the group of:
- (i) glycoside surfactants;
- (ii) anionic surfactants with a hydrophilic head group which is, or which contains a sulphate or sulphonate group and a hydrophobic portion which is or which contains an alkyl or alkenyl group of 8 to 22 carbon atoms;
- (iii) ethoxylated fatty alcohols of formula
RO(CH₂CH₂O)nM
where R is an alkyl group of 6 to 16 carbon atoms and n has an average value which is at least four and is sufficiently high that the HLB value of the ethoxylated fatty alcohol is 10.5 or greater, with the proviso that if ethoxylated fatty alcohol (iii) is used without anionic surfactant (ii) the majority of its alkyl groups R contain 6 to 12 carbon atoms; and - (iv) mixtures thereof;
- (e) water, said composition having a pH of 7 to 11, if added deionised water at a concentration of 2 g/l.
- In a second aspect this invention provides a method of washing crockery and/or glassware comprising exposing the crockery and/or glassware to a mixture of water and a detergent composition as specified above. In another aspect the invention provides use of such a composition in machine dishwashing.
- Protease can, for example, be used in an amount ranging from about the order of 0.0002 to about the order of 0.05 Anson units per gram of the detergent composition, preferably 0.001 to 0.025 Anson units. Expressed in other units, the protease can also be included in the compositions in amounts of the order of from about 0.5 to 100 GU/mg of the detergent composition. Preferably, the amount ranges from 1 to 50, and particularly preferably from 2 or even 5 to 15 or 20 GU/mg of composition.
- A GU is a Glycine Unit, defined as the proteolytic enzyme activity which, under standard conditions, during a 15-minute incubation at 40°C with N-acetyl casein as substrate, produces an amount of NH2-group equivalent to 1 micromole of glycine.
- Enzyme activities are sometimes also measured in kilo Novo units (KNPU): a measurement depending on the type of protease and assay used. We have found that the KNPU/AU ratio is in the range of about 3:1 to 5:1 for Alcalase, Esperase and Savinase and for the purpose of these formulations it is not necessary to be more precise.
- Preferred examples of protease enzyme to be used in the present compositions are the subtilisin varieties sold as Savinase (TM of Novo-Nordisk A/S) or Maxacal (TM of Gist-Brocades/IBIS) or as Opticlean (ex MKC) or AP122 (ex Showa Denko), which has pI approximately 10. Other useful examples of proteases include Maxatase, Esperase, Alcalase (Trade Marks), protinase K and subtilisin BPN'. Protinase K can also be used.
- This will be nonionic in character and of course includes glycoside residues. Suitably it is of the general formula :
RO(R'O)t(G)x
or
in which G is a residue of a pentose or hexose, R'O is an alkoxy group, x is at least unity and R is an organic hydrophobic group which is preferably aliphatic, either saturated or unsaturated, notably straight or branched alkyl, alkenyl, hydroxyalkyl or hydroxyalkenyl. However, it may include an aryl group, for example alkyl-aryl, alkenyl-aryl and hydroxyalkyl-aryl. It is envisaged that R may be from 6 to 20 carbon atoms. - Particularly preferred is that R is alkyl or alkenyl of 7 to 14 or 16 carbon atoms, especially 7 to 12.
- The value of t in the general formula above is preferably zero, so that the -(R'O)t- unit of the general formula is absent. In that case the general formula becomes :
RO(G)x
or
If t is non-zero, it is preferred that R'O is an ethylene oxide residue. Other possibilities are propylene oxide and glycerol residues. If the parameter t is non-zero so that R'O is present, the value of t (which may be an average value) will preferably lie in the range from 0.5 to 10. - The group G is typically derived from fructose, glucose, mannose, galactose, talose, gulose, allose, altrose, idose, arabinose, xylose, lyxose and/or ribose. Preferably, the G is provided substantially exclusively by glucose units. Intersaccharide bonds may be from a 1-position to a 2, 3, 4 or 6-position of the adjoining saccharide. Hydroxyl groups on sugar residues may be substituted., e.g. etherified with short alkyl chains of 1 to 4 carbon atoms. Preferably a sugar residue bears no more than one such substituent.
- The value x, which is an average, is usually termed the degree of polymerization. Desirably x varies between 1 and 8. Values of x may lie between 1 and 3, especially 1 and 1.8.
- Alkyl polyglycosides of formula RO(G)x, i.e. a formula as given above in which t is zero, are available from BASF and Henkel.
- Alkyl polyglycosides of particular interest have x in the narrow range from 1 or 1.2 up to 1.4 or especially 1.3. If x exceeds 1.3, it preferably lies in the range from 1.3 or 1.4 to 1.8.
- When x lies in the range from 1 to 1.4, it is preferred that R is C₈ to C₁₄ alkyl or alkenyl.
- O-alkanoyl glucosides are described in International Patent Application WO 88/10147 (Novo Industri A/S). In particular the surfactants described therein are glucose esters with the acyl group attached in the 3- or 6-position such as 3-0-acyl-D-glucose or 6-0-acyl-D-glucose. Notable are 6-0-alkanoyl glucosides, in which the alkanoyl group incorporates an alkyl or alkenyl group having from 7 to 13 preferably 7, 9 or 11 carbon atoms. The glucose residue may be alkylated in its 1-position with an alkyl group having from 1 to 4 carbon atoms, such as ethyl or isopropyl. Alkylation in the 1-position enables such compounds to be prepared by regiospecific enzymatic synthesis as described by Bjorkling et al. (J. Chem. Soc., Chem. Commun. 1989 p934).
- While esters of glucose are contemplated especially, it is envisaged that corresponding materials based on other reducing sugars, such as galactose and mannose are also suitable.
- Preferred anionic surfactants are one or a mixture of:
primary alkyl sulphate of formula:
R¹OSO₃M
where R¹ is a primary alkyl group of 8 to 18 carbon atoms and M is a solubilising cation,
fatty acid ester sulphonate of formula
where R² is an alkyl group of 6 to 16 carbon atoms, R³ is an alkyl group of 1 to 4 carbon atoms and M is a solubilising cation,
alkyl benzene sulphonate of formula
where R⁴ is an alkyl group of 10 to 16 carbon atoms and M is a solubilising cation,
alkyl ether sulphate of formula
R¹O(CH₂CH₂O)nSO₃M
where R¹ is a primary alkyl group of 8 to 18 carbon atoms, n has an average value in the range from 1 to 6 and M is a solubilising cation. - Especially preferred as surfactant is primary alkyl sulphate. In its general formula
R¹SO₃M
the solubilising cation may be a range of cations which are general monovalent and confer water solubility. Alkali metal, notably sodium, is especially envisaged. Other possibilities are ammonium and substituted ammonium, such as trialkanolammonium. - The alkyl group R¹ may have a mixture of chain lengths. It is preferred that at least two thirds of the R¹ alkyl groups have a chain length of 8 to 14 carbon atoms. This will be the case if R¹ is coconut alkyl, for example.
- If the surfactant is fatty acid ester sulphonate, alkyl benzene sulphonate or alkyl ether sulphonate the solubilising cation M may be a range of cations as discussed above for alkyl sulphate.
-
- The group R³ may be any C₁ to C₄ alkyl group. Straight chain alkyl may be preferred, notably methyl or ethyl.
-
- In the general formula for alkyl ether sulphate:
R¹O(CH₂CH₂O)nSO₃M
the group R¹ is as discussed for alkyl sulphate. Preferably n has an average value of 2 to 5. - Ethoxylated fatty alcohol may be used alone or in admixture with anionic surfactants, especially the preferred surfactants above. However, if it is used alone than the fatty alcohol must be of limited chain length so that average chain lengths of the alkyl group R in the general formula:
RO(CH₂CH₂O)nH
is from 6 to 12 carbon atoms. This is preferred in any event, and especially preferred if the weight of anionic surfactant is less than half the weight of ethoxulated fatty alcohol. - Notably the group R may have chain lengths in a range from 9 to 11 carbon atoms.
- An ethoxylated fatty alcohol normally is a mixture of molecules with different numbers of ethylene oxide residues. Their average number, n, together with the alkyl chain length, determines whether the ethoxylated fatty alcohol has a hydrophobic character (low HLB value) or a hydrophilic character (high HLB value). For this invention the HLB value should be 10.5 or greater. This requires the average value of n to be at least 4, and possibly higher. The numbers of ethylene oxide residues may be a statistical distribution around the average value. However, as is known, the distribution can be affected by the manufacturing process or altered by fractionation after ethoxylation.
- Particularly preferred ethoxylated fatty alcohols have a group R which has 9 to 11 carbon atoms while n is from 5 to 8.
- The above surfactant, or a mixture of two or more of them, may possibly be accompanied by some other detergent active, usually in a lesser quantity. Preferably the amount of any other detergent surfactant will be no more than one third of the total weight of detergent surfactant present, or even no more than one quarter.
- If other surfactant is included it may be anionic or nonionic in character, or possibly amphoteric or zwitterionic. Cationic surfactant is possible if anionic is absent, but is not preferred. Soap may optionally be included, as well as non-soap surfactants.
- One significant possibility is the use of a surfactant or mixture of surfactants of the above specified anionic and/or nonionic types, together with glycoside surfactants of the above specified type.
- As mentioned, the amount of glycoside surfactant, anionic surfactant and/or ethoxylated fatty alcohol surfactant will be from 3 to 50% by weight of the composition. Desirably the total amount of surfactant lies in the same range. Preferred ranges, both for the specified surfactant and total surfactant are 3 to 30% by weight, more preferably, in the range from 5 or 10% to 25% by weight.
- The cleaning compositions of this invention can contain all manner of detergent builders commonly taught for use in automatic dishwashing or other cleaning compositions. The builders can include any of the conventional inorganic and organic water-soluble builder salts, also insoluble inorganic builders or mixtures thereof, and may comprise from 5 to 90% by weight of the detergent composition.
- Typical of the well-known inorganic builders are the sodium and potassium salts of the following: pyrophosphate, tripolyphosphate, orthophosphate, carbonate, bicarbonate, sesquicarbonate and borate. Other non-phosphorous salts including (insoluble) crystalline and amorphous aluminosilicates (e.g. zeolites) may be used as well.
- Preferred builders can be selected from the group consisting of sodium tripolyphosphate, sodium carbonate, sodium bicarbonate and mixtures thereof. When present in these compositions, sodium tripolyphosphate concentrations will usually range from 2% to 40%, preferably from 5% to 30%. Sodium carbonate and bicarbonate, when present, can range from 10% to 50%, preferably from 20% to 40% by weight of the cleaning compositions. Potassium pyrophosphate is a preferred builder in gel formulations, where it may be used at from 3 to 30%, preferably from 10 to 20%.
- Organic detergent builders can also be used in the present invention. They are generally sodium and potassium salts of the following: citrate, malonate or succinate substituted with a C₈ to C₂₄ alkyl group, nitrilotriacetates, phytates, polyphosponates, oxydisuccinates, oxydiacetates, carboxymethyloxy succinates, tetracarboxylates, starch, oxidized heteropolymeric polysaccharides, and polymeric polycarboxylates such as polyacrylates of molecular weight of from about 5,000 to about 200,000. Polyacetal carboxylates such as those described in U.S. Patent Nos. 4,144,226 and 4,146,495 may also be used.
- Non-phosphate builders are particularly preferred for environmental reasons.
- Sodium citrate is an especially preferred builder. When present, it is preferably used in an amount from about 1% to about 75% of the total weight of the detergent composition, especially 10 to 50% by weight.
- The foregoing detergent builders are meant to illustrate but not limit the types of builder that can be employed in the present invention.
- The compositions of this invention contain sodium or potassium silicate at a level of from about 1 to about 40% by weight of the cleaning composition, more preferably from 5 to 25%, even more preferably from 7 to 20%. This material is employed as a cleaning ingredient, source of alkalinity, metal corrosion inhibitor and protector of glaze on china tableware. The sodium or potassium silicate usuable herein will have a ratio of SiO₂:Na₂O or SiO₂:K₂O of from about 2.0 to about 3.2. Some of the silicate may be in solid form. Useful is sodium silicate having a ratio of SiO₂ : Na₂O of higher than 2.0, preferably at least 2.4.
- If a composition contains less than 10% silicate, we prefer to include a zinc salt, such as zinc sulphate, especially if the composition dissolves to give an alkaline pH, e.g. pH over 8.5. Such a zinc salt serves to protect glassware from attack by an alkaline wash liquor, and may suitably be used in amounts from 0.1 to 3% by weight.
- Compositions according to the present invention are free from chlorine bleach compounds but may contain a peroxygen bleach component. If present the amount will preferably lie in a range from 1 to 30% by weight.
- A peroxygen bleach which may be employed is for example sodium perborate. This is preferably accompanied by a bleach activator which allows the liberation of active oxygen species at a lower temperature. A preferred bleach activator is tetraacetyl ethylene diamine (TAED) but other activators for perborate are known and can be used. The amounts of peroxygen bleach and bleach activator in an individual composition preferably do not exceed 20% and 15% by weight respectively.
- Another peroxygen bleach is sodium percarbonate. Yet another is sodium monopersulphate. Further peroxygen bleaches which may be used are alkyl, alkenyl and aryl peroxy organic acids and their metal salts. Typical peroxy acids include
- (i) peroxybenzoic acid and ring-substituted peroxybenzoic acids, e.g. peroxy-α-naphthoic acid
- (ii) aliphatic and substituted aliphatic monoperoxy acids, e.g. peroxylauric acid and peroxystearic acid
- (iii)1,12-diperoxydodecanedioic acid (DPDA)
- (iv) 1,9-diperoxyazelaic acid
- (v) diperoxybrassylic acid; diperoxysebacic acid and diperoxyisophthalic acid
- (vi) 2-decyldiperoxybutane-1,4-dioic acid.
- (vii)phthaloylamidoperoxy caproic acid (PAP).
- Thickeners are often desirable for liquid cleaning compositions. Thixotropic thickeners such as smectite clays including montmorillonite (bentonite), hectorite, saponite, and the like may be used to impart viscosity to liquid cleaning compositions. Silica, silica gel, and aluminosilicate may also be used as thickeners. Use of clay thickeners for automatic dishwashing compositions is disclosed, for example, in U.S. Patents Nos. 4,431,559; 4,511,487; 4,740,327; 4,752,409. Use of salts of polymeric carboxylic acids is disclosed, for example, in UK Patent Application GB 2,164,350A. Commercially available bentonite clays include Korthix H and VWH ex Combustion Engineering, Inc.; Polargel T ex American Colloid Co.; and Gelwhite clays (particularly Gelwhite GP and H) ex English China Clay Co. Polargel T is preferred as imparting a more intense white appearance to the composition than other clays.
- Various polymers may be included. These may in particular assist in detergency building or be polymeric thickeners, which may be used alone or jointly with other types of thickeners. Notable are polymers containing carboxylic or sulphonic acid groups in acid form or wholly or partially neutralised to sodium or potassium salts, the sodium salts being preferred. Preferred polymers are homopolymers and copolymers of acrylic acid and/or maleic acid or maleic anhydride. Of especial interest are polyacrylates, polyalphahydroxy acrylates, acrylic/maleic acid copolymers, and acrylic phosphinates. Other polymers which are especially preferred for use in liquid detergent compositions are deflocculating polymers such as for example disclosed in EP 346995.
- The molecular weights of homopolymers and copolymers are generally 1000 to 150,000, preferably 1500 to 100,000. Polyacylate thickeners may well have molecular weights from 300,000 up to 6 million. The amount of any polymer may lie in the range from 0.5 to 5% or even 10% by weight of the composition.
- For liquid formulations with a "gel" appearance and rheology, particularly if a clear gel is desired, a chlorine-stable polymeric thickener is particularly useful. U.S. Patent No. 4,260,528 discloses natural gums and resins for use in clear autodish detergents, which are not chlorine-stable. Crosslinked acrylic acid polymers manufactured by B.F. Goodrich and sold under the trade name "Carbopol" have been found to be effective for production of clear gels, and Carbopol 940 having a molecular weight of about 4,000,000 is particularly preferred for maintaining high viscosity with excellent chlorine stability over extended periods. Further suitable chlorine-stable polymeric thickeners are described in U.S. Patent 4,867,896.
- The amount of thickener employed in the composition, including any polymeric thickener, may range from 0 to 5%, preferably 1 to 3%.
- Stabilizers and/or co-structurants such as long-chain calcium and sodium soaps and C₁₂ to C₁₈ alkyl sulphates are detailed in U.S. Patents Nos. 3,956,158 and 4,271,030 and the use of other metal salts of long-chain soaps is detailed in U.S. Patent No. 4,752,409. The amount of stabilizer which may be used in the liquid cleaning compositions is from about 0.01 to about 5% by weight of the composition, preferably 0.1-2%. Such stabilizers are optional in gel formulations. Co-structurants which are found especially suitable for gels include trivalent metal ions at 0.01-4% of the composition and/or water-soluble structuring chelants at 1-60%. These co-structurants are more fully described in EP-A-323209.
- A significant consideration, in machine dishwashing compositions, is the need to suppress foaming. The agitation conditions in a dishwashing machine are more rigorous than those in a fabric washing machine and lead to foam formation. Some food residues, such as egg and cream, also lead to the generation of foam.
- Foam, if it forms, can cause air to be drawn into the circulating pump. This can interfere with proper water circulation and the supply of water to the heating element. Excessive foam generation can eventually lead to air locking of the pump, which could wreck the machine by stopping the water supply to the heating element.
- A composition of the invention may further include defoamer. Even if the cleaning composition has only low foaming surfactant, presence of a defoamer can assist to minimize foam which food soils can generate.
- Current machine dishwashing compositions contain a nonionic surfactant which includes ethylene oxide and propylene oxide residues. These surfactants have cloud points below the operating temperature and they therefore form hydrophobic droplets which exert an antifoam action.
- Materials which may be utilised as defoamer in a composition of this invention include mono- and di- C₈ to C₂₂ alkyl phosphates and mineral oil/or wax. These may be used as a combination containing particles of the insoluble alkyl phosphate together with petroleum jelly. Possible alternatives to the alkyl phosphate include ethylene distearamide, calcium soap and finely divided silica, especially hydrophobed silica. Mineral oils and waxes which may be used include petroleum fractions, Fischer-Tropsch waxes, ozokerite, ceresin montan wax, beeswax, candelilla wax, camauba wax and mixtures thereof.
- A further category of materials which may be used are ketones of formula R⁷COR⁸ wherein R⁷ and R⁸ are both alkyl or alkenyl groups containing 8 to 24 carbon atoms and such that the ketone contains 25 to 49 carbon atoms. Ketones of this type and their use as antifoam agents in (other) machine dishwashing compositions, are disclosed in EP-A-324339.
- Another category of material which can be used as a defoamer is soap or fatty acid which becomes neutralised to soap in use of the composition. Such soap or fatty acid should have an acyl group of 12 to 22 carbon atoms, especially 14 to 18 carbon atoms. If soap or fatty acid is used as defoamer some calcium salt may deliberately be included in the composition, thereby ensuring the presence of calcium ions to form a calcium soap which exerts the antifoaming action.
- If present, the composition may include 0.1 to 30% by weight of defoamer, preferably other than nonionic surfactant. Non-soap defoamer may be used at levels towards the lower end of this range, e.g. 0.1 to 10%, preferably 0.5 to 2% or 5%. Soap or fatty acid can be used as defoamer, and if present may be used in amounts from 0.1 to 30% by weight, especially 0.5 to 10%.
- If the surfactant is alkyl sulphate alone, it may be desirable to use a said ketone (in branched chain alcohol), soap or fatty acid as the defoamer and to avoid alkyl phosphates or mineral oil.
- Minor amounts of various other components may be present in the cleaning composition. These include anti-scalants, corrosion-inhibitors anti-redeposition agents, anti-tarnish agents, other enzymes (especially amylase and/or lipase at 0.05-2% by weight, preferably 0.5-1.5%) and other functional additives and perfume.
- As revealed above the compositions of this invention may take the form of a liquid or a gel.
- The composition is preferably formulated to give a pH in the range 7 to 11, even better 8 to 11 if added to deionized water at a concentration of 2.0 grams/litre. A particularly preferred pH is 9.0 to 9.5.
- The following examples will more fully illustrate the embodiments of the invention. All parts, percentages and proportions referred to herein and in the appended claims are by weight unless otherwise indicated.
- This example demonstrates action of removing soil from glass slides.
- New glass slides, 5cm x 5cm were machine washed, repeatedly rinsed with demineralised water and soiled with about 55mg baked on egg-yolk per slide.
- All washing solutions contained, in 1 litre of 16° French hardness water:
Sodium citrate dihydrate 0.445g Acrylic-maleic copolymer (Sokolan CP5) 0.111g Sodium disilicate monohydrate* 0.445g Potassium coconut soap 0.100g Sodium sulphate dihydrate 0.950g Calcium sulphate 0.03g * SiO₂:Na₂O > 2.0 - These materials were added to the water and stirred at 45°C for 15 minutes. Some solutions then received:-
30mg Savinase 6.0CM (sold as having 1500 GU/mg, analysed as 1544 GU/mg) and/or
0.5g alkyl polyglycoside of formula RO(G)x where R = C₁₂-C₁₄ alkyl, G denotes a glucose residue and x has an average value of 1.3. - The solutions were maintained at 45°C.
- After one minute slides were placed in the solution. Slides were removed after varying periods of time, dried and weighed to determine stain removal. The quantity removed was expressed as a percentage of the original stain.
- Results were as follows:-
% Egg-yolk removal Wash Time (minutes) No enzyme No APG Enzyme only APG only APG+Enzyme 1 1.7 1.5 0.8 1.2 5 1.5 2.0 0.9 1.7 10 1.9 3.1 0.4 4.4 20 2.0 4.4 -0.2 15.2 30 2.4 5.8 0.2 22.4 40 2.6 8.1 -0.6 31.3 50 2.5 12.8 -1.1 48.1 60 2.6 20.1 -1.4 70.6 - These results show synergistic enhancement of stain removal through the use of APG jointly with the proteolytic enzyme, with washing periods of 10 minutes or longer.
- The procedure was similar to Example 1. All solutions contained, per litre of water:-
Sodium citrate dihydrate 0.60g Acrylic maleic copolymer 0.15g Sodium disilicate monohydrate 0.60g - Some solutions received 0.5g of alkyl polyglycoside and/or 30mg of Savinase (both as used in Example 1). Further solutions received 0.5g of C₁₃ to C₁₅ alcohol 3EO (Synperonic A3) and/or 30mg Savinase. Slides were maintained in the solution at 45°C for 60 minutes.
- Results were:-
Solution contained wt% egg-yolk removal Savinase only 24.3 ± 4.5 APG only 0.7 ± 0.6 Synperonic A3 only 3.0 ± 1.1 APG + Savinase 53.0 ± 8.0 Synp.A3 + Savinase 26.3 ± 14.5 - Clearly synergy with APG exceeded synergy (if any) with Synperonic A3.
- The procedure was the same as in Example 2. All solutions contained in 1 litre water:-
Sodium tripolyphosphate 1.16g Sodium carbonate 0.27g Sodium disilicate hydrate 0.32g - Some solutions received 0.5g of alkyl polyglycoside and/or 30mg of Savinase (both as used in Example 1). Further solutions received 0.5g of C₁₃ to C₁₅ alcohol 3EO (Synperonic A3) and/or 30mg Savinase. Slides were maintained in the solution at 45°C for 60 minutes.
- Results were:-
Solution contained Egg-yolk removal (wt%) Savinase 15.8 ± 6.3 APG 3.6 ± 1.6 Synperonic A3 5.3 ± 2.0 APG + Savinase 42.5 ± 15.1 A3 + Savinase 14.4 ± 1.6 - Again, APG plus Savinase gave the best soil removal.
- The procedure was similar to Example 1. Several types of alkyl polyglycoside were employed. All solutions contained, per litre of water:-
Sodium citrate dihydrate 0.60g Acrylic maleic copolymer 0.15g Sodium disilicate monohydrate 0.60g Alcalase 2.0T 30mg (giving activity 46 GU/ml of solution). - All solutions received 0.5g of alkyl polyglycoside of general formula RO(G)x where G denotes a glucose residue and R is an alkyl chain. The alkyl polyglycoside displayed various alkyl chain lengths R and various values of x, the degree of polymerisation.
- Slides were maintained in the solutions at 45°C for 40 minutes. The alkyl polyglycoside characteristics and the results obtained were:-
No of carbon atoms in alkyl chain R Degree of polymerisation wt% egg-yolk removal 9-11 1.4 86.6 ± 4.6 9-11 1.8 79.7 ± 9.2 12-13 1.8 54.1 ± 4.6 14 1.4 43.3 ± 5.4 12-14 * 1.3 * 58.0 ± 5.2 10-12 1.3 86.0 ± 4.5 * Same as used in Examples 1 to 3. -
- Some solutions also contained:-
30mg Alcalase 2.OT (giving an activity of 46 GU/ml) and/or 0.5g ethyl 6-O-decanoyl glucoside
The solutions were used to wash glass slides stained with egg-yolk as in Example 1, or stainless steel slides stained with egg-yolk in the same way. - Slides were maintained in the solutions at 45°C, removed after varying periods of time, dried and weighed to assess stain removal, as in Example 1.
- Results were as follows:-
% Egg yolk removal from glass Wash time (minutes) enzyme only Glucoside only Enzyme + glucoside 10 4 ± 1 2 ± 1 4 ± 1 20 9 ± 0 0 ± 1 17 ± 8 30 15 ± 1 1 ± 1 34 ± 11 40 27 ± 3 1 ± 1 53 ± 17 % Egg yolk removal from stainless steel Wash time (minutes) enzyme only Glucoside only Enzyme + glucoside 10 4 ± 0 2 ± 0 4 ± 0 20 8 ± 1 2 ± 0 9 ± 8 30 16 ± 1 2 ± 1 34 ± 7 40 25 ± 4 2 ± 0 54 ± 11 - The use of enzyme and glucoside together is thus seen to give a synergistic enhancement of stain removal.
- A machine dishwashing formulation was a mixture containing:
Amount by weight Percent by weight Na-citrate dihydrate 2.67g 18.5% Acrylic-maleic copolymer (Sokolan CP5) 0.67g 4.6% Na-disilicate monohydrate 2.67g 18.5% Oleic acid 3.44g 23.8% Ca-stearate 0.30g 2.1% Petroleum jelly 1.20g 8.3% APG 3.00g 20.7% Savinase 6.0CM (1544 GU/mg) 0.30g 2.1% Termamyl 6OT (4.8MU/mg) 0.20g 1.4% - The alkyl polyglycoside was of the formula RO(G)x where G denotes glucose, R is a C₁₂-C₁₄ alkyl chain and x averages 1.8. This formulation was used to wash various stained glass slides using a Bosch S510 automatic dishwasher on its standard program and without salt added to the machine. The main wash temperature was 55°C, the final rinse temperature was 65°C. The water used tap water of 16° French Hardness.
- The glass slides were stained with potato, a custard pudding or egg yolk. The potato and custard pudding stains were aged at 30°C and 60% relative humidity for 16-24 hours. The egg yolk stain was baked-on at 120°C for two hours. Removal of the stain was determined as loss in weight.
- The extent of stain removal was:
Potato 99.7 Custard pudding 92.1 Egg yolk 54.0 - This example demonstrates synergistic action in removing soil from glass slides.
- New glass slides, 5cm x 5cm were machine washed, repeatedly rinsed with demineralised water and soiled with about 55mg baked on egg-yolk per slide.
- All washing solutions contained, in 1 litre of 16° French hardness water:-
Sodium citrate dihydrate 0.6 g Acrylic-maleic copolymer (Sokolan CP5) 0.15 g Sodium disilicate monohydrate 0.6 g - These materials were added to the water and stirred at 45°C for 15 minutes. The solutions then received:-
20mg Alcalase 2.0T (providing 30GU/ml in solution) and/or 0.25g sodium dodecyl sulphate (SDS). - The solutions were maintained at 45°C.
- After one minute slides were placed in the solution. Slides were removed after varying periods of time, dried and weighed to determine stain removal. The quantity removed was expressed as a percentage of the original stain. In this Example only, when a slide was removed from the washing solution it was replaced with a similarly soiled slide which had received identical treatment in a second, identical wash solution.
- Results were as follows:-
wt% Egg-yolk removal Wash Time (minutes) Enzyme only % SDS only % SDS+Enzyme % 10 1.3 -1.1 0.0 20 2.3 -1.0 6.5 30 2.1 -1.2 13.5 40 3.0 -3.3 23.8 - These results show synergistic enhancement of stain removal through the use of SDS jointly with the proteolytic enzyme, with washing periods of 20 minutes or longer.
- Example 7 was repeated, using a larger amount of enzyme and a larger amount of a different anionic surfactant. When slides were removed from the wash solution they were replaced with a clean slide. In consequence the washing solutions received:
30mg Alcalase 2.OT (providing 45 GU/ml in solution) and/or 0.5g of Texin ES68 which is a fatty acid ester sulphonate of formula
in which R² is derived from tallow and so is predominantly C₁₆ and C₁₈ alkyl and R³ is methyl. - The results were:
wt% Egg-yolk removal Wash Time (minutes) Enzyme only FAES only FAES+Enzyme 10 6 4 16 20 10 13 44 30 19 16 68 40 26 21 81 - The synergistic improvement when using FAES and enzyme together is apparent.
- When this experiment was repeated using stainless steel slides the results were almost identical.
- The procedure of Example 7 was repeated using SDS, and mixtures of SDS with equal weights of other surfactants. For each test the same total amount of surfactant (250mg/l) was used, and 20mg/l of Alcalase 2.OT was present.
- The results, expressed as wt% egg-yolk removal after 30 minutes were:
Surfactant wt% egg-yolk removal SDS 66 ± 13 SDS + Dobanol 91-6 69 ± 11 SDS + Synperonic A7 53 ± 9 SDS + APG 300 59 ± 15 - Dobanol 91-6 is an ethoxylated fatty alcohol where the fatty alcohol has chain length 9 to 11 carbon atoms and the average degree of ethoxylation is 6. It has an HLB value of 12.5
Synperonic A7 is an ethoxylated fatty alcohol where the fatty alcohol has chain length 13 to 15 carbon atoms and the average number of ethylene oxide residues is 7. It has an HLB value of 12.2. - APG 300 is an alkyl polyglycoside of formula
R⁵O(G)x
where R⁵ is alkyl of 9 to 11 carbon atoms and x has average value of 1.4. - Example 7 was repeated using each of three nonionic surfactants in place of SDS. The results, expressed as wt% egg-yolk removal after 30 minutes, were:
wt% egg-yolk removal Synperonic A3 + enzyme 15 ± 3 Synperonic A7 + enzyme 33 ± 6 Dobanol 91-6 + enzyme 53 ± 10 - Synperonic A3 is C₁₃-C₁₅ fatty alcohol ethoxylated with an average of 3 ethylene oxide residues. It has HLB value 7.9.
Synperonic A7 is, as mentioned in the last example, C₁₃-C₁₅ alcohol with an average of 7 ethylene oxide residues. HLB value is 12.2.
Dobanol 91-6 is a C₉-C₁₁ alcohol with an average of 6 ethylene oxide residues. HLB value is 12.5. - It can be seen that this nonionic, used alone, was much superior to Synperonic A7, used alone.
- Example 7 was repeated twice using a larger amount of enzyme (as in Example 8) and two ethoxylated nonionic surfactants. In consequence the washing solutions received:
30mg Alcalase 2.OT (providing 45 GU/ml in solution) and/or 0.4g of either Synperonic A7 or Dobanol 91-6. - Results, expressed as wt% egg-yolk removal after 30 minutes, were:
wt% egg-yolk removal Synperonic A7 Dobanol 91-6 enzyme only 18.9 ± 6.0 17.1 ± 4.1 surfactant only 8.4 ± 2.7 7.4 ± 5.2 surfactant + enzyme 46.5 ± 7.3 70.5 ± 7.5 - This confirms the greater synergy with Dobanol 91-6.
- Example 7 was repeated using a larger amount of enzyme (as in Examples 8 and 11) and two anionic surfactants. In consequence the washing solutions received:
30mg Alcalase 2.OT (providing 45 GU/ml in solution) and/or 250mg of either Empicol LX or 250 mg/litre of either sodium lauryl ether sulphate (LES) with average 3 ethylene oxide residues, or middle cut coconut alkyl sulphate (Empicol LX). - Results, expressed as wt% egg-yolk removal after 30 minutes, were:
wt% egg-yolk removal enzyme only 3.7 ± 0.4 Empicol LX only -2.0 ± 0.2 Empicol LX + enzyme 35.2 ± 2.5 LES only 0.1 ± 0.7 LES + enzyme 31.2 ± 2.6 - Several machine dishwashing formulations were prepared. Each was a mixture containing:
Amount by weight Na-citrate dihydrate 3.0g Acrylic-maleic copolymer (Sokolan CP5) 0.75g Na-disilicate monohydrate 3.0g Sodium perborate monohydrate 1.16g TAED granules (80% active) 0.72g Oleic acid 0.20g Alcalase 2.OT (23GU/ml) 0.075g Termamyl 6.0 CM 0.20g - Termamyl is an amylase.
- The formulations contained sodium dodecyl sulphate in amounts which were 0.75g, 1.5g and 3.0g.
- Each formulation was used to wash various stained glass slides using a Bosch S510 automatic dishwasher on its standard program and without salt added to the machine. The main wash temperature was 55°C, the final rinse temperature was 65°C. The water used was tap water of 16° French Hardness.
- The materials from which the various slides were made, the stains on them and the extent of removal are set out in the following table. In most instances the extent of removal was determined by weight loss. In a few instances the extent of removal was determined by visual inspection of the area which remains covered by the stain.
- In addition the pressure delivered by the pump of the machine was monitored. This is a measure of the effectiveness of the defoamer, in that foaming leads to loss of pump pressure.
- The results are set out in the following table. All of the wash solutions formed in the machine had a pH of 9.5.
Stain Slide wt% egg-yolk removal 0.75g SDS 1.50g SDS 3.00g SDS egg-yolk stainless steel 92 ± 9 100 ± 1 99 ± 2 egg-yolk porcelain 92 ± 10 95 ± 0 100 ± 0 custard pudding stainless steel 60 ± 26 33 ± 10 38 ± 16 custard pudding porcelain 82 ± 13 73 ± 12 78 ± 14 potato stainless steel * 97 ± 4 100 ± 1 100 ± 0 potato porcelain * 85 ± 11 86 ± 10 93 ± 10 spinach porcelain * 100 ± 0 100 ± 0 100 ± 0 Average pump pressure 90% 79% 70% * denotes visual score - A composition containing Dehypon KE 2429 foam inhibitor (believed to be a mixture of branched chain alcohol and ketone according to EP-A-324,339) was used to wash a stainless steel plate 20cm x 6cm with almost 0.8g baked-on egg-yolk, in a Bosch 5510 machine. The wash conditions were the same as for Example 12. The composition contained:
Sodium citrate dihydrate 5.0g Sodium dodecyl sulphate 1.25g Alcalase 2.OT 0.20g Dehypon KE2429 0.50g - Removal of soil, determined as loss in weight, was 83%. Average pump pressure was 73% of pressure achieved with water only and no load in the machine.
- Example 14 was repeated while also including 0.50g oleic acid in the composition.
- Removal of soil, determined as loss in weight, was 91%. Average pump pressure was 100% of the pressure achieved with water only and no load in the machine.
- Several machine dishwashing formulations were prepared. Each was a mixture containing:
Amount by weight Na-citrate dihydrate 3.0g Acrylic-maleic copolymer (Sokolan CP5) 0.75g Na-disilicate monohydrate 3.0g Sodium dodecyl sulphate 2.5g Oleic acid 0.17g Ca-stearate/wax mixture 0.08g Termamyl 6.OCM 0.20g - Various proteases were includes in these formulations which were then used to wash porcelain and stainless steel slides stained with baked-on egg-yolk. The results, which are determined by loss in weight, are set out in the following table.
Protease Activity in solution wt% egg-yolk removal steel porcelain Savinase 6.0CM 45GU/ml 68± 8 66± 9 Esperase 2.0T 40GU/ml 70±11 74±15 Alcalase CM1.5 45GU/ml 90± 6 91± 6 - All of the active/protease combinations are compatible with amylases.
Claims (14)
- A chlorine bleach-free aqueous liquid machine dishwashing detergent composition comprising:(a) from 0.0002 to 0.05 Anson units per gram of the composition of a proteolytic enzyme;(b) from 5 to 90% by weight of a detergency builder.(c) from 1 to 40% by weight of sodium or potassium silicate having SiO₂:Na₂O or SiO₂:K₂O ratio of from about 2.0 to about 3.2.(d) from 3 to 50% by weight of an organic surfactant selected from the group of:(i) glycoside surfactants;(ii) anionic surfactants with a hydrophilic head group which is, or which contains a sulphate or sulphonate group and a hydrophobic portion which is or which contains an alkyl or alkenyl group of 8 to 22 carbon atoms;(iii) ethoxylated fatty alcohols of formula
RO(CH₂CH₂O)nM
where R is an alkyl group of 6 to 16 carbon atoms and n has an average value which is at least four and is sufficiently high that the HLB value of the ethoxylated fatty alcohol is 10.5 or greater, with the proviso that if ethoxylated fatty alcohol (iii) is used without anionic surfactant (ii) the majority of its alkyl groups R contain 6 to 12 carbon atoms; and(IV) mixtures thereof.(e) water, said composition having pH of 7-11, if added to deionised water at a concentration of 2 g/l. - A composition according to claim 2, wherein R is alkyl or alkenyl of 7 to 16 carbon atoms and x has a value in the range from 1 to 1.8.
- A composition according to claim 1 wherein the anionic surfactant is selected from:
primary alkyl sulphate of formula
R¹OSO₃M
where R¹ is a primary alkyl group of 8 to 18 carbon atoms and M is a solubilising cation,
fatty acid ester sulphonate of formula
alkyl benzene sulphonate of formula
alkyl ether sulphate of formula
R¹O(CH₂CH₂O)nSO₃M
where R¹ is a primary alkyl group of 8 to 18 carbon atoms, n has an average value in the range from 1 to 6 and M is a solubilising cation. - A composition according to any one of the preceding claims 1-4, which comprises from 5-25% by weight of said sodium or potassium silicate.
- A composition according to claims 1-5, which comprises sodium silicate having SiO₂:Na₂O ratio of at least 2.4.
- A composition according to any one of the preceding claims 1-6, wherein the total quantity of surfactant is from 5 to 25% by weight.
- A composition according to any of the preceding claims 1-7, further including a peroxygen bleach.
- A composition according to any of the preceding claims 1-8, further including a defoamer other than a nonionic surfactant.
- A composition according to any of the preceding claims 1-9, further including amylase and/or lipase.
- A composition according to any of the preceding claims 1-10, having a pH of from 9.0 to 9.5.
- A composition according to any of the preceding claims 1-11, wherein said detergency builder is a non-phosphate builder.
- A method of washing crockery and/or glassware comprising exposing the crockery and/or glassware to a mixture of water and a detergent composition according to any one of the preceding claims.
- Use of 3 to 50% by weight of the composition of an organic surfactant as defined in claim 1 as booster for protein soil removal in a machine dishwashing composition containing a proteolytic enzyme and a detergency builder.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB929202237A GB9202237D0 (en) | 1992-02-03 | 1992-02-03 | Detergent composition |
GB9202237 | 1992-02-03 | ||
EP92302290 | 1992-03-17 | ||
EP92302290 | 1992-03-17 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0554943A2 true EP0554943A2 (en) | 1993-08-11 |
EP0554943A3 EP0554943A3 (en) | 1993-12-08 |
EP0554943B1 EP0554943B1 (en) | 1998-06-17 |
Family
ID=26131972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19930200217 Expired - Lifetime EP0554943B1 (en) | 1992-02-03 | 1993-01-28 | Detergent composition |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0554943B1 (en) |
JP (1) | JPH0830199B2 (en) |
CA (1) | CA2088230A1 (en) |
DE (1) | DE69319158T2 (en) |
ES (1) | ES2118181T3 (en) |
NO (1) | NO930342L (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994014941A1 (en) * | 1992-12-18 | 1994-07-07 | Berol Nobel Ab | Dishwasher detergent and use thereof |
EP0634480A1 (en) * | 1993-07-14 | 1995-01-18 | The Procter & Gamble Company | Detergent compositions |
WO1996014374A1 (en) * | 1994-11-02 | 1996-05-17 | Henkel Kommanditgesellschaft Auf Aktien | Solubilizer-containing surfactants |
EP0756000A1 (en) * | 1995-07-24 | 1997-01-29 | The Procter & Gamble Company | Detergent compositions comprising specific amylase and linear alkyl benzene sulfonate surfactant |
WO1997013832A1 (en) * | 1995-10-06 | 1997-04-17 | Unilever N.V. | An anti-foam system based on hydrocarbon polymers and hydrophobic particulate solids |
WO1997013833A1 (en) * | 1995-10-06 | 1997-04-17 | Unilever N.V. | Anti-foam system for automatic dishwashing compositions |
WO1998004239A2 (en) * | 1996-07-25 | 1998-02-05 | The Procter & Gamble Company | Shampoo compositions |
EP0872541A2 (en) * | 1997-04-16 | 1998-10-21 | Henkel Kommanditgesellschaft auf Aktien | Liquid detergent for delicate textiles in the form of a microemulsion |
WO1999023036A1 (en) * | 1997-11-03 | 1999-05-14 | Cognis Deutschland Gmbh | Method for removing hydrophobic impurities using cleavable nonionic surfactants |
WO2004111170A1 (en) * | 2003-06-13 | 2004-12-23 | Lamberti Spa | Aqueous liquid detergent compositions comprising anionic esters of alkylpolyglycosides and enzymes |
WO2011049945A2 (en) | 2009-10-23 | 2011-04-28 | Danisco Us Inc. | Methods for reducing blue saccharide |
EP2428572A2 (en) | 2007-03-09 | 2012-03-14 | Danisco US, Inc., Genencor Division | Alkaliphilic Bacillus species alpha-amylase variants, compositions comprising alpha-amylase variants, and methods of use |
WO2012123452A1 (en) * | 2011-03-17 | 2012-09-20 | Henkel Ag & Co. Kgaa | Dishwashing detergents |
WO2012123450A1 (en) * | 2011-03-17 | 2012-09-20 | Henkel Ag & Co. Kgaa | Dishwashing detergents |
US8323945B2 (en) | 2008-06-06 | 2012-12-04 | Danisco Us Inc. | Variant alpha-amylases from Bacillus subtilis and methods of uses, thereof |
US8507243B2 (en) | 2008-09-25 | 2013-08-13 | Danisco Us Inc. | Alpha-amylase blends and methods for using said blends |
US9040279B2 (en) | 2008-06-06 | 2015-05-26 | Danisco Us Inc. | Saccharification enzyme composition and method of saccharification thereof |
US9040278B2 (en) | 2008-06-06 | 2015-05-26 | Danisco Us Inc. | Production of glucose from starch using alpha-amylases from Bacillus subtilis |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2838368B2 (en) * | 1994-07-22 | 1998-12-16 | 株式会社サンコンタクトレンズ | Enzyme cleaning solution for contact lenses |
US7271138B2 (en) * | 2003-10-16 | 2007-09-18 | The Procter & Gamble Company | Compositions for protecting glassware from surface corrosion in automatic dishwashing appliances |
KR101695483B1 (en) * | 2014-03-06 | 2017-01-13 | (주)오성에버린 | Method of manufacturing natural deodorant for spray |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2355908A1 (en) * | 1976-06-24 | 1978-01-20 | Procter & Gamble | DETERGENT COMPOSITION CONTAINING ENZYMES FOR AUTOMATIC DISHWASHING |
US4101457A (en) * | 1975-11-28 | 1978-07-18 | The Procter & Gamble Company | Enzyme-containing automatic dishwashing composition |
WO1986005187A1 (en) * | 1985-03-07 | 1986-09-12 | A.E. Staley Manufacturing Company | Detergent composition containing an enzyme and a glycoside surfactant |
EP0271156A2 (en) * | 1986-12-10 | 1988-06-15 | Unilever N.V. | Enzymatic dishwashing composition |
FR2608168A1 (en) * | 1986-12-15 | 1988-06-17 | Colgate Palmolive Co | AQUEOUS COMPOSITIONS CONTAINING A STABILIZED ENZYME SYSTEM FOR DISHWASHER CLEANING, AND METHODS OF USING THE SAME |
EP0342177A2 (en) * | 1988-05-12 | 1989-11-15 | The Procter & Gamble Company | Heavy duty liquid laundry detergents containing anionic and nonionic surfactant, builder and proteolytic enzyme |
EP0429124A1 (en) * | 1989-11-21 | 1991-05-29 | The Procter & Gamble Company | Chlorine-free liquid automatic dishwashing compositions |
-
1993
- 1993-01-27 CA CA 2088230 patent/CA2088230A1/en not_active Abandoned
- 1993-01-28 EP EP19930200217 patent/EP0554943B1/en not_active Expired - Lifetime
- 1993-01-28 DE DE1993619158 patent/DE69319158T2/en not_active Expired - Fee Related
- 1993-01-28 ES ES93200217T patent/ES2118181T3/en not_active Expired - Lifetime
- 1993-02-01 NO NO93930342A patent/NO930342L/en unknown
- 1993-02-03 JP JP5016423A patent/JPH0830199B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4101457A (en) * | 1975-11-28 | 1978-07-18 | The Procter & Gamble Company | Enzyme-containing automatic dishwashing composition |
FR2355908A1 (en) * | 1976-06-24 | 1978-01-20 | Procter & Gamble | DETERGENT COMPOSITION CONTAINING ENZYMES FOR AUTOMATIC DISHWASHING |
WO1986005187A1 (en) * | 1985-03-07 | 1986-09-12 | A.E. Staley Manufacturing Company | Detergent composition containing an enzyme and a glycoside surfactant |
EP0271156A2 (en) * | 1986-12-10 | 1988-06-15 | Unilever N.V. | Enzymatic dishwashing composition |
FR2608168A1 (en) * | 1986-12-15 | 1988-06-17 | Colgate Palmolive Co | AQUEOUS COMPOSITIONS CONTAINING A STABILIZED ENZYME SYSTEM FOR DISHWASHER CLEANING, AND METHODS OF USING THE SAME |
EP0342177A2 (en) * | 1988-05-12 | 1989-11-15 | The Procter & Gamble Company | Heavy duty liquid laundry detergents containing anionic and nonionic surfactant, builder and proteolytic enzyme |
EP0429124A1 (en) * | 1989-11-21 | 1991-05-29 | The Procter & Gamble Company | Chlorine-free liquid automatic dishwashing compositions |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994014941A1 (en) * | 1992-12-18 | 1994-07-07 | Berol Nobel Ab | Dishwasher detergent and use thereof |
EP0634480A1 (en) * | 1993-07-14 | 1995-01-18 | The Procter & Gamble Company | Detergent compositions |
WO1996014374A1 (en) * | 1994-11-02 | 1996-05-17 | Henkel Kommanditgesellschaft Auf Aktien | Solubilizer-containing surfactants |
EP0756000A1 (en) * | 1995-07-24 | 1997-01-29 | The Procter & Gamble Company | Detergent compositions comprising specific amylase and linear alkyl benzene sulfonate surfactant |
EP0755999A1 (en) * | 1995-07-24 | 1997-01-29 | The Procter & Gamble Company | Detergent compositions comprising a specific amylase and a protease |
EP0756001A1 (en) * | 1995-07-24 | 1997-01-29 | The Procter & Gamble Company | Detergent compositions comprising specific amylase and a specific surfactant system |
WO1997013832A1 (en) * | 1995-10-06 | 1997-04-17 | Unilever N.V. | An anti-foam system based on hydrocarbon polymers and hydrophobic particulate solids |
WO1997013833A1 (en) * | 1995-10-06 | 1997-04-17 | Unilever N.V. | Anti-foam system for automatic dishwashing compositions |
US5695575A (en) * | 1995-10-06 | 1997-12-09 | Lever Brothers Company, Division Of Conopco, Inc. | Anti-form system based on hydrocarbon polymers and hydrophobic particulate solids |
US5705465A (en) * | 1995-10-06 | 1998-01-06 | Lever Brothers Company, Division Of Conopco, Inc. | Anti-foam system for automatic dishwashing compositions |
AU727942B2 (en) * | 1995-10-06 | 2001-01-04 | Unilever Plc | Anti-foam system for automatic dishwashing compositions |
WO1998004239A2 (en) * | 1996-07-25 | 1998-02-05 | The Procter & Gamble Company | Shampoo compositions |
WO1998004239A3 (en) * | 1996-07-25 | 1998-05-14 | Procter & Gamble | Shampoo compositions |
EP0872541A2 (en) * | 1997-04-16 | 1998-10-21 | Henkel Kommanditgesellschaft auf Aktien | Liquid detergent for delicate textiles in the form of a microemulsion |
EP0872541A3 (en) * | 1997-04-16 | 1999-07-28 | Henkel Kommanditgesellschaft auf Aktien | Liquid detergent for delicate textiles in the form of a microemulsion |
WO1999023036A1 (en) * | 1997-11-03 | 1999-05-14 | Cognis Deutschland Gmbh | Method for removing hydrophobic impurities using cleavable nonionic surfactants |
WO2004111170A1 (en) * | 2003-06-13 | 2004-12-23 | Lamberti Spa | Aqueous liquid detergent compositions comprising anionic esters of alkylpolyglycosides and enzymes |
EP2428572A2 (en) | 2007-03-09 | 2012-03-14 | Danisco US, Inc., Genencor Division | Alkaliphilic Bacillus species alpha-amylase variants, compositions comprising alpha-amylase variants, and methods of use |
US9040279B2 (en) | 2008-06-06 | 2015-05-26 | Danisco Us Inc. | Saccharification enzyme composition and method of saccharification thereof |
US9090887B2 (en) | 2008-06-06 | 2015-07-28 | Danisco Us Inc. | Variant alpha-amylases from Bacillus subtilis and methods of use, thereof |
US9040278B2 (en) | 2008-06-06 | 2015-05-26 | Danisco Us Inc. | Production of glucose from starch using alpha-amylases from Bacillus subtilis |
US8323945B2 (en) | 2008-06-06 | 2012-12-04 | Danisco Us Inc. | Variant alpha-amylases from Bacillus subtilis and methods of uses, thereof |
US8975056B2 (en) | 2008-06-06 | 2015-03-10 | Danisco Us Inc. | Variant alpha-amylases from Bacillus subtilis and methods of uses, thereof |
US8507243B2 (en) | 2008-09-25 | 2013-08-13 | Danisco Us Inc. | Alpha-amylase blends and methods for using said blends |
WO2011049945A2 (en) | 2009-10-23 | 2011-04-28 | Danisco Us Inc. | Methods for reducing blue saccharide |
WO2012123450A1 (en) * | 2011-03-17 | 2012-09-20 | Henkel Ag & Co. Kgaa | Dishwashing detergents |
WO2012123452A1 (en) * | 2011-03-17 | 2012-09-20 | Henkel Ag & Co. Kgaa | Dishwashing detergents |
Also Published As
Publication number | Publication date |
---|---|
EP0554943A3 (en) | 1993-12-08 |
JPH05271690A (en) | 1993-10-19 |
NO930342L (en) | 1993-08-04 |
NO930342D0 (en) | 1993-02-01 |
ES2118181T3 (en) | 1998-09-16 |
DE69319158T2 (en) | 1998-10-29 |
JPH0830199B2 (en) | 1996-03-27 |
DE69319158D1 (en) | 1998-07-23 |
CA2088230A1 (en) | 1993-08-04 |
EP0554943B1 (en) | 1998-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0554943B1 (en) | Detergent composition | |
DE69613006T2 (en) | DISHWASHER DISHWASHER | |
EP0377261B1 (en) | Detergent composition | |
EP0499434B1 (en) | Detergent compositions | |
US5520839A (en) | Laundry detergent composition containing synergistic combination of sophorose lipid and nonionic surfactant | |
EP0342917B2 (en) | Detergent composition | |
US5417879A (en) | Synergistic dual-surfactant detergent composition containing sophoroselipid | |
US5705465A (en) | Anti-foam system for automatic dishwashing compositions | |
US5698506A (en) | Automatic dishwashing compositions containing aluminum salts | |
JPH0192299A (en) | Aqueous thixotropic liquid composition | |
US5512206A (en) | Peroxygen bleach composition | |
US5695575A (en) | Anti-form system based on hydrocarbon polymers and hydrophobic particulate solids | |
JPH08510268A (en) | Cleaning and cleaning formulations containing lipase | |
WO1997031996A1 (en) | Machine dishwashing gel compositions | |
GB2276630A (en) | Non-soap detergent bar | |
CA2236881C (en) | A peracid based dishwashing detergent composition | |
GB2221694A (en) | Detergent composition | |
CS274539B1 (en) | Laundry agent with increased bleaching effect under low temperatures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
RHK1 | Main classification (correction) |
Ipc: C11D 3/386 |
|
17P | Request for examination filed |
Effective date: 19931030 |
|
17Q | First examination report despatched |
Effective date: 19961011 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980617 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980617 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980617 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69319158 Country of ref document: DE Date of ref document: 19980723 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2118181 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19980917 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20011210 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20011211 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20011219 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20020121 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030801 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050128 |