EP0549046B1 - Lighting system and high pressure glow discharge lamp to be used in said system - Google Patents

Lighting system and high pressure glow discharge lamp to be used in said system Download PDF

Info

Publication number
EP0549046B1
EP0549046B1 EP19920203930 EP92203930A EP0549046B1 EP 0549046 B1 EP0549046 B1 EP 0549046B1 EP 19920203930 EP19920203930 EP 19920203930 EP 92203930 A EP92203930 A EP 92203930A EP 0549046 B1 EP0549046 B1 EP 0549046B1
Authority
EP
European Patent Office
Prior art keywords
lighting system
excimer
former
lamp
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19920203930
Other languages
German (de)
French (fr)
Other versions
EP0549046A1 (en
Inventor
Claus Philips Patentverwaltung Gmbh Beneking
Horst Philips Patentverwaltung Gmbh Dannert
Manfred Philips Patentverwaltung Gmbh Neiger
Klaus Philips Patentverwaltung Gmbh Stockwald
Volker Philips Patentverwaltung Gmbh Schorp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Koninklijke Philips Electronics NV
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Koninklijke Philips Electronics NV, Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Priority to EP19920203930 priority Critical patent/EP0549046B1/en
Publication of EP0549046A1 publication Critical patent/EP0549046A1/en
Application granted granted Critical
Publication of EP0549046B1 publication Critical patent/EP0549046B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/16Selection of substances for gas fillings; Specified operating pressure or temperature having helium, argon, neon, krypton, or xenon as the principle constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Definitions

  • the invention relates to a lighting system which comprises a high-pressure glow discharge lamp with a planar, vacuum-tightly sealed discharge vessel, the discharge vessel enclosing a discharge space containing a gas filling forming excimers, the parallel walls of which are formed by a dielectric, the surfaces of the walls facing away from the discharge space being provided with planar electrodes at least one of these walls with an associated electrode is at least partially transparent to the radiation generated, the surfaces of the walls facing the discharge space being arranged at a distance d from one another, and the gas filling containing one of the noble gases Xe and Kr as excimer formers, wherein the excimer generator has a partial pressure P which is less than a limit value Pg, into which lighting system the lamp is fed in an operating state with an AC voltage with operating frequency f.
  • the invention also relates to the use of such a lighting system and to a high-pressure glow discharge lamp for such a lighting system.
  • a dielectrically impeded glow discharge (also called “silent discharge”) is generated in a high-pressure glow discharge lamp at a relatively high gas pressure.
  • a gas filling emitting radiation upon electrical excitation and at least one dielectric are present between two planar electrodes which are completely or partially transparent.
  • the electrical supply takes place with AC voltage.
  • the discharge principle is described, for example, in the article by B. Eliasson and U. Kogelschatz, Appl. Phys. B46 (1988) 299-303.
  • a lamp suitable for use in a lighting system of the type mentioned at the outset is known, for example, from EP-A 0 324 953 (see also EP-A 0 254 111, 0 312 732 and 0 371 304).
  • a planar discharge vessel which is sealed in a vacuum-tight manner is understood to mean a discharge vessel which is in any case almost parallel Walls whose dimensions are large compared to the distance between these walls and a vacuum-tight side wall, the walls can be plane-parallel or coaxial and where a stroke distance, also called discharge length, from the distance (d) between the inner surfaces of the Walls is determined.
  • a dielectric i.e. electrically non-conductive, material used for the walls of the discharge vessel.
  • At least one of the parallel walls is transparent to the radiation generated and materials such as e.g. Glass, quartz, which can be UV-transparent, or the fluorides of magnesium or calcium, which are transparent for very short-wave radiation.
  • the dielectrics mentioned are generally dielectric and chemically resistant to the gas filling.
  • the flat electrodes can be made of metal, e.g. Metal plates or metal layers can be formed.
  • Transparent electrodes can be used as mesh or grid electrodes, e.g. Wire meshes or grid electrodes, or also as transparent metal layers (5 - 10 nm) or electrically conductive oxide layers.
  • the invention has for its object to provide a lighting system that has a high radiation yield, and also to enable extensive homogeneous flat radiation sources with high radiation yield.
  • Figure 1 AC voltage shown.
  • Figure 2 shows schematically the relationship between the operating voltage amplitude U and the total pressure Pges of the gas filling. Pges is the sum of the partial pressures of the excimer generator and any buffer gas (Pp) used.
  • Figure 3 shows an embodiment of a lamp for use in a lighting system according to the invention.
  • Figure 4 shows a single part of the lamp of Figure 3.
  • the invention is based on the insight that an excellent operating range with respect to the operating parameters P and f exists for a discharge length d between 0.05 and 10 mm, which is shown hatched in FIG. 1.
  • the partial pressure P of the excimer former is limited by a limit value Pg which has a maximum P M at an operating frequency f M.
  • Pg which has a maximum P M at an operating frequency f M.
  • the selection of the operating parameters in the hatched area enables the voltage amplitude U to be set to a value within an interval ⁇ U, with one ignition occurring per half-wave of the AC voltage (see Figure 2). Under these circumstances, the lamp assumes a homogeneous operating condition.
  • the interval is limited by a voltage amplitude U 1 below which the discharge extinguishes, and a voltage amplitude U 2 above which more than one ignition per AC half-wave takes place.
  • the operating range is easy to determine.
  • operating points at this frequency f M with operating pressures P less than P M also belong to the operating range.
  • the operating point (P, f) is close to the operating point (P M , f M ).
  • the lamp then has a relatively high radiation yield.
  • the gas filling contains electronegative gases with a partial pressure P D between 5x10 ⁇ 5 and 5x10 ⁇ 4 times the partial pressure of the excimer former.
  • a very advantageous embodiment of a lighting system according to the invention solves the problem that the areal expansion of the lamp is limited by the total pressure of the gas filling (substantially below 1000 mbar). If a vessel size limited by the wall thickness and the maximum tolerable mechanical stresses occurring in the material is exceeded, implosion can occur. This limit is at a total pressure of approximately 100 mbar and wall thicknesses of 2-3 mm with a typically 10 cm linear expansion of the walls.
  • Gas filling is additionally used as a buffer gas when Xe is used
  • Excimer former contains at least one of the noble gases He, Ne, Ar and Kr
  • Kr is used as the excimer former contains at least one of the noble gases He, Ne and Ar.
  • the atomic mass of the buffer gas is considerably smaller than the atomic mass of the excimer former.
  • the total pressure of the gas charge Pges is increased by the added buffer gas without impairing the homogeneous operating behavior.
  • the total pressure Pges of the gas filling being less than four times the partial pressure P of the excimer former.
  • a preferred embodiment of a lighting system according to the invention is characterized in that the discharge vessel has an inner phosphor layer.
  • phosphors for example described by Opstelten, Radielovic and Verstegen in Philips Tech. Rev. 35, 1975, 361-370
  • large-area, homogeneously radiating light sources can be produced, which can be used as backlighting of large-area LCDs, luminous walls, display elements and the like. ⁇ . Find.
  • Another preferred embodiment of a lighting system according to the invention is characterized in that the discharge vessel has fluorescent vessel walls.
  • FIG. 3 shows schematically and in section a high-pressure glow discharge lamp 1 suitable for use in a lighting system according to the invention.
  • the lamp 1 has a planar discharge vessel 2, which is sealed in a vacuum-tight manner and which encloses a discharge space 3 containing a gas filling which forms excimers.
  • the discharge vessel 2 has parallel walls 4 A , 4 B made of a dielectric, in this case quartz glass plates with a thickness of 2 mm.
  • the walls 4 A , 4 B of the discharge vessel 2 are connected to one another by a cylindrical quartz spacer 5 with a diameter of 40 mm.
  • the quartz spacer ring 5 has a pump nozzle 6 with which the discharge vessel 2 is evacuated and filled.
  • the parts 4 A , 4 B , 5, 6 of the discharge vessel 2 are joined together by glass soldering technology.
  • the surfaces 7 A , 7 B of the walls 4 A , 4 B facing away from the discharge space 3 are included planar electrodes 8 A , 8 B provided.
  • the lamp 1 has a coupling-out electrode 8 B, which is partially transparent to the generated radiation, made of a lattice structure made of gold with web widths of 0.5 mm and a mesh size of 1.5 mm.
  • Electrode 8 B shown in view in Figure 4, is applied to the surface by pyrolytic sedimentation.
  • the other electrode 8 A is made of aluminum and is evaporated onto the wall 4 A.
  • the latter electrode 8 A can also have a lattice structure, for example made of gold.
  • the surfaces 9 A , 9 B of the walls 4 A , 4 B facing the discharge space 3 are arranged at a distance d of 2 mm from one another.
  • the gas filling contains Xe as an excimer.
  • the lamp 1 is supplied in an operating state with an AC voltage from an electrical supply, not shown.
  • the limit value Pg has a maximum value P M of 0.75 bar at a frequency f M of 72 kHz.
  • the gas filling is composed as follows.
  • the partial pressure of the excimer generator is 0.5 bar (i.e. below P M ).
  • the gas filling also contains neon as a buffer gas with a partial pressure of also 0.5 bar and a doping of O2 with a partial pressure of 0.1 mbar.
  • the total pressure (approximately 1 bar) of the gas filling is less than four times the partial pressure of the excimer generator.
  • the partial pressure P D of the O2 doping is 2x10 ⁇ 4 times the partial pressure of the excimer.
  • the lamp When the lamp is operated with a sinusoidally alternating high voltage with a frequency of 50 kHz, a homogeneous discharge is generated.
  • the radiation power density on the lamp surface is 250 W / m. At this frequency of 50 kHz and at a voltage with maximum power coupling, a stratification efficiency of more than 10% is achieved.
  • the power and the radiation efficiency can be increased by approx. 50% by using a finer mesh structure, e.g. with 90% transmission.
  • Another embodiment of a lamp according to the invention has a discharge length d of 10 mm and a gas filling of 0.25 bar xenon as excimer and 0.75 bar neon as a buffer gas.
  • the limit value Pg a maximum value P M of 0.3 bar at a frequency f M of 3.5 kHz.
  • the lamp is operated at a frequency of 2.5 kHz, i.e. close to the operating point (P M , f M ).
  • the lamp has a radiant power density on the lamp surface of 50 W / m and a radiant efficiency of 20%.
  • the lighting system can be used as a flat spotlight for contact lithography or coating techniques.
  • the lamp can also have an inner phosphor coating and can then be used for other lighting purposes, for example for backlighting of LCDs or display elements, or for general lighting.

Description

Die Erfindung bezieht sich auf ein Beleuchtungssystem das eine Hochdruckglimmentladungslampe mit einem flächenhaften, vakuumdicht abgeschlossenen Entladungsgefäss umfaßt, welches Entladungsgefäß einen eine Excimere bildende Gasfüllung enthaltenden Entladungsraum umschliesst dessen parallele Wände von einem Dielektrikum gebildet sind, wobei die dem Entladungsraum abgewandten Oberflächen der Wände mit flächenhaften Elektroden versehen sind, wobei mindestens eine dieser Wände mit zugeordneter Elektrode zumindest teilweise transparent für die erzeugte Strahlung ist, wobei die dem Enladungsraum zugewandten Oberflächen der Wände auf einem Abstand d von einander angeordnet sind, und wobei die Gasfüllung eines der Edelgase Xe und Kr als Excimerbildner enthält, wobei der Excimerbildner einen Partialdruck P aufweist der kleiner ist als ein Grenzwert Pg, in welches Beleuchtungssystem die Lampe in einem Betriebszustand gespeist wird mit einer Wechselspannung mit Betriebsfrequenz f.The invention relates to a lighting system which comprises a high-pressure glow discharge lamp with a planar, vacuum-tightly sealed discharge vessel, the discharge vessel enclosing a discharge space containing a gas filling forming excimers, the parallel walls of which are formed by a dielectric, the surfaces of the walls facing away from the discharge space being provided with planar electrodes at least one of these walls with an associated electrode is at least partially transparent to the radiation generated, the surfaces of the walls facing the discharge space being arranged at a distance d from one another, and the gas filling containing one of the noble gases Xe and Kr as excimer formers, wherein the excimer generator has a partial pressure P which is less than a limit value Pg, into which lighting system the lamp is fed in an operating state with an AC voltage with operating frequency f.

Die Erfindung bezieht sich auch auf die Verwendung eines derartigen Beleuchtungssystems und auf eine Hochdruckglimmentladungslampe für ein derartiges Beleuchtungssystems.The invention also relates to the use of such a lighting system and to a high-pressure glow discharge lamp for such a lighting system.

In einer Hochdruckglimmentladungslampe wird eine dielektrisch behinderte Glimmentladung (auch "stille Entladung" genannt) bei relativ hohem Gasdruck erzeugt. Bei diesen Entladungen sind, zwischen zwei flächenhaften ganz oder teilweise transparenten Elektroden, eine bei elektrischer Anregung Strahlung emittierende Gasfüllung sowie mindestens ein Dielektrikum vorhanden. Die elektrische Speisung geschieht mit Wechselspannung. Das Entladungsprinzip ist beispielsweise in dem Artikel von B. Eliasson und U. Kogelschatz, Appl. Phys. B46 (1988) 299-303 beschrieben.A dielectrically impeded glow discharge (also called "silent discharge") is generated in a high-pressure glow discharge lamp at a relatively high gas pressure. In the case of these discharges, a gas filling emitting radiation upon electrical excitation and at least one dielectric are present between two planar electrodes which are completely or partially transparent. The electrical supply takes place with AC voltage. The discharge principle is described, for example, in the article by B. Eliasson and U. Kogelschatz, Appl. Phys. B46 (1988) 299-303.

Eine Lampe geeignet für Verwendung in ein Beleuchtungssystem der eingangs erwähnten Art ist beispielsweise aus der EP-A 0 324 953 bekannt (siehe auch die EP-A 0 254 111, 0 312 732 und 0 371 304). In dieser Beschreibung und in den Ansprüchen wird unter einem flächenhaften, vakuumdicht abgeschlossenen Entladungsgefäss ein Entladungsgefäss verstanden, das zwei jedenfalls nahezu parallele Wände deren Abmessungen groß sind im Vergleich mit dem Abstand zwischen diesen Wänden und eine vakuumdicht abschließende Seitenwand aufweist, wobei die Wände planparallel oder aber auch koaxial sein können und wobei eine Schlagweite, auch Entladungslänge genannt, von dem Abstand (d) zwischen den inneren Oberflächen der Wände bestimmt wird.A lamp suitable for use in a lighting system of the type mentioned at the outset is known, for example, from EP-A 0 324 953 (see also EP-A 0 254 111, 0 312 732 and 0 371 304). In this description and in the claims, a planar discharge vessel which is sealed in a vacuum-tight manner is understood to mean a discharge vessel which is in any case almost parallel Walls whose dimensions are large compared to the distance between these walls and a vacuum-tight side wall, the walls can be plane-parallel or coaxial and where a stroke distance, also called discharge length, from the distance (d) between the inner surfaces of the Walls is determined.

Für die Wände des Entladungsgefässes wird ein dielektrisches, d.h. elektrisch nicht leitendes, Material verwendet. Wenigstens eine der parallele Wände ist transparent für die erzeugte Strahlung und es kommen dazu Materialien in Betracht wie z.B. Glas, Quarz, das UV-transparent sein kann, oder die für sehr kurzwelligen Strahlungen transparenten Fluoride von Magnesium oder Calcium. Die erwähnte Dielektrika sind im Allgemeinen durchschlagfest und chemisch resistent gegen die Gasfüllung. Die flächenhaften Elektroden können aus Metall, z.B. Metallplatten oder Metallschichten gebildet sein. Transparente Elektroden können als Netz- oder Gitterelektroden, z.B. Drahtnetze oder Gitterelektroden, oder auch als transparente Metallschichten (5 - 10 nm) oder elektrisch leitende Oxidschichten ausgebildet sein.For the walls of the discharge vessel, a dielectric, i.e. electrically non-conductive, material used. At least one of the parallel walls is transparent to the radiation generated and materials such as e.g. Glass, quartz, which can be UV-transparent, or the fluorides of magnesium or calcium, which are transparent for very short-wave radiation. The dielectrics mentioned are generally dielectric and chemically resistant to the gas filling. The flat electrodes can be made of metal, e.g. Metal plates or metal layers can be formed. Transparent electrodes can be used as mesh or grid electrodes, e.g. Wire meshes or grid electrodes, or also as transparent metal layers (5 - 10 nm) or electrically conductive oxide layers.

Der Erfindung liegt die Aufgabe zugrunde ein Beleuchtungssystem zu schaffen, das eine hohe Strahlungsausbeute aufweist, und darüber hinaus auch ausgedehnte homogen emittierende Flachstrahlungsquellen mit hoher Strahlungsausbeute zu ermöglichen.The invention has for its object to provide a lighting system that has a high radiation yield, and also to enable extensive homogeneous flat radiation sources with high radiation yield.

Diese Aufgabe wird mit einem Beleuchtungssystem der eingangs erwähnten Art dadurch gelöst, daß der Grenzwert Pg kleiner ist je nachdem die Betriebsfrequenz f mehr abweicht von einer Frequenz fM wobei der Grenzwert ein Maximum PM hat, wobei PM = A + B*exp(C*d) und fM = D*dE,

  • worin für Xenon gilt A = 0.3 bar, B = 6 bar und C = -1.3 mm⁻¹, mit
  • D = 200 kHz und E = -1.47 für d ≤ 2.75 mm, und
  • D = 350 kHz und E = -2 für d > 2.75 mm,
  • und worin für Krypton gilt A = 0.75 bar, B = 150 bar und C = -2.3 mm⁻¹, mit D = 160 kHz und E = -1.74.
This object is achieved with a lighting system of the type mentioned at the outset in that the limit value Pg is smaller depending on the operating frequency f deviates more from a frequency f M , the limit value having a maximum P M , where P M = A + B * exp ( C * d) and f M = D * d E ,
  • where for xenon applies A = 0.3 bar, B = 6 bar and C = -1.3 mm⁻¹, with
  • D = 200 kHz and E = -1.47 for d ≤ 2.75 mm, and
  • D = 350 kHz and E = -2 for d> 2.75 mm,
  • and where for krypton applies A = 0.75 bar, B = 150 bar and C = -2.3 mm⁻¹, with D = 160 kHz and E = -1.74.

Die nachfolgende Beschreibung erläutert die Erfindung an Hand der Zeichnungen. Darin ist in Abbildung 1 schematisch der Zusammenhang zwischen dem Grenzwert Pg für den Partialdruck des Excimerbildners und der Betriebsfreqenz f der Wechselspannung dargestellt. Abbildung 2 stellt schematisch den Zusammenhang zwischen der Betriebsspannungsamplitude U und dem Gesamtdruck Pges der Gasfüllung dar. Pges ist die Summe der Partialdrucke des Excimerbildners und eines gegebenenfalls verwendeten Puffergases (Pp).
Abbildung 3 zeigt ein Ausführungsbeispiel einer Lampe für Verwendung in ein Beleuchtungssystem nach der Erfindung. Abbildung 4 zeigt ein Einzelteil der Lampe von Abbildung 3.
The following description explains the invention with reference to the drawings. The relationship between the limit value Pg for the partial pressure of the excimer former and the operating frequency f der is schematically shown in Figure 1 AC voltage shown. Figure 2 shows schematically the relationship between the operating voltage amplitude U and the total pressure Pges of the gas filling. Pges is the sum of the partial pressures of the excimer generator and any buffer gas (Pp) used.
Figure 3 shows an embodiment of a lamp for use in a lighting system according to the invention. Figure 4 shows a single part of the lamp of Figure 3.

Die Erfindung beruht auf der Einsicht, daß für eine Entladungslänge d zwischen 0.05 und 10 mm ein ausgezeichneter Betriebsbereich bezüglich der Betriebsparameter P und f existiert, der in Abbildung 1 schraffiert ist dargestellt. Der Partialdruck P des Excimerbildners ist begrenzt von einem Grenzwert Pg der ein maximum PM hat bei einer Betriebsfrequenz fM. Die Wahl der Betriebsparameter in das schraffierte Bereich ermöglicht es die Spannungsamplitude U einzustellen auf einen Wert innerhalb eines Intervalles ΔU wobei eine Zündung pro Halbwelle der Wechselspannung eintritt (siehe Abbildung 2). Unter diesen Umständen nimmt die Lampe einen flächenhomogenen Betriebszu-stand an. Das Interval ist begrenzt von einer Spannungsamplitude U₁ unterhalb der die Entladung verlischt, und einer Spannungsamplitude U₂ oberhalb welcher mehr als eine Zündung pro Wechselspannungshalbwelle stattfindet.The invention is based on the insight that an excellent operating range with respect to the operating parameters P and f exists for a discharge length d between 0.05 and 10 mm, which is shown hatched in FIG. 1. The partial pressure P of the excimer former is limited by a limit value Pg which has a maximum P M at an operating frequency f M. The selection of the operating parameters in the hatched area enables the voltage amplitude U to be set to a value within an interval ΔU, with one ignition occurring per half-wave of the AC voltage (see Figure 2). Under these circumstances, the lamp assumes a homogeneous operating condition. The interval is limited by a voltage amplitude U 1 below which the discharge extinguishes, and a voltage amplitude U 2 above which more than one ignition per AC half-wave takes place.

Gegeben das Maximum PM für den Grenzwert und die Frequenz fM wobei der Grenzwert sein Maximum hat, ist der Betriebsbereich einfach festzustellen. Außer dem Betriebspunkt (PM, fM) gehören auch Betriebspunkte bei dieser Frequenz fM mit Betriebsdrucke P kleiner als PM dem Betriebsbereich zu. Ausgehend von diesen Betriebspunkte ist es, jehweils bei konstantem Betriebsdruck P, ein fach fest zu stellen innerhalb welches Frequenzbereich noch ein Interval existiert wobei eine Zündung pro Halbwelle der Wechselspannung eintritt.Given the maximum P M for the limit value and the frequency f M, where the limit value has its maximum, the operating range is easy to determine. In addition to the operating point (P M , f M ), operating points at this frequency f M with operating pressures P less than P M also belong to the operating range. On the basis of these operating points, it is easy to determine in each case at constant operating pressure P within which frequency range an interval still exists, with one ignition occurring per half-wave of the AC voltage.

Außerhalb diesem Betriebsbereich wird im Allgemeinen bei höheren Drucken keine diffuse, flächenhomogene Entladung ausgebildet, sondern die Entladung kontrahiert in eine Vielzahl von eng abgegrenzten, über die Fläche verteilte Filamente. Ein filamentierter Entladungsmodus besitzt eine geringere Strahlungsausbeute, und ist ferner wegen der entstehenden Inhomogenität für lichttechnische Anwendungen unerwünscht. Wenn obige Bedingungen für die Partialdrucke erfüllt werden sind Beleuchtungssysteme mit grossflächigen Hochdruckglimmentladungslampen, beispielsweise DIN A4-große oder sogar größere flache Lampen realisierbar, die sowohl einen flächenhomogenen Entladungsmodus als auch eine hohe Strahlungsausbeute aufweisen.Outside of this operating range, no diffuse, homogeneous discharge is generally formed at higher pressures, but the discharge contracts in a large number of narrowly delimited filaments distributed over the surface. A filamented discharge mode has a lower radiation yield and is also undesirable for lighting applications because of the inhomogeneity that arises. If the above conditions for the partial pressures are met Lighting systems with large-area high-pressure glow discharge lamps, for example DIN A4-sized or even larger flat lamps, which have both a homogeneous discharge mode and a high radiation yield.

Bei der Wahl von Xe als Excimerbildner wird vorwiegend 172 nm Emission im Bereich 165-195 nm erzielt, bei der Wahl von Kr als Excimerbildner wird vorwiegend 146 nm Emission im Bereich von 135-165 nm erzielt. Der Bereich ist basiert auf einen Bandensockel von ca. 10%.When Xe is selected as the excimer former, predominantly 172 nm emission in the 165-195 nm range is achieved; when Kr is selected as the excimer former, 146 nm emission in the 135-165 nm region is predominantly achieved. The area is based on a band base of approx. 10%.

Est ist vorteilhaft wenn der Betriebspunkt (P, f) sich in der Nähe des Betriebspunktes (PM, fM) befindet. Die Lampe hat dann eine relativ hohe Strahlungsausbeute.It is advantageous if the operating point (P, f) is close to the operating point (P M , f M ). The lamp then has a relatively high radiation yield.

Es hat sich herausgestellt, daß flächenhomogene Betriebsbedingungen und Ausbildungsformen durch die Zugabe von geringsten Mengen von elektronegativen Gasanteilen, die als Elektronenattachern wirken, erweitert werden. Dabei kann jeder attachende Gasanteil Verwendung finden, sofern die Excimerkinetik nicht in die Weise verändert wird, daß ein zur Erzeugung von Xe- bzw. Kr- Excimere konkurrierender Excimerprozess oder andere Verlust-prozesse hinzukommen, die zu einer merklichen Effizienzeinbuße gegenüber den reinen Edelgas-System führen. In einer vorteilhaften Ausführungsform des erfindungsgemäßen Beleuchtungssystems enthält die Gasfüllung elektronegative Gase mit einem Partialdruck PD zwischen 5x10⁻⁵ und 5x10⁻⁴ Mal der Partialdruck des Excimerbildners. So haben sich beispielsweise Zugaben von O₂ in Zumischungsdosen innerhalb des obengenannten Bereichs als für die Effizienz der Xe- oder Kr- Excimerstrahlung als praktisch ohne Einfluss erwiesen, wobei jedoch die Ausbildung eines flächenhomogenen Entladungsmodus gefördert wird.It has been found that homogeneous operating conditions and forms of training are expanded by the addition of the smallest amounts of electronegative gas components which act as electron attachers. Any attached gas component can be used, provided that the excimer kinetics are not changed in such a way that an excimer process competing to produce Xe or Kr excimers or other loss processes are added, which lead to a noticeable loss of efficiency compared to the pure noble gas system to lead. In an advantageous embodiment of the lighting system according to the invention, the gas filling contains electronegative gases with a partial pressure P D between 5x10⁻⁵ and 5x10⁻⁴ times the partial pressure of the excimer former. For example, additions of O₂ in admixture cans within the above range have proven to be practically without influence for the efficiency of the Xe or Kr excimer radiation, although the formation of a homogeneous discharge mode is promoted.

Eine sehr vorteilhafte Ausführungsform eines erfindungsgemässen Beleuchtungssystems löst das Problem, daß die flächenhafte Ausdehnung der Lampe durch den Gesamtdruck der Gasfüllung (wesentlich unter 1000 mbar) begrenzt ist. Bei Überschreitung einer von der Wandstärke und den maximal tolerierbaren im Material auftretenden mechanischen Spannungen begrenzten Gefässgrösse kann Implosion auftreten. Diese Grenze liegt bei einem Gesamtdruck von etwa 100 mbar und Wandstärken von 2-3 mm bei typisch 10 cm linearen Ausdehnung der Wände. Grossflächige Hochdruckglimmentladungslampen werden erfindungsgemäss realisiert, wenn die Gasfüllung zusätzlich als Puffergas bei der Verwendung von Xe als Excimerbildner wenigstens eines der Edelgase He, Ne, Ar und Kr, und bei der Verwendung von Kr als Excimerbildner wenigstens eines der Edelgase He, Ne und Ar enthält. Dabei ist die Atommasse des Puffergases wesentlich kleiner als die Atommasse des Excimerbildners. Der Gesamtdruck der Gasfüllung Pges wird durch das zugesätzte Puffergas erhöht ohne das flächenhomogene Betriebsverhalten zu beeinträchtigen.A very advantageous embodiment of a lighting system according to the invention solves the problem that the areal expansion of the lamp is limited by the total pressure of the gas filling (substantially below 1000 mbar). If a vessel size limited by the wall thickness and the maximum tolerable mechanical stresses occurring in the material is exceeded, implosion can occur. This limit is at a total pressure of approximately 100 mbar and wall thicknesses of 2-3 mm with a typically 10 cm linear expansion of the walls. Large-area high-pressure glow discharge lamps are realized according to the invention if the gas filling is additionally used as a buffer gas when Xe is used Excimer former contains at least one of the noble gases He, Ne, Ar and Kr, and when Kr is used as the excimer former contains at least one of the noble gases He, Ne and Ar. The atomic mass of the buffer gas is considerably smaller than the atomic mass of the excimer former. The total pressure of the gas charge Pges is increased by the added buffer gas without impairing the homogeneous operating behavior.

Gute Ergebnisse werden in praktischen Implementationen der obergenannten Ausführungsformen erhalten wobei der Gesammtdruck Pges der Gasfüllung Kleiner ist als vier Mal der Partialdruck P des Excimerbildners.Good results are obtained in practical implementations of the above-mentioned embodiments, the total pressure Pges of the gas filling being less than four times the partial pressure P of the excimer former.

Eine bevorzugte Ausführungsform eines erfindungsgemässen Beleuchtungssystems ist dadurch gekennzeichnet, daß das Entladungsgefäss eine innere Leuchtstoffschicht aufweist. Bei Verwendung von Leuchtstoffen (beispielsweise beschrieben von Opstelten, Radielovic und Verstegen in Philips Tech. Rev. 35, 1975, 361-370) können grossflächige, homogen strahlende Lichtquellen gefertigt werden, die ihre Anwendung als Hintergrundbeleuchtung von grossflächigen LCD's, Leuchtwänden, Anzeigeelementen u.ä. finden.A preferred embodiment of a lighting system according to the invention is characterized in that the discharge vessel has an inner phosphor layer. When using phosphors (for example described by Opstelten, Radielovic and Verstegen in Philips Tech. Rev. 35, 1975, 361-370), large-area, homogeneously radiating light sources can be produced, which can be used as backlighting of large-area LCDs, luminous walls, display elements and the like. Ä. Find.

Eine weitere bevorzugte Ausführungsform eines erfindungsgemässen Beleuchtungssystems ist dadurch gekennzeichnet, daß das Entladungsgefäss fluoreszierende Gefässwände aufweist.Another preferred embodiment of a lighting system according to the invention is characterized in that the discharge vessel has fluorescent vessel walls.

Ausführungsbeispiele von Beleuchtungssystemen nach der Erfindung werden nachstehend an Hand der Abbildungen 3 und 4 näher erläutert. Es zeigt Figur 3 schematisch und im Schnitt eine Hochdruckglimmentladungslampe 1 geeignet für Verwendung in ein Beleuchtungssystem nach der Erfindung. Die Lampe 1 hat ein flächenhaftes, vakuumdicht abgeschlossenes Entladungsgefäss 2, das einen eine Excimere bildende Gasfüllung enthaltenden Entladungsraum 3 umschliesst. Das Entladungsgefäss 2 hat parallele Wände 4A, 4B aus einem Dielelktrikum, in diesem Fall Quarzglassplatten mit einer Stärke von 2 mm. Die Wände 4A, 4B des Entladungsgefäßes 2 sind mit einander verbunden von einem zylindrischen Quarzdistanzring 5 mit einem diameter von 40 mm. Der Quarzdistanzring 5 weist einen Pumpstutz 6 auf mit dem das Entladungsgefäß 2 evakuiert und gefüllt ist. Die Teile 4A, 4B, 5, 6 des Entladungsgefäßes 2 sind durch Glaslottechnik zusammengefügt. Die dem Entladungsraum 3 abgewandten Oberflächen 7A, 7B der Wände 4A, 4B sind mit flächenhaften Elektroden 8A, 8B versehen. Die Lampe 1 hat eine für die erzeugte Strahlung teilweise transparente Auskoppelelektrode 8B aus einer Gitterstruktur aus Gold mit Stegbreiten von 0.5 mm und einer Maschenweite von 1.5 mm. Die Elektrode 8B, in Ansicht gezeigt in Abbildung 4, ist durch pyrolytische Sedimentation auf die Oberfläche aufgebracht. Die andere Elektrode 8A besteht aus Aluminium und ist auf die Wand 4A aufgedampft. Anderenfalls kann die letztgenannte Elektrode 8A auch eine Gitterstruktur, zum Beispiel aus Gold, aufweisen. Die dem Entladungsraum 3 zugewandten Oberflächen 9A, 9B der Wände 4A, 4B sind auf einem Abstand d von 2 mm voneinder angeordnet. Die Gasfüllung enthält Xe als Excimerbildner. Im Beleuchtungssystem wird die Lampe 1 in einem Betriebszustand gespeist mit einer Wechselspannung aus eine nicht gezeigten, elektrischen Speisung. Bei Xe als Excimerbildner und Abstand d = 2 mm hat der Grenzwert Pg einen maximalen Wert PM von 0.75 bar bei einer Frequenz fM von 72 kHz.Embodiments of lighting systems according to the invention are explained below with reference to Figures 3 and 4. FIG. 3 shows schematically and in section a high-pressure glow discharge lamp 1 suitable for use in a lighting system according to the invention. The lamp 1 has a planar discharge vessel 2, which is sealed in a vacuum-tight manner and which encloses a discharge space 3 containing a gas filling which forms excimers. The discharge vessel 2 has parallel walls 4 A , 4 B made of a dielectric, in this case quartz glass plates with a thickness of 2 mm. The walls 4 A , 4 B of the discharge vessel 2 are connected to one another by a cylindrical quartz spacer 5 with a diameter of 40 mm. The quartz spacer ring 5 has a pump nozzle 6 with which the discharge vessel 2 is evacuated and filled. The parts 4 A , 4 B , 5, 6 of the discharge vessel 2 are joined together by glass soldering technology. The surfaces 7 A , 7 B of the walls 4 A , 4 B facing away from the discharge space 3 are included planar electrodes 8 A , 8 B provided. The lamp 1 has a coupling-out electrode 8 B, which is partially transparent to the generated radiation, made of a lattice structure made of gold with web widths of 0.5 mm and a mesh size of 1.5 mm. Electrode 8 B , shown in view in Figure 4, is applied to the surface by pyrolytic sedimentation. The other electrode 8 A is made of aluminum and is evaporated onto the wall 4 A. Otherwise, the latter electrode 8 A can also have a lattice structure, for example made of gold. The surfaces 9 A , 9 B of the walls 4 A , 4 B facing the discharge space 3 are arranged at a distance d of 2 mm from one another. The gas filling contains Xe as an excimer. In the lighting system, the lamp 1 is supplied in an operating state with an AC voltage from an electrical supply, not shown. With Xe as excimer former and distance d = 2 mm, the limit value Pg has a maximum value P M of 0.75 bar at a frequency f M of 72 kHz.

In diesem Ausführungsbeispiel ist die Gasfüllung wie folgt zusammengesetzt. Der Partialdruck des Excimerbilders betragt 0.5 bar (also unterhalb PM). Die Gasfüllung enthält weiter Neon als Puffergas mit einem Partialdruck von ebenfalls 0.5 bar und ein Dotierung von O₂ mit einem Partialdruck von 0.1 mbar. Der Gesammtdruck (ungefähr 1 bar) der Gasfüllung ist Kleiner als vier Mal der Partialdruck des Excimerbildners. Der Partialdruck PD der O₂-Dotierung beträgt 2x10⁻⁴ mal der Partialdruck des Excimerbildners.In this exemplary embodiment, the gas filling is composed as follows. The partial pressure of the excimer generator is 0.5 bar (i.e. below P M ). The gas filling also contains neon as a buffer gas with a partial pressure of also 0.5 bar and a doping of O₂ with a partial pressure of 0.1 mbar. The total pressure (approximately 1 bar) of the gas filling is less than four times the partial pressure of the excimer generator. The partial pressure P D of the O₂ doping is 2x10⁻⁴ times the partial pressure of the excimer.

Bei Betrieb der Lampe mit einer sinusförmig alternierenden Hochspannung mit einer Frequenz von 50 kHz wird eine flächenhomogene Entladung erzeugt. Die Stralungsleistungsdichte an der Lampenoberfläche beträgt 250 W/m. Bei dieser Frequenz von 50 kHz und bei einer Spannung wobei die Leistungseinkopplung maximal ist, wird ein Stralungswirkungsgrad von mehr als 10 % erzielt. Die Leistung und der Strahlungswirkungsgrad kann um ca. 50% erhöht werden durch Verwendung einer feinmaschigeren Gitterstruktur, z.B. mit 90 % Transmission.When the lamp is operated with a sinusoidally alternating high voltage with a frequency of 50 kHz, a homogeneous discharge is generated. The radiation power density on the lamp surface is 250 W / m. At this frequency of 50 kHz and at a voltage with maximum power coupling, a stratification efficiency of more than 10% is achieved. The power and the radiation efficiency can be increased by approx. 50% by using a finer mesh structure, e.g. with 90% transmission.

Ein weiteres Ausführungsbeispiel einer Lampe nach der Erfindung hat eine Entladungslänge d von 10 mm und eine Gasfüllung von 0.25 bar Xenon als Excimerbildner und 0.75 bar Neon als ein Puffergas. Hier hat der Grenzwert Pg einenen maximalen Wert PM von 0.3 bar bei einer Frequenz fM von 3.5 kHz.Another embodiment of a lamp according to the invention has a discharge length d of 10 mm and a gas filling of 0.25 bar xenon as excimer and 0.75 bar neon as a buffer gas. Here the limit value Pg a maximum value P M of 0.3 bar at a frequency f M of 3.5 kHz.

Die Lampe wird mit einer Frequenz von 2.5 kHz betrieben, das heisst in der Nähe des Betriebspunktes (PM, fM). Die Lampe hat eine Strahlungsleistungsdichte an der Lampenoberfläche von 50 W/m und einen Strahlungswirkungsgrad von 20 %.The lamp is operated at a frequency of 2.5 kHz, i.e. close to the operating point (P M , f M ). The lamp has a radiant power density on the lamp surface of 50 W / m and a radiant efficiency of 20%.

Das Beleuchtungssystem kann als flacher Strahler für Kontaktlithografie oder Beschichtigungstechniken verwendet werden. Auch kann die Lampe eine innere Leuchtstoffbeschichtigung aufweisen, und dann für andere Beleuchtungszwecke, zum Beispiel für Hintergrundbeleuchtung von LCD's oder Anzeigeelementen, oder für Allgemeinbeleuchtung, verwendet werden.The lighting system can be used as a flat spotlight for contact lithography or coating techniques. The lamp can also have an inner phosphor coating and can then be used for other lighting purposes, for example for backlighting of LCDs or display elements, or for general lighting.

Claims (8)

  1. A lighting system which comprises a high-pressure glow discharge lamp with a planar discharge vessel which is sealed in a vacuumtight manner and which encloses a discharge space containing a gas filling which forms excimers, the parallel walls of said discharge space being formed by a dielectric material and the surfaces of the walls remote from the discharge space being provided with planar electrodes, while at least one of said walls with the associated electrode is at least partly transparent to the radiation generated, the surfaces of said walls facing the discharge space are arranged with a mutual interspacing d, and the gas filling comprises one of the rare gases Xe and Kr as the excimer former, the excimer former having a partial pressure P which is smaller than a limit value Pg, in which lighting system the lamp is fed with an AC-voltage with an operating frequency f in the operational state, characterized in that the limit value Pg is smaller in proportion as the operating frequency f differs more from a frequency fM for which the limit value has a maximum PM, where PM = A+B*exp(C*d) and fM = D*dE, where it holds for xenon that A = 0.3 bar, B = 6 bar, and C = -1.3 mm⁻¹, with
    D = 200 kHz and E = -1.47 for d ≤2.75 mm, and
    D = 350 kHz and E = -2 for d > 2.75 mm,
    and where it holds for krypton that A = 0.75 bar, B = 150 bar, and C = -2.3 mm⁻¹, with
    D = 160 kHz and E = -1.74.
  2. The use of a lighting system as claimed in Claim 1, characterized in that the lamp is operated close to the operating point (PM, fM).
  3. A lighting system as claimed in Claim 1, characterized in that the gas filling comprises electronegative gases with a partial pressure PD of between 5 x 10⁻⁵ 5 and 5 x 10⁻⁴ times the partial pressure of the excimer former.
  4. A lighting system as claimed in Claim 1 or 3, characterized in that the gas filling in addition comprises at least one of the rare gases He, Ne, Ar, and Kr as a buffer gas when Xe is used as the excimer former, and at least one of the rare gases He, Ne, and Ar when Kr is used as the excimer former.
  5. A lighting system as claimed in Claim 4, characterized in that the total pressure Pges of the gas filling is smaller than four times the partial pressure P of the excimer former.
  6. A lighting system as claimed in any one of the Claims 1 and 3 to 5, characterized in that the discharge vessel has an inner layer of fluorescent material.
  7. A lighting system as claimed in any one of the Claims 1 and 3 to 6, characterized in that the discharge vessel has fluorescent vessel walls.
  8. A high-pressure glow discharge lamp for use in a lighting system as claimed in any one of the Claims 1 to 7, having the lamp characteristics as defined in any one of the Claims 1 and 3 to 7.
EP19920203930 1991-12-20 1992-12-15 Lighting system and high pressure glow discharge lamp to be used in said system Expired - Lifetime EP0549046B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19920203930 EP0549046B1 (en) 1991-12-20 1992-12-15 Lighting system and high pressure glow discharge lamp to be used in said system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP91203372 1991-12-20
EP91203372 1991-12-20
EP19920203930 EP0549046B1 (en) 1991-12-20 1992-12-15 Lighting system and high pressure glow discharge lamp to be used in said system

Publications (2)

Publication Number Publication Date
EP0549046A1 EP0549046A1 (en) 1993-06-30
EP0549046B1 true EP0549046B1 (en) 1996-03-27

Family

ID=26129524

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920203930 Expired - Lifetime EP0549046B1 (en) 1991-12-20 1992-12-15 Lighting system and high pressure glow discharge lamp to be used in said system

Country Status (1)

Country Link
EP (1) EP0549046B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025414B2 (en) * 1994-09-20 2000-03-27 ウシオ電機株式会社 Dielectric barrier discharge lamp device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH678128A5 (en) * 1989-01-26 1991-07-31 Asea Brown Boveri High power ultraviolet lamp with particle density control - heats and cools mercury reservoir connected to discharge space above dielectric covered wire counter electrode

Also Published As

Publication number Publication date
EP0549046A1 (en) 1993-06-30

Similar Documents

Publication Publication Date Title
EP0839436B1 (en) Method for operating a lighting system and suitable lighting system therefor
EP0733266B1 (en) Process for operating an incoherently emitting radiation source
EP0324953B1 (en) High power radiation source
DE10242895B4 (en) Method for evacuating a thermally insulating panel with plasma excitation
EP1048620B1 (en) Device for the disinfection of water using a UV-C-gas discharge lamp
EP0912991B1 (en) Flat fluorescent light for background lighting and liquid crystal display device fitted with said flat fluorescent light
EP0521553B1 (en) High-pressure glow discharge lamp
DE19718395C1 (en) Fluorescent lamp and method of operating it
EP0824761B1 (en) Process for operating a discharge lamp
DE60020476T2 (en) High frequency excited point light source lamp device
EP1137050A1 (en) Capacitive coupling structure for low pressure discharge lamp
DE69926706T2 (en) NIEDERDRUCKQUECKSILBERDAMPFEENTLADUNGSLAMPE
DE60033299T2 (en) HIGH PRESSURE DISCHARGE LAMP
EP0549046B1 (en) Lighting system and high pressure glow discharge lamp to be used in said system
DE3922865A1 (en) Mercury vapour lamp with solid-body recombination structure - is excited by HF energy in discharge space contg. fibre with specified surface-vol. ratio
EP0990262B1 (en) Discharge lamp with dielectrically impeded electrodes
DE19915617A1 (en) Gas discharge lamp
DE4203345A1 (en) High performance emitter, esp. for UV light - comprises discharge chamber filled with gas, and metallic outer electrodes coated with UV-transparent layer
DE4235743A1 (en) High power emitter esp. UV excimer laser with coated internal electrode - in transparent dielectric tube and external electrode grid, which has long life and can be made easily and economically
DE4208376A1 (en) High performance irradiator esp. for ultraviolet light - comprising discharge chamber, filled with filling gas, with dielectrics on its walls to protect against corrosion and erosion
EP1154456A2 (en) Plasma display panel with protective layer
EP0334355B1 (en) Wall-stabilized high-pressure discharge lamp
DE10126958A1 (en) Liquid crystal display with improved backlight
DE102006037859A1 (en) External electrode fluorescent lamp for background lighting of displays or screens, comprises a covering glass having an inner coating, which contains doping materials, and a gas mixture
Ciobotaru et al. Investigations of Buffer‐Gases Role in Xenon and Halogen Excimer Mixtures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19931222

17Q First examination report despatched

Effective date: 19950127

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960327

REF Corresponds to:

Ref document number: 59205853

Country of ref document: DE

Date of ref document: 19960502

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960430

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051220

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080208

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071221

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231