EP0549439B1 - Verfahren und Vorrichtung für die Optimierung des Transports einer Mehrphasenflüssigkeit durch Pumpen - Google Patents

Verfahren und Vorrichtung für die Optimierung des Transports einer Mehrphasenflüssigkeit durch Pumpen Download PDF

Info

Publication number
EP0549439B1
EP0549439B1 EP92403475A EP92403475A EP0549439B1 EP 0549439 B1 EP0549439 B1 EP 0549439B1 EP 92403475 A EP92403475 A EP 92403475A EP 92403475 A EP92403475 A EP 92403475A EP 0549439 B1 EP0549439 B1 EP 0549439B1
Authority
EP
European Patent Office
Prior art keywords
pump
value
effluents
glra
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92403475A
Other languages
English (en)
French (fr)
Other versions
EP0549439A1 (de
Inventor
Emile Levallois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9116230A external-priority patent/FR2685737A1/fr
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0549439A1 publication Critical patent/EP0549439A1/de
Application granted granted Critical
Publication of EP0549439B1 publication Critical patent/EP0549439B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine

Definitions

  • the present invention relates to a method and a device for optimizing the transfer by pumping of effluents consisting of at least one gaseous phase and at least one liquid phase, in a transfer pipe between a source of effluents and a place of destination in adapting the flow rate of the pump used to the fluctuating conditions upstream and downstream of it.
  • fluids or effluents can come from various sources, in particular from wells drilled such as oil wells.
  • the essential function of the pump is to apply to the fluids or effluents admitted at its inlet with a certain intake pressure or suction pressure, a compression or increase in pressure sufficient to compensate for the pressure losses that they may suffer downstream. during their transfer.
  • upstream and downstream refer to the pump by considering the direction of flow of the effluents, and the term flow generally designates the volumetric flow.
  • the method according to the invention aims to optimize the transfer of effluents in a transfer pipe by means of a multiphase pump capable of pumping both liquid and gaseous phases by adapting its flow to fluctuating conditions upstream, such as the variation in the flow rate of the effluent source and the variation in the value of the volumetric ratio of the gas phase to the liquid phase, hereinafter abbreviated as GLR (Gaz Liquid Ratio) which is representative of the variation in the composition of the fluid during its transfer, and downstream such as the pressure drops appearing in the pipe.
  • GLR Gaz Liquid Ratio
  • the method can be applied to the transport of a multiphase fluid from a well to a place of destination such as a treatment terminal or an underwater or land treatment platform.
  • the transport of a multiphase fluid is dependent on different parameters such as the variation of the source flow of effluents, or / and the variation in flow rate of the multiphase pump linked to the pressure losses downstream of the pump and to the variation in the volumetric ratio at the pump suction and at the suction pressure (hereinafter designated respectively by GLRa and Pa).
  • GLRa and Pa the variation in flow rate of the multiphase pump linked to the pressure losses downstream of the pump and to the variation in the volumetric ratio at the pump suction and at the suction pressure
  • the devices and methods currently employed for transporting multiphase type fluids by pipeline combine, in general, a pump adapted to discharge a multiphase fluid consisting of at least one liquid phase and one gaseous phase whose volumetric ratio varies within relatively narrow limits. . It is therefore necessary to use in combination a device which makes it possible to homogenize the fluid and thus to obtain a fluid whose volumetric ratio to suction GLRa has a value compatible with the characteristics of the latter, which requires bulky equipment and expensive investments.
  • the pumping devices known from the prior art are not designed to take into account the flow fluctuations of the wells as well as the pressure losses suffered during transfers. Also, the well flow is closely dependent on the flow rate of pumps used. The production capacities of wells can be significantly reduced.
  • US Pat. No. 3,568,771 describes a method for regulating the speed of a pump as a function of a measured parameter.
  • This parameter is, for example, the density of the oil, the pressure taken between two points, or the quantity of oil after separation.
  • the method described in this document does not allow the speed to be calculated by taking into account the variation of several parameters.
  • the patent FR-A-2685737 describes a method and a device which make it possible to obtain at the output of the pump a flow rate which varies like the flow rate of the well in a wide range of variations, by regulating the speed of rotation.
  • the rotation speed is determined using parameters that fluctuate upstream and downstream. These parameters may however be incompatible with the operating range of the pump; the transport of effluents to the terminal sometimes requires a pump outlet pressure which is impossible to achieve if it is run only at the speed which can be calculated from the actual value of the GLR.
  • the operating range of the pump is defined by the range of parameter variations for which the pump operates correctly.
  • the method and the device according to the invention make it possible to obtain a flow rate at the outlet of the pump which follows the variation in the flow rate of the well by controlling the values of the parameters so that they correspond to the operating range of the pump, so that the rotation speed determined from these parameters is compatible with the characteristics of the pump and the conditions necessary for transfer.
  • the method according to the invention makes it possible to optimize the transfer of effluents consisting of at least one liquid phase and one gaseous phase in a transfer pipe connecting a source of effluents whose flow has variations, to a place of destination, for variations in the volumetric ratio of the gaseous phase to the liquid phase, as well as variations in pressure drop during fluid transfer, a multiphase pump whose speed of rotation is regulated being interposed between the source of effluents and the place of destination, the pump applying ⁇ P compression to the effluents.
  • the method is characterized in that the speed of rotation is regulated so as to adapt the flow rate of said multiphase pump to at least one of said variations and in that the speed of rotation of the pump is determined by a combination of values of four parameters which are the inlet pressure at the input of the multiphase pump, the volumetric ratio at the inlet of the pump (GLRa), the compression applied by the pump and the total flow rate of the effluents produced by said source.
  • the speed of rotation is regulated so as to adapt the flow rate of said multiphase pump to at least one of said variations and in that the speed of rotation of the pump is determined by a combination of values of four parameters which are the inlet pressure at the input of the multiphase pump, the volumetric ratio at the inlet of the pump (GLRa), the compression applied by the pump and the total flow rate of the effluents produced by said source.
  • any parameter whose value is outside said range is assigned a limit value making it possible to determine an operating speed compatible with the range of possible variation of the speed of said range. pump.
  • the volumetric ratio at pump suction (GLRa) can be reduced, if necessary, to a value belonging to a range of variation of the parameters for which the pump has a correct functioning by adding a certain quantity of liquid, the quantity of liquid to be added to the effluents being determined as a function of the maximum value of the volumetric gas-liquid ratio of the effluents which can be treated by the pump.
  • the ratio (GLRa) can be determined by interposing between a source of effluents and the multiphase pump, a reservoir crossed by a tube pierced with a plurality of orifices, by measuring the height of the pierced tube immersed in the gas and taking account of the distribution of the orifices along this tube.
  • Compression can be determined by an iterative process by adding to a previously determined value the successive variations of the discharge pressure.
  • the value of the effluent flow can be determined by an iterative process.
  • the method can be applied to the transfer of a multiphase petroleum effluent between a source of effluents, such as a well, and a place of reception of said effluent.
  • the invention also relates to a device for implementing the method comprising in combination means for determining said volumetric ratio (GLRa), means for measuring the intake pressure, means for measuring the discharge pressure, and a programmed processing set allowing to memorize these values and values of the parameters determined at the start and a programmed processing set making it possible to calculate the new value of the speed of rotation of the pump so as to adapt the flow rate of the pump to variations at least one of the following three parameters: the flow rate of the effluents, the value of the volumetric ratio, or the pressure losses downstream of the pump, the speed of rotation being determined by a combination of values of four parameters which are the pressure intake at the multiphase pump inlet, the volumetric ratio at the suction inlet of the pump, the compression applied by the p ompe and the total flow of effluents produced by the source.
  • GLRa volumetric ratio
  • the means for determining said volumetric ratio may be constituted by a tank equipped with a perforated tube, and means for measuring the temperature prevailing in said tank.
  • the programmed processing unit may include means for memorizing all of said limit values.
  • It may include at least one auxiliary pipe for injecting a liquid phase as well as auxiliary means necessary for controlling the amount of liquid added.
  • the method according to the invention is implemented, for example, by a first embodiment described in FIG. 1.
  • the method according to the invention makes it possible to optimize the transfer of effluents comprising at least one liquid phase and at least one gaseous phase originating from a source such as a well head S, for example, up to a receiving installation.
  • the effluents are conveyed from the source S by a pipe 1, to the suction inlet of a multiphase pump 2.
  • a device 3 suitable for determining the value of the volumetric ratio at intake GLRa which is likely to vary.
  • Two pressure sensors 4, 5 are respectively arranged at the outlet and at the inlet of the pump 2 to measure the outlet or discharge pressure Pref and the inlet or suction pressure Pa.
  • the effluents from the pump 2 are conveyed by a CT pipeline to the installation I which is, for example, a platform on land or at sea, possibly submerged, and provided with the usual equipment for treating multiphase effluents.
  • the operation of the pump 2 is regulated by means of a computer C from the data received from the device 3 and from the sensors 4, 5.
  • This computer is, for example, a microcomputer equipped with a card. acquisition of a known and programmed type to conduct the steps of the method which will be defined in the following description.
  • Step 1
  • the value of the GLRa ratio is first determined using a device 3 for measuring the volumetric ratio of a known type placed in the vicinity of the intake of the pump such as that described in patent FR-2,647,549 .
  • the device described in FIG. 2 can also be used for this purpose according to specific methods which will be defined below.
  • Step 2
  • the value of the compression ⁇ P communicated by the pump to the multiphase fluid is then determined by measuring using the pressure sensor 4 the value of the discharge pressure P'ref of the pump and the value of the pressure at suction. or inlet pressure Pa using the sensor 5 placed on line 1 at the inlet of the pump, then making the difference between the two values.
  • One can also proceed by iterations by adding to the value of the compression previously determined ⁇ P p , the successive variations of the discharge pressure (P'ref - Pref) obtained by comparison of the successive measurements of pressure sensor 4 at the outlet of the pump. 2: ⁇ P ⁇ P p + (P'ref - Pref)
  • Step 3
  • the value of the total flow Qt of the effluents from the source S is determined by an iterative process by adding to a previously determined value Q, a variation of the total flow Qp obtained by applying Mariotte's law to the volume variation gas and pressure in a space considered between the source of effluents S and the pump 2, in our case, line 1.
  • the initial characteristic parameters measured or known such as the value of the volumetric ratio GLR of the well measured at the start of its operation, and the value of the volume Vo occupied by the gas in the space considered.
  • Mariotte's law expresses the fact that, in the volume Vo considered, in this case the pipe 1, the increase in flow during the time dt multiplied by the pressure P prevailing in the space Vo is equal to the volume Vo multiplied by the pressure increase dP during the time dt.
  • the pressure is taken as being equal to the value of the suction pressure, in the same way the pressure increase relates to the pressure increase that there is at the inlet of the pump.
  • the variation in effluent flow in line 1 is equal to the difference in variations in total flow from well Qp and total flow Qa of the pump.
  • the variation Qp in total well flow comes from the variation of gas flow and the variation of liquid flow from the effluent source.
  • the respective terms of said variations in gas or liquid flow rates are obtained, as is well known to specialists, by multiplying the variation in total flow rate Qp respectively by the factors GLR / (1 + GLR) and 1 / (1 + GLR).
  • the variation in total flow of the pump Qa can be obtained from the curve shown in Figure 4.
  • the value of the total flow rate Qa of the pump has been plotted as a function of the suction or intake pressure and as a function of the GLRa for a given speed of rotation and overpressure value ⁇ P.
  • the curve was determined by second degree models with a linear interpolation between two curves of the same sub-network, for example constant ⁇ P and variable GLRa.
  • the term which must be taken into account is the variation in gas flow rate of the pump which is obtained from the variation in total flow rate (Qa2 - Qa1) multiplied by the factor representative of the quantity of gas, i.e. say, GLRa / (1 + GLRa).
  • the new value of the speed of rotation which the pump must have in order to adapt is deduced by means of a programmed computer C the flow rate of the multiphase pump to at least one of said variations.
  • a program which implements a quadratic method making it possible to calculate the speed of the pump from the combination of the four parameters.
  • the method described above is particularly well suited when the values of the parameters, from which the speed of the pump is determined, vary within an area for which the pump has correct operation.
  • the program also offers the possibility of carrying out a check of the measured values for the four parameters and of assigning, if necessary, to values located outside the range a limit value making it possible to determine an operating speed of the pump compatible with the data. pump techniques.
  • the domain for which the pump operates correctly is defined by the set of values that can be taken at the same time by the parameters GLRa, Qt, ⁇ P, Pa and N.
  • the fifth parameter in this case the speed of rotation, is determined using the previously defined interpolation program.
  • the microcomputer C delivers a signal which acts on the speed of rotation of the pump drive motor so as to correct it if necessary.
  • the motor is for example an electric motor of a known type, the speed of which depends on the frequency of the electric signal applied to it.
  • the computer C is adapted to modify the frequency of the motor control signal as a function of the speed correction to be made.
  • Installation I can be a treatment platform located on land or at sea on the water or submerged (positioned between two waters or on the seabed) equipped with the usual devices for treating multiphase fluids.
  • the treatment assembly thus makes it possible to determine, in particular, the quantity of liquid which must be added to the effluent so as to reduce the value of GLRa to a value forming part of the operating range.
  • the quantity of liquid to be added is calculated as follows: knowing the value of the measured GLRa and the closest limit GLR value belonging to the previously defined operating range, we deduce the flow rate of the liquid that we must have for reduce the GLRa value to a value that can be processed by the pump.
  • the microcomputer delivers a signal which acts on a valve so as to allow the passage of a quantity of liquid reducing the value of GLRa measured to a value of GLR compatible with the operation of the pump.
  • the device 3 comprises a buffer tank, or reservoir or container 6 receiving the effluents from the source S.
  • the effluents sucked in by the pump 2 are taken from the tank 6 by means of a sampling tube TP passing through it and provided with orifices O distributed over at least part of its length.
  • a pressure sensor 8 measures the pressure prevailing in the reservoir 6 and a temperature sensor 7 makes it possible to know at all times the value of the temperature T prevailing in the reservoir 6. All the data are transmitted to the acquisition card of the computer. vs.
  • Step 1
  • the value of the volumetric ratio GLRa is determined using fixed parameters such as the total height of the tube H, the values of the specific masses of the liquid and of the gas, the value of the drilling coefficient of the tube Co, the characteristic function of the drilling of the tube fitted to the regulating flask f (h, H) and of the measurement of the height h of the portion of the pierced tube TP immersed in the gas, of the measurement of the temperature T and of the pressure Pbt prevailing in the regulating flask and the suction pressure Pa at the pump inlet. It is also advisable to take account of the physical phenomena which occur between the exit of the balloon and the aspiration of the pump in particular of the losses of load and the possible adiabatic expansion of the gas. Another way to do this is to measure the level of liquid in the flask.
  • Step 2
  • ⁇ P ⁇ P I + (P'ref - Pref) + (Pbt - Pa) - (Pbtc - Po) a curve similar to the curve described in FIG. 4 has been drawn. The difference between the two curves comes from the corrective factor due to the adiabatic relaxation.
  • Step 3
  • the value of the total flow Qt of the effluents from the source is determined as in step 3 defined with reference to FIG. 1, but taking into account the presence of the buffer tank 6.
  • a correction coefficient linked to the expansion is introduced. adiabatic which exists between the buffer tank 6 and the inlet of the pump. This coefficient only applies to the terms representative of the variation in gas volume in the pipe and it is equal to (Pa / Pbt) 1 / ⁇ where Pbt is the pressure prevailing in the regulating tank measured using the sensor 8 and ⁇ a coefficient equal to Cc (where C and c are respectively the values of specific heats respectively at constant pressure and volume).
  • FIG. 3 shows another embodiment in which the pumped effluent can be treated in a separator 9 recycling a certain quantity of liquid in the flask 6 via a recycling line 10.
  • the recycling line 10 is equipped with a remote-controlled and controlled valve 11 ensuring the passage of the liquid to be added, and flow measurement means 12 which make it possible to control the quantity of liquid that is added so as to bring the value of the GLRa ratio to a value can be treated by the pump.
  • the implementation of the method comprises steps 1 and 2 described with reference to FIG. 2.
  • the preceding step 3 is modified by the fact that during the control of the values of the parameters, the value of the volumetric ratio GLRa is reduced to the closest value that can be processed by the pump by adding a certain amount of liquid to the fluid.
  • the quantity of liquid to be added having been determined in the manner previously described, the microcomputer C sends a signal allowing the progressive opening of the valve until the flow of liquid to be added has reached a value such as the value measured by the volumetric ratio GLRa is equal to the value allowing the pump to treat the effluents.
  • the GLRa value can be checked in two ways. We can measure, for example, the value of the flow of liquid passing through the recycling line. When the value is reached, the valve is then kept in its position. It is also possible to measure the quantity of liquid to be added by checking the value of the volumetric ratio GLRa.
  • FIG. 5 shows a network of curves F (V1) ... F (V6) obtained during tests carried out with a multiphase pump.
  • the network of curves has been drawn for constant suction pressure Pa and volumetric ratio GLRa values and shows the variations as a function of the total flow rate of the pump and as a function of the value of the compression ⁇ P, for several determined speeds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Pipeline Systems (AREA)

Claims (12)

  1. Verfahren zum Optimieren des Transferts durch Pumpen von Abströmen, die gebildet werden durch wenigstens eine gasförmige Phase und wenigstens eine flüssige Phase, in einer Transfertleitung, welche eine Quelle für Abströme, deren Durchsatz Veränderungen aufweist, mit einem Bestimmungsort verbindet, für Veränderungen des volumetrischen Verhältnisses der gasförmigen Phase zur flüssigen Phase sowie Veränderungen der Druckverluste während des Transferts des Fluids, wobei eine Mehrphasenpumpe, deren Drehgeschwindigkeit gesteuert wird, zwischen die Quelle für die Abströme und den Bestimmungsort zwischengeschaltet ist, und die Pumpe den Abströmen eine Kompression (ΔP) erteilt, dadurch gekennzeichnet, daß man die Drehgeschwindigkeit der Mehrphasenpumpe derart steuert, daß der Durchsatz dieser Mehrphasenpumpe an wenigstens eine dieser Veränderungen angepaßt wird und daß man die Drehgeschwindigkeit der Pumpe durch eine Kombination von Werten von vier Parametern bestimmt, die der Einlaßdruck (Pa) am Eintritt in die Mehrphasenpumpe, das volumetrische Verhältnis am Ansaugeeintritt der Pumpe (GLRa), die Kompression (ΔP), die durch die Pumpe aufgebracht wird und der Gesamtdurchsatz (Qt) der Abströme, die durch diese Quelle erzeugt wurden, sind.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man bei einer Pumpe, die eine korrekte Arbeitsweise für einen Bereich der Parameteränderungen hat, jeden Parameter, dessen Wert außerhalb dieses Bereichs liegt, mit einem Grenzwert behaftet, der es ermöglicht, eine Arbeitsgeschwindigkeit zu bestimmen, die kompatibel mit dem möglichen Änderungsbereich der Geschwindigkeit dieser Pumpe ist.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß man den Wert der Drehgeschwindigkeit durch Interpolation von Familien erhält, welche besondere Werte dieser vier Parameter gruppieren, für die die für diese Pumpe zweckmäßige Drehgeschwindigkeit (N) bekannt ist.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das volumetrische Verhältnis beim Ansaugen der Pumpe (GLRa) wenn notwendig auf einen Wert zurückgeführt wird, der zu einem Bereich der Veränderung der Parameter gehört, für den die Pumpe eine korrekte Arbeitsweise hat, indem eine gewisse Menge an Flüssigkeit zugesetzt wird, wobei die Menge an Flüssigkeit, die den Abströmen zuzusetzen ist, bestimmt wird als Funktion des Maximalwerts des volumetrischen Gas-Flüssigkeitsverhältnisses der Abströme, das durch die Pumpe verarbeitet werden kann.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man dieses Verhältnis (GLRa) bestimmt, indem man zwischen der Quelle für die Abströme und die mehrphasige Pumpe einen Speicher zwischenschaltet, der von einem Rohr durchsetzt ist, welches von einer Vielzahl von öffnungen durchbohrt ist, indem man die Höhe des durchbohrten im Gas badenden Rohres mißt und indem man die Verteilung der öffnungen längs dieses Rohres berücksichtigt.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Kompression (ΔP) nach einem iterativen Verfahren bestimmt, indem man zu einem vorher bestimmten Wert die nachfolgenden Veränderungen des Drucks auf der Förderseite hinzufügt.
  7. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man den Wert des Durchsatzes der Abströme nach einem iterativen Verfahren bestimmt.
  8. Verfahren nach einem der vorhergehenden Ansprüche, angewendet auf den Transfert oder den Transport eines mehrphasigen Erdölfluids zwischen einer Quelle für Abströme, beispielsweise einem Bohrloch und einem Aufnahmeort für diesen Abstrom.
  9. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 3 bis 6, in Kombination Mittel (3) zur Bestimmung dieses volumetrischen Verhältnisses (GLRa), Mittel (5) zum Messen des Beaufschlagungsdruckes (Pa), Mittel (4) zum Messen des Förderdrucks (Pref) sowie eine Anordnung zur programmierten Verarbeitung (C) umfassend, die es ermöglichen, diese Werte und am Beginn bestimmte Werte (Verhältnis GLR, Volumen Vo...) zu speichern sowie eine programmierte Verarbeitungsanordnung (C), die es ermöglicht, den neuen Wert und die Rotationsgeschwindigkeit (N) der Pumpe derart zu berechnen, daß der Durchsatz der Pumpe an die Veränderungen wenigstens eines der drei folgenden Parameter angepaßt wird: der Durchsatz der Abströme (Qt), der Wert des volumetrischen Verhältnisses (GLRa) oder die Druckverluste hinter der Pumpe, wobei die Drehgeschwindigkeit bestimmt wird durch eine Kombination von Werten von vier Parametern, bei denen es sich um den Einlaßdruck (Pa) am Eintritt der mehrphasigen Pumpe, das volumetrische Verhältnis am Saugeintritt der Pumpe (GLRa), die Kompression (ΔP), die durch die Pumpe aufgebracht wird sowie den Gesamtdurchsatz (Qt) der durch die Quelle erzeugten Abströme handelt.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Mittel zur Bestimmung dieses volumetrischen Verhältnisses (GLRa) gebildet sind durch einen Speicher, der mit einem perforierten Rohr ausgestattet ist sowie Mittel zum Messen der in diesem Speicher herrschenden Temperatur.
  11. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die programmierte Verarbeitungsanordnung (C) Mittel zum Speichern der Gesamtheit dieser Grenzwerte umfaßt.
  12. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß sie wenigstens einen Hilfseinspritzkanal (10) für eine flüssige Phase sowie Hilfsmittel (11, 12) umfaßt, die für die Regelung der zugesetzten Flüssigkeitsmenge notwendig sind.
EP92403475A 1991-12-27 1992-12-18 Verfahren und Vorrichtung für die Optimierung des Transports einer Mehrphasenflüssigkeit durch Pumpen Expired - Lifetime EP0549439B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9116230 1991-12-27
FR9116230A FR2685737A1 (fr) 1991-12-27 1991-12-27 Procede et dispositif permettant d'optimiser le transfert par pompage d'effluents polyphasiques.
FR9205617 1992-05-05
FR9205617A FR2685738B1 (fr) 1991-12-27 1992-05-05 Procede et dispositif permettant d'optimiser le transfert par pompage d'effluents polyphasiques.

Publications (2)

Publication Number Publication Date
EP0549439A1 EP0549439A1 (de) 1993-06-30
EP0549439B1 true EP0549439B1 (de) 1996-03-13

Family

ID=26229151

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92403475A Expired - Lifetime EP0549439B1 (de) 1991-12-27 1992-12-18 Verfahren und Vorrichtung für die Optimierung des Transports einer Mehrphasenflüssigkeit durch Pumpen

Country Status (8)

Country Link
US (1) US5393202A (de)
EP (1) EP0549439B1 (de)
BR (1) BR9205160A (de)
CA (1) CA2086298C (de)
DK (1) DK0549439T3 (de)
FR (1) FR2685738B1 (de)
MX (1) MX9207521A (de)
NO (1) NO178906C (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007306A (en) * 1994-09-14 1999-12-28 Institute Francais Du Petrole Multiphase pumping system with feedback loop
FR2730767B1 (fr) * 1995-02-21 1997-04-18 Inst Francais Du Petrole Procede et dispositif de regulation d'un ensemble de pompage polyphasique
FR2772915B1 (fr) 1997-12-22 2000-01-28 Inst Francais Du Petrole Methode et dispositif de debitmetrie polyphasique
DE19804330A1 (de) * 1998-02-04 1999-08-12 K Busch Gmbh Druck & Vakuum Dr Verfahren zum Regeln eines Verdichters
US6164308A (en) * 1998-08-28 2000-12-26 Butler; Bryan V. System and method for handling multiphase flow
US6234030B1 (en) 1998-08-28 2001-05-22 Rosewood Equipment Company Multiphase metering method for multiphase flow
FR2783884B1 (fr) 1998-09-24 2000-10-27 Inst Francais Du Petrole Systeme de compression-pompage comportant une section de compression en fonctionnement alterne et son procede
WO2001050024A1 (en) 1999-12-31 2001-07-12 Shell Internationale Research Maatschappij B.V. Method and system for optimizing the performance of a rotodynamic multi-phase flow booster
FR2920817B1 (fr) * 2007-09-11 2014-11-21 Total Sa Installation et procede de production d'hydrocarbures
EP2093429A1 (de) * 2008-02-25 2009-08-26 Siemens Aktiengesellschaft Kompressoreinheit
NO328277B1 (no) 2008-04-21 2010-01-18 Statoil Asa Gasskompresjonssystem
NO331264B1 (no) * 2009-12-29 2011-11-14 Aker Subsea As System og fremgangsmåte for styring av en undersjøisk plassert kompressor, samt anvendelse av en optisk sensor dertil
NO338836B1 (en) * 2015-06-11 2016-10-24 Fmc Kongsberg Subsea As Load-sharing in parallel fluid pumps
NO339736B1 (en) * 2015-07-10 2017-01-30 Aker Subsea As Subsea pump and system and methods for control
CA2989292A1 (en) * 2015-07-10 2017-01-19 Aker Solutions As Subsea pump and system and methods for control
US10208745B2 (en) * 2015-12-18 2019-02-19 General Electric Company System and method for controlling a fluid transport system
IT201700109469A1 (it) * 2017-09-29 2019-03-29 Gas And Heat S P A Procedimento e dispositivo di rifornimento di gas liquefatti e simili
US20230021491A1 (en) * 2021-07-23 2023-01-26 Hamilton Sundstrand Corporation Displacement pump pressure feedback control and method of control

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568771A (en) * 1969-04-17 1971-03-09 Borg Warner Method and apparatus for lifting foaming crude by a variable rpm submersible pump
FR2551804B1 (fr) * 1983-09-12 1988-02-05 Inst Francais Du Petrole Dispositif utilisable notamment pour le pompage d'un fluide tres visqueux et/ou contenant une proportion notable de gaz, particulierement pour la production de petrole
GB2215408B (en) * 1988-02-29 1991-12-11 Shell Int Research Method and system for controlling the gas-liquid ratio in a pump
FR2642539B1 (fr) * 1989-02-02 1995-12-08 Inst Francais Du Petrole Dispositif de regulation et d'amortissement d'un ecoulement polyphasique et son application
US5108264A (en) * 1990-08-20 1992-04-28 Hewlett-Packard Company Method and apparatus for real time compensation of fluid compressibility in high pressure reciprocating pumps

Also Published As

Publication number Publication date
NO925006L (no) 1993-06-28
CA2086298C (fr) 2004-06-08
NO178906B (no) 1996-03-18
CA2086298A1 (fr) 1993-06-28
NO925006D0 (no) 1992-12-23
DK0549439T3 (da) 1996-07-22
US5393202A (en) 1995-02-28
BR9205160A (pt) 1993-08-17
MX9207521A (es) 1994-06-30
FR2685738B1 (fr) 1995-12-08
NO178906C (no) 1996-06-26
FR2685738A1 (fr) 1993-07-02
EP0549439A1 (de) 1993-06-30

Similar Documents

Publication Publication Date Title
EP0549439B1 (de) Verfahren und Vorrichtung für die Optimierung des Transports einer Mehrphasenflüssigkeit durch Pumpen
CA2699203C (fr) Installation et procede de production d'hydrocarbures
CA2282875C (fr) Methode de conduite d'un puits de production d'hydrocarbures active par injection de gaz
FR2730767A1 (fr) Procede et dispositif de regulation d'un ensemble de pompage polyphasique
CA1262483A (fr) Procede et dispositif utilise pour le pompage d'un fluide tres visqueux
EP0243284B1 (de) Künstliche Niere mit einer Anordnung zur Kontrolle der im Dialysatkreislauf fliessenden Flüssigkeitsmengen
EP0843644B1 (de) Verfahren zur rückgewinnung von dämpfen an einer flüssigkeits-zapfstelle
FR2508322A1 (fr) Dispositif et procede de dosage precis de liquides a administrer par voie intraveineuse a un patient
FR2740215A1 (fr) Methode et dispositif pour mesurer un parametre d'un fluide de densite variable
CA2086297C (fr) Procede d'optimisation d'un dispositif de regulation et d'amortissement d'un ecoulement polyphasique et dispositif obtenu par le procede
FR2764063A1 (fr) Installation et procede pour determiner le niveau et la densite d'un liquide dans une cuve, au moyen d'une seule canne de bullage immergee
CA2282872C (fr) Methode de conduite d'un dispositif de transport d'hydrocarbures entre des moyens de production et une unite de traitement
EP1723336B1 (de) System zum pumpen von kryogenem fluid
FR2685737A1 (fr) Procede et dispositif permettant d'optimiser le transfert par pompage d'effluents polyphasiques.
CH693338A5 (fr) Procédé de récupération devapeurs émises au cours d'une distribution deliquide.
EP2884110B1 (de) Steuerverfahren zur Minimierung des elektrischen Energieverbrauchs einer Pumpenanlage
WO2016007573A1 (en) System and method for control and optimization of pcp pumped well
FR2946704A1 (fr) Methode pour reduire la perte de charge d'un liquide en ecoulement dans une conduite en tenant compte de la degradation d'agents reducteurs de trainee.
WO1990008585A1 (fr) Dispositif de regulation et d'amortissement d'un ecoulement polyphasique et son application
WO2012168614A2 (fr) Procede de determination de la reponse complexe d'une strate permeable
FR2647546A1 (fr) Methode de controle de l'ultrafiltration du sang dans un rein artificiel et dispositif pour sa mise en oeuvr
FR2800875A1 (fr) Methode et dispositif de dertermination du seuil de depot des fractions lourdes contenues dans un fluide hydrocarbone liquide
FR2976031A1 (fr) Procede de transport d'un liquide avec agents reducteurs de trainee en conditions de degradations mecanique limitee
BE1012720A3 (fr) Procede de recuperation de vapeurs emises au cours d'une distribution de liquide.
FR3072737A1 (fr) Procede et dispositif de maintien en condition operationnelle d'un systeme de pompage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DK FR GB NL

17Q First examination report despatched

Effective date: 19940729

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DK FR GB NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960314

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20091229

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20091224

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091231

Year of fee payment: 18

Ref country code: FR

Payment date: 20091023

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110701

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101218

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701