EP0547212A1 - Neodymium-doped gehlenite crystal and laser using same - Google Patents

Neodymium-doped gehlenite crystal and laser using same

Info

Publication number
EP0547212A1
EP0547212A1 EP92915597A EP92915597A EP0547212A1 EP 0547212 A1 EP0547212 A1 EP 0547212A1 EP 92915597 A EP92915597 A EP 92915597A EP 92915597 A EP92915597 A EP 92915597A EP 0547212 A1 EP0547212 A1 EP 0547212A1
Authority
EP
European Patent Office
Prior art keywords
laser
crystal
doped
neodymium
gehlenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92915597A
Other languages
German (de)
French (fr)
Inventor
Anne-Marie Lejus
Daniel Vivien
Robert Collongues
Driss Saber
Jean-Marie 567 Rue De La Gare Benitez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP0547212A1 publication Critical patent/EP0547212A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1688Stoichiometric laser compounds, i.e. in which the active element forms one component of a stoichiometric formula rather than being merely a dopant
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/34Silicates

Definitions

  • the subject of the present invention is crystals, and more particularly neodymium doped gehlenite monocrystals. It finds an application, either in the field of microlasers for integrated optics, telecommunications by optical fibers, medicine (microsurgery, skin treatment) and for the study of semiconductors, or in the field of laser power making it possible in particular to carry out materials treatments (welds, drilling, markings, surface treatments), photochemical reactions, controlled thermonuclear fusion or polarization of the atoms of a gas such as helium. These lasers emit in the infrared being 870 and 1130nm.
  • the invention applies to lasers optically pumped by laser diode and capable of being tunable in wavelength between 1050 and 1100 nm.
  • YAG yttrium aluminum garnet Y 3 Al 5 O 12
  • Nd 3+ Nd 3+ .
  • this material is not without drawbacks; indeed, it exhibits crystallogenesis at a high temperature of 1900-2000 ° C., making it difficult and expensive, segregation of the dopant, narrow absorption bands, etc.
  • search for new matrices required on the other hand by the increasingly remarkable performances, required for new lasers: very high efficiency, miniaturization, emission at wavelengths varied.
  • matrices capable of being doped with Nd 3+ have been proposed in the literature.
  • these matrices mention may be made of compounds of the melilite type ALaG a 3O 7 , gehlenite AGa 2 SiO 7 and akermanite A MGe 2 O 2+ in which A represents the lons Ca 2+ , Sr 2 + 2 or Ba and M represent the ions Be 2+ , Mg 2+ or Zn 2+ .
  • these compounds have a conductiv i t t h e rm i that makes an t d i f f i c i e the ev a c u a t i on heat when used as a laser emitter in a power laser.
  • This high laser efficiency requires a perfect coincidence between the emission line of the diode and the maximum of the absorption band relative to the single crystal.
  • the diode temperature is generally controlled by a Peltier element.
  • This Peltier element has a high electrical consumption, which partly ruins the advantage of the high diode pumping efficiency.
  • Nd 3+ has been proposed for diode pumping (see HR Verdun et al., Tunable Solid State Lasers IV, 1990, p. 405-407, "Growth and characterization of Nd doped aluminates and galates with the mililite structure ").
  • This material has the advantage of a wide line, from around 10 nm to around 810 nm, corresponding to the emission wavelength of the laser diodes generally used. However, the stimulated emission has not yet been obtained to date with this compound.
  • the subject of the invention is a new material, free of gallium, capable of being optically pumped by a laser diode without using any element.
  • LNAs lanthaneneodymium magnesium aluminates
  • the LNA can be optically pumped by laser diode provided that a Peltier element for controlling the temperature of the diode, such as YAG, is used.
  • the subject of the invention is therefore a gehlenite crystal doped with neodymium, which can be used as a laser transmitter, making it possible to remedy in particular the various drawbacks mentioned above.
  • this compound can be produced in monocrystalline form of large dimensions, free of bubbles and defects, by the Czochralski method.
  • This gehlenite single crystal can therefore be used in the power laser industry.
  • the subject of the invention is a neodymium-doped gehlenite crystal of formula Ca 2-x Nd x Al 2 + x Si 1-x O 7 with 0 ⁇ x ⁇ 1.
  • the crystallogenesis of this crystal according to the Czochralski method is well controlled and can be carried out without risk because there is no volatilization of the constituents. It is carried out at temperatures lower than those used for YAG (around 1600 ° C.) and there is no segregation of the neodymium dopant. The fusion of this compound is congruent, hence the possibility of developing large crystals which can be used as a laser emitter in a power laser.
  • the mesh of the gehlenite of the invention is smaller than that of the gallium counterparts, which leads to modifications of the crystal field and therefore of the optical properties themselves.
  • the crystallographic structure is more disordered than that of BaLaGa O 7 : Nd. Indeed, if in the latter the site of Nd 3 + 3 is surrounded only by Ga 3+ ions, in Ca 2 Al 2 SiO 7 : Nd 3+ , this same site is surrounded by both Al ions and Si 4+ ions.
  • the compound of the invention is intended to be used as a laser emitter emitting in the infrared, both in power lasers and in microlasers.
  • the subject of the invention is a laser comprising a laser cavity containing as a light emitter a single crystal, means for amplifying the light coming from the single crystal, means for extracting the light from the laser cavity and means pumping, characterized in that the single crystal is a neodymium doped gehlenite of formula Ca 2-x Nd x Al 2 + x Si 1-x O 7 with 0 ⁇ x ⁇ 1.
  • x is chosen so that
  • a v an t a g eu s e x is chosen so that 0.01 ⁇ x ⁇ 0.2 and better still from 0.025 to 0.05.
  • Preferably x is 0.04.
  • the disorder of the structure is reflected in particular by a widening of the emission bands.
  • the transition 4 F 3/2 ⁇ > 4 I 11/2 which is at the origin of the main laser emission, presents an important contribution from 1.05um until around 1.10 ⁇ m, which is remarkable if we consider that for the YAG the laser wavelength is 1.064um. It can be used to tune the laser emission as in the LNA.
  • the crystal of the invention has a wide range of tunability in wavelength, currently the largest existing for a neodymium doped laser crystal, with the exception of glasses.
  • the material of the invention for the envisaged laser application is that it is suitable for pumping by laser diode.
  • the optical absorption spectrum of Nd 3+ in this compound has the same appearance as those of other laser matrices activated with Nd 3+ but with the particularity that here, it is the band around 800nm ( 4 I 9 / 2 ⁇ > 4 F 5/2 , 2 H 9/2 ) which is the most intense while in most of the other cases, it is the hypersensitive transition (towards
  • this absorption band is very wide as a result of the disorder between Ca 2+ and Nd 3+ and between Al 3+ and Si 4+ , and completely covers the emission domain of the diode. Also, even if there is a wavelength drift of the latter, the absorption will be sufficient.
  • Nd 3+ sites have very low symmetry
  • FIGS. 1 and 2 show schematically the fluorescence spectrum at 300K of a gehlenite crystal according to the invention
  • FIG. 3 gives the variations in the fluorescence intensity as a function of the neodymium content
  • FIG. 4 gives part of the absorption spectrum of a crystal according to the invention
  • FIG. 5 gives, by way of comparison, part of the absorption spectrum of a monocrystal of LNA doped with neodymium
  • FIG. 7 schematically shows a power laser according to the invention, optically pumped by a laser diode.
  • the starting materials used are in the form of a powder with a particle size of 1 to 10 ⁇ m and have a purity greater than 99.99% in order to obtain as high a yield as possible for laser emission.
  • the sintered mixture is then placed in an iridium crucible and brought to a temperature of 1600 ° C. corresponding to the melting temperature of the mixture.
  • the drawing is carried out under an argon or nitrogen atmosphere from a seed having the desired orientation.
  • the drawing speed varies from 0.5 to 1 mm per hour and the rotation speed varies around 40 rpm.
  • any other method of crystallogenesis using a molten bath such as the Bridgmann method, of the floating zone, of
  • Kyropoulos or self-crucible can be used.
  • a perfectly monocrystalline sample can be isolated from the crystal obtained according to the Czochralski method, by cleavage or by cutting and polishing, so as to obtain two strictly parallel faces; this sample can then be placed in a laser cavity as shown in Figure 5 and be optically pumped by a laser diode emitting at around 800nm.
  • FIGS. 1 and 2 the variations in the fluorescence intensity I f (in arbitrary units) are represented diagrammatically as a function of the wavelength expressed in nanometers, at 300K for a gehlenite of the invention.
  • Figure 1 relates to the optical transition 4 F 3/2 ⁇ > 4 I 11/2 the most interesting from the laser point of view and Figure 2 corresponds to the transition 4 F 3/2 ⁇ > 4 I 13/2 ; this last transition is of interest for the transmission of information by optical fibers. It can be seen from these curves that the laser emission takes place over a wide band, from 1050 to 1100nm for the 4 F 3/2 transition ⁇ > 4 I 11/2 and from 1300 to 1430nm for the 4 F 3 transition / 2 ⁇ > 4 I 13/2 .
  • the crystals of the invention have a broad wavelength tunability as well as a laser emission with a longer wavelength than that of most other laser crystals doped with neodymium.
  • the neodymium-doped LNA emits at 1054nm, 1083nm and 1320nm with a wavelength tunability of a few nm (less than 10nm) and the neodymium-doped YAG emits at 1064nm with a tunability of less than 0 , 6 nm.
  • the crystal of the invention also emits between 870 and 930nm, which corresponds to the transition 4 F 3/2 ⁇ > 4I 9/2 .
  • x indicates the quantity of Nd 3+ ions
  • the two middle columns give the short and long lifetime of the laser effect
  • the last column gives the fluorescence intensity in arbitrary units.
  • Compound number 2 is. the one with the best laser properties.
  • FIG. 3 gives the variations in the fluorescence intensity If (in arbitrary units) as a function of the doping rate x in neodymium in crystals of formula (I).
  • the curve of Figure 3 was determined experimentally.
  • FIG. 4 the absorption spectrum of a gehlenite crystal of the invention has been represented and in FIG. 5, the absorption spectrum of an LNA crystal from p o a to n eo d ym e.
  • the absorption spectrum of the Nd 3+ doped gehlenite according to the invention has an intense and wide absorption band around 800 nm.
  • the peaks A and B correspond respectively to absorption wavelengths of 797.1 nm and 806.7 nm. It is in this wavelength range that the laser diodes emit.
  • the crystals of the invention also have an absorption band around 590 nm (hypersensitive domain), peak C of the absorption curve, like the most other neodymium doped materials, but this absorption band, unlike other neodymium doped compounds, is much less intense than that around 800nm.
  • the optical pumping can be ensured between 790 and 820nm and thus cover the wavelength drift of the diode.
  • the crystals of the invention prove to be perfectly well suited for optical pumping by laser diode.
  • Figure 6 gives the variations of the laser emission power (in mW) versus pump power (mW) of a crystal composition of Ca 1 gehlenite, 98 Nd 0.02 Al 2.02 Si 0 , 98 O 7 . These curves established experimentally clearly prove that the crystals of the invention exhibit the laser effect.
  • FIG 7 there is shown schematically a power laser operating continuously, using as laser transmitter a crystal of the invention.
  • This laser comprises a laser cavity 2 containing a bar 4 of the compound number 2, arranged perpendicular to the longitudinal axis 3 of the laser, the axis c of the bar being coincident with the axis 3 of the laser.
  • the laser emission is located in the infrared
  • a device 5 of circulation of distilled water around the bar 4 ensures its cooling. However, no temperature control of the diode is provided.
  • the electric field of the pump light emitted by the diode is perpendicular to the axis c of the crystal.
  • the laser cavity 2 also consists of a converging lens 8 transforming the light emitted by the gehlenite bar 4 into a parallel beam of light which is sent to an exit mirror 10.
  • the light beam again crosses the converging lens 8 and the amplifying medium or bar 4.
  • the beam amplified laser is then reflected by a dichroic input mirror 12 near which is placed the bar 4; this mirror 12 is transparent to the light emitted by the monochromatic source 6 and opaque to that emitted by the single crystal of gehlenite 4.
  • the sufficiently amplified laser beam in the cavity 2 is then sent to the outside of the laser cavity, via the mirror 10, which is partially transparent to the light emitted by the gehlenite single crystal 4.
  • Wavelength tunability can be obtained using a wavelength selection system 14 interposed between the converging lens 8 and the output mirror 10 of the laser cavity 2, of the angle prism type Brewster filter or Lyot filter formed by several blades of birefringent material.
  • a solid standard 15 of the blade type with parallel faces can be interposed between the converging lens 8 and the Lyot filter 14 to fix the emission wavelength.
  • Diode 6 has the advantage of being extremely small, considerably reducing the total dimensions of the crystal laser; it emits at a wavelength around 800nm. However, the absorption spectrum of Figure 3 highlights a wide and intense absorption band around 800-805nm.
  • the laser diodes have an excellent efficiency of around 50% and the laser conversion is around 30 to 40%, which corresponds to a laser effect efficiency of at least 20% from electric current.
  • the single crystals of the invention can be used in all applications currently using a YAG type laser transmitter.
  • these single crystals can be used in lasers intended for cutting or marking materials as well as for welding.
  • these oxides have their own applications. They are particularly suitable for pumping by laser diodes and therefore for making miniaturized devices (military applications, scientific research, medical applications). In addition, their particular emission wavelengths and the tunability of the latter can be used to advantage in optical telecommunications or for the polarization of certain atoms by optical pumping.

Abstract

Le cristal selon l'invention présente la formule Ca2-xNdxAl2+xSi1-xO7 avec 0<x 1. Ce cristal peut être utilisé comme émetteur laser (4) pompé optiquement par une diode laser (6), dont la température n'est pas contrôlée par un composant à élément Peltier.The crystal according to the invention has the formula Ca2-xNdxAl2 + xSi1-xO7 with 0 <x 1. This crystal can be used as a laser emitter (4) optically pumped by a laser diode (6), the temperature of which is not controlled by a Peltier element component.

Description

CRISTAL DE GEHLENITE DOPEE AU NEODYME ET LASER UTILISANT CE CRISTAL DESCRIPTION  CRYSTAL OF GEHLENITE DOPED WITH NEODYME AND LASER USING THIS CRYSTAL DESCRIPTION
La présente invention a pour objet des cristaux, et plus spécialement des monocristaux de gehlenite dopée au néodyme. Elle trouve une application, soit dans le domaine des microlasers pour l'optique intégrée, les télécommunications par fibres optiques, la médecine (microchirurgie, traitement de la peau) et pour l'étude des semi-conducteurs, soit dans le domaine des lasers de puissance permettant notamment d'effectuer des traitements de matériaux (soudures, perçages, marquages, traitements de surfaces), des réactions photochimiques, la fusion thermonucléaire contrôlée ou la polarisation des atomes d'un gaz tel que l'hélium. Ces lasers émettent dans l'infrarouge e'tre 870 et 1130nm.  The subject of the present invention is crystals, and more particularly neodymium doped gehlenite monocrystals. It finds an application, either in the field of microlasers for integrated optics, telecommunications by optical fibers, medicine (microsurgery, skin treatment) and for the study of semiconductors, or in the field of laser power making it possible in particular to carry out materials treatments (welds, drilling, markings, surface treatments), photochemical reactions, controlled thermonuclear fusion or polarization of the atoms of a gas such as helium. These lasers emit in the infrared being 870 and 1130nm.
Plus partieulièrement, l'invention s'applique à des lasers pompés optiquement par diode laser et susceptibles d'être accordables en longueur d'onde entre 1050 et 1100 nm.  More particularly, the invention applies to lasers optically pumped by laser diode and capable of being tunable in wavelength between 1050 and 1100 nm.
Les lasers solides de puissance commerciaux, les plus couramment utilisés, font appel au grenat d'yttrium et d'aluminium Y3Al5O12 (YAG), dopé parThe most commonly used commercial solid-state lasers use yttrium aluminum garnet Y 3 Al 5 O 12 (YAG), doped with
Nd3+. Cependant, ce matériau n'est pas sans inconvénients ; en effet, il présente une cristallogénèse à température élevée de 1900-2000°C, la rendant difficile et coûteuse, une ségrégation du dopant, des bandes d'absorption étroites, etc. D'où la recherche de nouvelles matrices, nécessitée d'autre part par les performances de plus en plus remarquables, exigées pour des nouveaux lasers : rendement très élevé, miniaturisation, émission à longueurs d'onde variees. Nd 3+ . However, this material is not without drawbacks; indeed, it exhibits crystallogenesis at a high temperature of 1900-2000 ° C., making it difficult and expensive, segregation of the dopant, narrow absorption bands, etc. Hence the search for new matrices, required on the other hand by the increasingly remarkable performances, required for new lasers: very high efficiency, miniaturization, emission at wavelengths varied.
Aussi, de nombreuses matrices susceptibles d'être dopées par Nd3+ ont été proposées dans la littérature. Parmi ces matrices on peut citer les composés du type mélilite ALaGa3O7, gehlenite AGa2SiO7 et akermanite A MGe2O2+dans lesquelles A représente les lons Ca2+, Sr2+2ou Ba et M représent les ions Be2+, Mg2+ ou Zn2+. Also, many matrices capable of being doped with Nd 3+ have been proposed in the literature. Among these matrices, mention may be made of compounds of the melilite type ALaG a 3O 7 , gehlenite AGa 2 SiO 7 and akermanite A MGe 2 O 2+ in which A represents the lons Ca 2+ , Sr 2 + 2 or Ba and M represent the ions Be 2+ , Mg 2+ or Zn 2+ .
Ces composés présentent par rapport au grenat d'yttrium et d'aluminium dopé, le gros avantage de pouvoir être élaborés par la méthode Czochralski, la plus couramment utilisée dans l'industrie des lasers, à des températures près de 500°C plus basses. En outre, il n'y a pas de ségrégation du dopant luminophore.  These compounds have the great advantage over yttrium and doped aluminum garnet that they can be produced by the Czochralski method, the most commonly used in the laser industry, at temperatures close to 500 ° C lower. In addition, there is no segregation of the phosphor dopant.
Sous pompage optique par lampe flash, un certain nombre de ces composés présentent l'effet laser.  Under optical pumping by flash lamp, a certain number of these compounds exhibit the laser effect.
Le document A. Kaminskii et al. Phys. Stat. The document A. Kaminskii et al. Phys. Stat.
Sol. (a), 97, 1986, p. 279-290, "Crystal structure, absorption, luminescence, properties, and stimulated émission of Ga gehlenite" décrit l'émission stimulée dans un monocristal de Ca2Ga2SiO7 dopé aux ions néodyme. Ground. (a), 97, 1986, p. 279-290, "Crystal structure, absorption, luminescence, properties, and stimulated emission of Ga gehlenite" describes the stimulated emission in a single crystal of Ca 2 Ga 2 SiO 7 doped with neodymium ions.
L'article de W. Ryba-Romanowski et al., J. Phys. Chem. Solids, 50, 1989, p. 685-692, "Relaxation of the 3F3/ 2 level of Nd3+ in BaLa1-xNdxGa3O7 " décrit l'émission laser d'un monocristal de BaLa1-xNdxGa3O7 avec 0≤x≤0,2. The article by W. Ryba-Romanowski et al., J. Phys. Chem. Solids, 50, 1989, p. 685-692, "Relaxation of the 3 F 3/2 level of Nd 3+ in BaLa 1-x Nd x Ga 3 O 7" describes the laser emission of a single crystal of BaLa 1-x Nd x Ga 3 O 7 with 0≤x≤0.2.
L'article de D. J. Horowitz et al., J. Appl. Phys., Vol. 43, n°8, août 1972, "Laser action of Nd3+ in a crystal Ba2ZnGe2O7", p. 3527-3529 décrit l'effet laser d'un cristal de Ba2ZnGe2O7 dopé au néodyme à une quantité de 2% en mole. The article by DJ Horowitz et al., J. Appl. Phys., Vol. 43, n ° 8, August 1972, "Laser action of Nd 3+ in a crystal Ba 2 ZnGe 2 O 7 ", p. 3527-3529 describes the laser effect of a crystal of Ba 2 ZnGe 2 O 7 doped with neodymium in an amount of 2% by mole.
L'article de H. Alam et al., J. Appl. Phys. 39, 1968, "Optical spectra and laser action of neodynium in a crystal Ba2MgGe2O7", p. 4728-4730 décrit l'effet laser d'un cristal de Ba2MgGe2O7 dopé au néodyme à 2% en mole environ. The article by H. Alam et al., J. Appl. Phys. 39, 1968, "Optical spectra and laser action of neodynium in a crystal Ba 2 MgGe 2 O 7 ", pp. 4728-4730 describes the laser effect of a crystal of Ba 2 MgGe 2 O 7 doped with neodymium at about 2 mol%.
Tous ces composés présentent l'avantage de posséder une structure quadratique uniaxe alors que le cristal de YAG est cubique ; ceci permet d'obtenir une émission polarisée.  All of these compounds have the advantage of having a uniaxial quadratic structure while the YAG crystal is cubic; this makes it possible to obtain a polarized emission.
Malheureusement, tous ces composés présentent l'inconvénient de contenir une quantité importante de gallium, or cet élément est cher. De plus, il est instable à l'état d'oxydation 3+ à haute température, selon les atmosphères de travail, avec possibilité de volâtilisation. Unfortunately, all of these compounds have the disadvantage of containing a large amount of gallium, but this element is expensive. In addition, it is unstable in the 3 + oxidation state at high temperature, depending on the working atmospheres, with the possibility of sputtering.
Par ailleurs, du fait de la volatilisation du gallium, les cristaux obtenus par croissance Czochralski présentent des qualités insuffisantes dès qu'il s'agit d'atteindre les grandes dimensions requises par l'industrie des lasers de puissance.  Furthermore, due to the volatilization of gallium, the crystals obtained by Czochralski growth exhibit insufficient qualities when it comes to achieving the large dimensions required by the power laser industry.
De plus, ces composés présentent une conductiv i t é t h e rm i que rend an t d i f f i c i l e l ' év a c u a t i on de l a chaleur lors de leur utilisation comme émetteur laser dans un laser de puissance.  In addition, these compounds have a conductiv i t t h e rm i that makes an t d i f f i c i e the ev a c u a t i on heat when used as a laser emitter in a power laser.
Dans le domaine des microlasers, la miniaturisation des lasers solides passe par l'emploi de diodes lasers pour le pompage optique présentant des dimensions beaucoup plus petites que celles des lampes flash. En outre, les diodes lasers sont d'une grande fiabilité et présentent des rendements lasers très supérieurs à ceux des lampes flash (10 fois plus élevés).  In the field of microlasers, the miniaturization of solid lasers involves the use of laser diodes for optical pumping having dimensions much smaller than those of flash lamps. In addition, laser diodes are very reliable and have laser yields much higher than those of flash lamps (10 times higher).
Ce haut rendement laser nécessite une coïncidence parfaite entre la raie d'émission de la diode et le maximum de la bande d'absorption relative au monocristal.  This high laser efficiency requires a perfect coincidence between the emission line of the diode and the maximum of the absorption band relative to the single crystal.
Du fait de la dérive en longueur d'onde de l'émission de la diode, lors de la montée en puissance, résultant de l'échauffement de la diode, il est nécessaire d'utiliser un système de contrôle de la température de la diode de façon à compenser cette dérive en longueur d'onde. Due to the wavelength drift of the emission of the diode, during the rise in power, resulting from the heating of the diode, it is necessary to use a system for controlling the temperature of the diode so as to compensate for this wavelength drift .
Le contrôle de la température de la diode est généralement assuré par un élément Peltier. Malheureusement, cet élément Peltier présente une consommation électrique élevée, ce qui ruine en partie l'intérêt du fort rendement de pompage par diode.  The diode temperature is generally controlled by a Peltier element. Unfortunately, this Peltier element has a high electrical consumption, which partly ruins the advantage of the high diode pumping efficiency.
Seul un cristal présentant des bandes d'absorption larges et intenses dans le domaine d'émission des diodes permettant de couvrir leur dérive en longueur d'onde pourrait permettre de s'affranchir de cet élément Peltier.  Only a crystal having broad and intense absorption bands in the emission domain of the diodes which makes it possible to cover their wavelength drift could make it possible to overcome this Peltier element.
Aussi, très récemment, un composé du type mélilite SrGdGa3O7 dopée à 2% en atome par des ionsAlso, very recently, a compound of the melilite type SrGdGa 3 O 7 doped to 2% in atom by ions
Nd3+ a été proposé pour le pompage par diode (voir à cet effet le document H.R. Verdun et al., Tunable Solid State Lasers IV, 1990, p. 405-407, "Growth and characterization of Nd doped aluminates and galates with the mililite structure"). Nd 3+ has been proposed for diode pumping (see HR Verdun et al., Tunable Solid State Lasers IV, 1990, p. 405-407, "Growth and characterization of Nd doped aluminates and galates with the mililite structure ").
Ce matériau présente l'avantage d'une raie large, de 10 nm environ vers 810 nm, correspondant à la longueur d'onde d'émission des diodes lasers généralement utilisées. Cependant, l'émission stimulée n'a pas encore été obtenue à ce jour avec ce composé. This material has the advantage of a wide line, from around 10 nm to around 810 nm, corresponding to the emission wavelength of the laser diodes generally used. However, the stimulated emission has not yet been obtained to date with this compound.
D'autre part, celui-ci contient, comme les précédents composés, du gallium en grande quantité. On the other hand, it contains, like the previous compounds, gallium in large quantities.
Aussi, l'invention a pour objet un nouveau matériau, exempt de gallium, susceptible d'être pompé optiquement par une diode laser sans utiliser d'élément Also, the subject of the invention is a new material, free of gallium, capable of being optically pumped by a laser diode without using any element.
Peltier pour le contrôle de la température de cette dernière. Peltier for temperature control of the latter.
Comme matériau exempt de gallium pouvant remplacer le YAG et. ne présentant pas ses inconvénients de cristallogénèse et de ségrégation du dopant activateur, on connaît les aluminates de lanthanenéodyme-magnésium, appelés LNA de formule chimique La1-xNdxMgAl11O19 avec 0<x≤1 et en particulier avec x=0,1. As a gallium-free material which can replace the YAG and. not having its drawbacks of crystallogenesis and segregation of the activating dopant, lanthaneneodymium magnesium aluminates are known, called LNAs with the chemical formula La 1-x Nd x MgAl 11 O 19 with 0 <x≤1 and in particular with x = 0.1.
Ces aluminates ont fait l'objet des brevets These aluminates have been the subject of patents
FR-A-2 448 134 et EP-A-O 043 776 et de la publication de L.D. Schearer et al., IEEE Journal of Quantum Electronics, vol. QE-22, n°5 de mai 1986, p. 713-717, "LNA : a new CW Nd laser tunable around 1,05 and 1,08μm". Les monocristaux de ces aluminates présentent des propriétés optiques comparables à celles que possède le YAG dopé au néodyme. FR-A-2 448 134 and EP-A-O 043 776 and from the publication by L.D. Schearer et al., IEEE Journal of Quantum Electronics, vol. QE-22, n ° 5 of May 1986, p. 713-717, "LNA: a new CW Nd laser tunable around 1,05 and 1,08μm". The single crystals of these aluminates have optical properties comparable to those possessed by neodymium-doped YAG.
Mais là encore la fabrication de ces aluminates sous forme de monocristaux de grandes dimensions par la méthode Czochralski selon l'axe optique qui serait optimum pour les propriétés lasers pose problème et conduit à des cristaux de qualité insuffisante dès qu'il s'agit d'atteindre les grandes dimensions requises pour les lasers de puissance.  But here again the manufacture of these aluminates in the form of large single crystals by the Czochralski method along the optical axis which would be optimum for the laser properties poses a problem and leads to crystals of insufficient quality as soon as it is a question of achieve the large dimensions required for power lasers.
Dans le domaine des microlasers, le LNA peut être pompé optiquement par diode laser à condition d'utiliser un élément Peltier de contrôle en température de la diode, comme le YAG.  In the field of microlasers, the LNA can be optically pumped by laser diode provided that a Peltier element for controlling the temperature of the diode, such as YAG, is used.
L'invention a donc pour objet un cristal de gehlenite dopée au néodyme, utilisable comme émetteur laser permettant de remédier notamment aux différents inconvénients mentionnés ci-dessus.  The subject of the invention is therefore a gehlenite crystal doped with neodymium, which can be used as a laser transmitter, making it possible to remedy in particular the various drawbacks mentioned above.
En particulier, ce composé peut être réalisé sous forme monocristalline de grandes dimensions, exempt de bulle et de défaut, par la méthode Czochralski. Ce monocristal de gehlenite peut donc être utilisé dans l'industrie des lasers de puissance.  In particular, this compound can be produced in monocrystalline form of large dimensions, free of bubbles and defects, by the Czochralski method. This gehlenite single crystal can therefore be used in the power laser industry.
En outre, il peut être utilisé dans le domaine des microlasers avec un pompage par diode sans utiliser d'élément Peltier. Son rendement énergétique ainsi que son coût énergétique sont donc très inférieurs à ceux des microlasers à cristal connus. In addition, it can be used in the field of microlasers with diode pumping without using a Peltier element. Its energy efficiency as well as its energy cost are therefore much lower than those of known crystal microlasers.
De façon plus précise, l'invention a pour objet un cristal de g e h l e n i t e dopée au néodyme de formule Ca2-xNdxAl2+xSi1-xO7 avec 0<x≤1. More specifically, the subject of the invention is a neodymium-doped gehlenite crystal of formula Ca 2-x Nd x Al 2 + x Si 1-x O 7 with 0 <x≤1.
La cristallogénèse de ce cristal selon la méthode Czochralski est bien maîtrisée et peut s'opérer sans risque du fait qu'il n'y a pas de volatilisation des constituants. Elle est réalisée à des températures inférieures à celles utilisées pour le YAG (aux environs de 1600°C) et il n'y a pas de ségrégation du dopant néodyme. La fusion de ce composé est congruente, d'où la possibilité d'élaborer de gros cristaux pouvant être utilisés comme émetteur laser dans un laser de puissance.  The crystallogenesis of this crystal according to the Czochralski method is well controlled and can be carried out without risk because there is no volatilization of the constituents. It is carried out at temperatures lower than those used for YAG (around 1600 ° C.) and there is no segregation of the neodymium dopant. The fusion of this compound is congruent, hence the possibility of developing large crystals which can be used as a laser emitter in a power laser.
Par rapport à son homologue au gallium Ca2Ga2SiO7:Nd), le cristal de l'invention présente une meilleure inertie chimique ainsi qu'une dureté plus élevée lui conférant ainsi une meilleure tenue mécanique. Il contient de l'aluminium et non du gallium, élément de beaucoup moins cher. En outre, il doit présenter une conductivité thermique plus élevée que celle de l'homologue au gallium. En effet, dans l'expression de la conductivité thermique K=C.v.l, C qui est la capacité calorifique par unité de volume croît si la masse moléculaire décroît ; v représente la vitesse des phonons dans le cristal et l le libre parcours moyen des phonons. Compared to its gallium counterpart Ca 2 Ga 2 SiO 7 : Nd), the crystal of the invention has better chemical inertness as well as higher hardness, thus giving it better mechanical strength. It contains aluminum, not gallium, which is much cheaper. In addition, it must have a higher thermal conductivity than that of the gallium counterpart. Indeed, in the expression of the thermal conductivity K = Cvl, C which is the heat capacity per unit of volume increases if the molecular mass decreases; v represents the speed of the phonons in the crystal and l the mean free path of the phonons.
Cristallographiquement, la maille de la gehlenite de l'invention est plus petite que celle des homologues au gallium, ce qui entraîne des modifications du champ cristallin et donc des propriétés optiques elles-mêmes. En particulier, la structure cristallographique est plus désordonnée que celle du BaLaGa O7:Nd. En effet, si dans ce dernier le site de Nd3+3 n'est entouré que d'ions Ga3+, dans Ca2Al2SiO7:Nd3+, ce même site est environné à la fois d'ions Al et d'ions Si4+. Crystallographically, the mesh of the gehlenite of the invention is smaller than that of the gallium counterparts, which leads to modifications of the crystal field and therefore of the optical properties themselves. In particular, the crystallographic structure is more disordered than that of BaLaGa O 7 : Nd. Indeed, if in the latter the site of Nd 3 + 3 is surrounded only by Ga 3+ ions, in Ca 2 Al 2 SiO 7 : Nd 3+ , this same site is surrounded by both Al ions and Si 4+ ions.
Il est possible d'accentuer ce désordre en effectuant des substitutions sur les trois types de sites cationiques.  It is possible to accentuate this disorder by making substitutions on the three types of cationic sites.
Le composé de l'invention est destiné à être utilisé comme émetteur laser émettant dans l'infrarouge, aussi bien dans des lasers de puissance que dans des microlasers.  The compound of the invention is intended to be used as a laser emitter emitting in the infrared, both in power lasers and in microlasers.
Aussi, l'invention a pour objet un laser comportant une cavité laser renfermant comme émetteur de lumière un monocristal, des moyens d'amplification de la lumière issue du monocristal, des moyens d'extraction de la lumière hors de la cavité laser et des moyens de pompage, se caractérisant en ce que le monocristal est une gehlenite dopée au néodyme de formule Ca2-xNdxAl2+xSi1-xO7 avec 0<x<1. Also, the subject of the invention is a laser comprising a laser cavity containing as a light emitter a single crystal, means for amplifying the light coming from the single crystal, means for extracting the light from the laser cavity and means pumping, characterized in that the single crystal is a neodymium doped gehlenite of formula Ca 2-x Nd x Al 2 + x Si 1-x O 7 with 0 <x <1.
En particulier, x est choisi de sorte que In particular, x is chosen so that
0<x≤0,3. De façon a v an t a g eu s e x est choisi de sorte que 0,01≤x≤0,2 et mieux encore de 0,025 à 0,05. De préférence, x vaut 0,04. 0 <x≤0.3. A v an t a g eu s e x is chosen so that 0.01≤x≤0.2 and better still from 0.025 to 0.05. Preferably x is 0.04.
Le désordre de la structure se traduit notamment par un élargissement des bandes d'émission. La transition 4F3/2╌>4I11/2, qui est à l'origine de l'émission laser principale, présente une contribution importante depuis 1,05um jusque vers 1.10μm, ce qui est remarquable si l'on considère que pour le YAG la longueur d'onde laser est de 1,064um. On peut en tirer parti pour accorder l'émission laser comme dans le LNA. The disorder of the structure is reflected in particular by a widening of the emission bands. The transition 4 F 3/2 ╌> 4 I 11/2 , which is at the origin of the main laser emission, presents an important contribution from 1.05um until around 1.10μm, which is remarkable if we consider that for the YAG the laser wavelength is 1.064um. It can be used to tune the laser emission as in the LNA.
Ainsi, le cristal de l'invention présente une large plage d'accordabilité en longueur d'onde, actuellement la plus large existant pour un cristal laser dopé au néodyme, à l'exception des verres. Thus, the crystal of the invention has a wide range of tunability in wavelength, currently the largest existing for a neodymium doped laser crystal, with the exception of glasses.
La durée de vie de l'état excité est de l'ordre de 280μs pour x=0,02 ; pour x=0,1 elle est de l'ordre de 160μs. Pour x=0,2, le temps de vie est encore de 30μs, valeur élevée pour un tel taux de dopage.  The lifetime of the excited state is of the order of 280 μs for x = 0.02; for x = 0.1 it is of the order of 160μs. For x = 0.2, the lifetime is still 30 μs, a high value for such a doping rate.
Le gros intérêt du matériau de l'invention pour l'application laser envisagée, est qu'il est adapté au pompage par diode laser. En effet, le spectre d'absorption optique de Nd3+ dans ce composé présente la même allure que ceux des autres matrices laser activées au Nd3+ mais avec la particularité qu'ici, c'est la bande vers 800nm (4I9/2╌> 4F5/2, 2H9/2) qui est la plus intense tandis que dans la plupart des autres cas, c'est la transition hypersensible (versThe great advantage of the material of the invention for the envisaged laser application is that it is suitable for pumping by laser diode. Indeed, the optical absorption spectrum of Nd 3+ in this compound has the same appearance as those of other laser matrices activated with Nd 3+ but with the particularity that here, it is the band around 800nm ( 4 I 9 / 2 ╌> 4 F 5/2 , 2 H 9/2 ) which is the most intense while in most of the other cases, it is the hypersensitive transition (towards
580nm) qu'est la plus intense. 580nm) which is the most intense.
Ce résultat est particulièrement remarquable car cette longueur d'onde (vers 800nm) correspond exactement au domaine d'émission des diodes lasers.  This result is particularly remarkable because this wavelength (around 800nm) corresponds exactly to the emission range of laser diodes.
De plus, cette bande d'absorption est très large par suite du désordre entre Ca2+ et Nd3+ et entre Al3+ et Si4+, et recouvre totalement le domaine d'émission de la diode. Aussi, même s'il y a dérive en longueur d'onde de cette dernière, l'absorption sera suffisanté. In addition, this absorption band is very wide as a result of the disorder between Ca 2+ and Nd 3+ and between Al 3+ and Si 4+ , and completely covers the emission domain of the diode. Also, even if there is a wavelength drift of the latter, the absorption will be sufficient.
Les sites de Nd3+ sont de très basse symétrieNd 3+ sites have very low symmetry
(Cs) ; ils favorisent donc une intensité élevée des bandes d'absorption. (Cs); they therefore favor a high intensity of the absorption bands.
Les valeurs des forces d'oscillateur calculées pour un indice de réfraction n=1,77 sont. particulièrement élevées ; la plus importante (7,35.10-6) correspond bien à la transition 4I9/2╌> 4F5 /2, 2H9/2 vers 800nm. The values of the oscillator forces calculated for a refractive index n = 1.77 are. particularly high; largest (7,35.10 -6) corresponds to the transition 4 I 9/2 ╌> 4 F 5/2, 2 9/2 H to 800nm.
D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, donnée à titre p u rement illustratif et non limitatif, en référence aux dessins annexés, dans lesquels : Other features and benefits of the invention will emerge more clearly from the description which follows, given purely by way of illustration and without limitation, with reference to the appended drawings, in which:
- les figures 1 et 2 représentent s c héma t i quement le spectre de fluorescence à 300K d'un cristal de gehlenite conforme à l'invention,  FIGS. 1 and 2 show schematically the fluorescence spectrum at 300K of a gehlenite crystal according to the invention,
- la figure 3 donne les variations de l'intensité de fluorescence en fonction de la teneur en néodyme,  FIG. 3 gives the variations in the fluorescence intensity as a function of the neodymium content,
- la figure 4 donne une partie du spectre d'absorption d'un cristal selon l'invention,  FIG. 4 gives part of the absorption spectrum of a crystal according to the invention,
- la figure 5 donne, à titre de comparaison, une partie du spectre d'absorption d'un monocristal de LNA dopé au néodyme,  FIG. 5 gives, by way of comparison, part of the absorption spectrum of a monocrystal of LNA doped with neodymium,
- la figure 6 donne la puissance laser émise en fonction de la puissance de pompe pour un cristal de gehlenite avec x=0,02, et  FIG. 6 gives the laser power emitted as a function of the pump power for a gehlenite crystal with x = 0.02, and
- la figure 7 représente schématiquement un laser de puissance conforme à l'invention, pompé optiquement par une diode laser.  - Figure 7 schematically shows a power laser according to the invention, optically pumped by a laser diode.
Pour fabriquer un cristal de gehlenite dopée au néodyme, de formule (I) :  To make a neodymium doped gehlenite crystal of formula (I):
(I) Ca2-xNdxAl2+xSi1-xO7, (I) Ca 2-x Nd x Al 2 + x Si 1-x O 7 ,
on utilise des poudres du commerce de haute pureté, du carbonate de calcium, des oxydes de néodyme et d'aluminium ainsi que de la silice que l'on pèse dans les proportions désirées. Ces poudres sont mélangées plusieurs heures à l'aide d'un agitateur mécani que pu i s comprimées sous forme de cylindre. Un frittage de 20 heures à 1450°C est effectué pour obtenir l'aluminosilicate de calcium dopé destiné à former le bain fondu. high-purity commercial powders, calcium carbonate, neodymium and aluminum oxides are used, as well as silica which is weighed in the desired proportions. These powders are mixed for several hours using a mechanical stirrer which can be compressed into a cylinder. Sintering for 20 hours at 1450 ° C. is carried out to obtain the doped calcium aluminosilicate intended to form the molten bath.
Les produits de départ utilisés se présentent sous forme d'une poudre de granulométrie de 1 à 10μm et ont une pureté supérieure à 99,99% afin d'obtenir un rendement aussi élevé que possible pour l'émission laser. The starting materials used are in the form of a powder with a particle size of 1 to 10 μm and have a purity greater than 99.99% in order to obtain as high a yield as possible for laser emission.
Le mélange fritte est alors placé dans un creuset d'iridium et amené à une température de 1600°C correspondant à la température de fusion du mélange. Le tirage s'effectue sous atmosphère d'argon ou d'azote à partir d'un germe ayant l'orientation voulue. The sintered mixture is then placed in an iridium crucible and brought to a temperature of 1600 ° C. corresponding to the melting temperature of the mixture. The drawing is carried out under an argon or nitrogen atmosphere from a seed having the desired orientation.
Généralement le tirage se fait selon l'axe c du cristal. Generally the drawing is done along the axis c of the crystal.
La vitesse de tirage varie de 0,5 à 1 mm par heure et la vitesse de rotation varie autour de 40 tours/min.  The drawing speed varies from 0.5 to 1 mm per hour and the rotation speed varies around 40 rpm.
Bien entendu, toute autre méthode de cristallogénèse utilisant un bain fondu telle que la méthode de Bridgmann, de la zone flottante, de Of course, any other method of crystallogenesis using a molten bath such as the Bridgmann method, of the floating zone, of
Kyropoulos ou de l'auto-creuset peut être utilisée. Kyropoulos or self-crucible can be used.
Un échantillon parfaitement monocristallin peut être isolé du cristal obtenu selon la méthode Czochralski, par clivage ou par découpe et polissage, de manière à obtenir deux faces rigoureusement parallèles ; cet échantillon peut alors être placé dans une cavité laser telle que représenté sur la figure 5 et être pompé optiquement par une diode laser émettant à 800nm environ.  A perfectly monocrystalline sample can be isolated from the crystal obtained according to the Czochralski method, by cleavage or by cutting and polishing, so as to obtain two strictly parallel faces; this sample can then be placed in a laser cavity as shown in Figure 5 and be optically pumped by a laser diode emitting at around 800nm.
Sur les figures 1 et 2, on a représenté schématiquement les variations de l'intensité de fluorescence If (en unité arbitraire) en fonction de la longueur d'onde exprimée en nanomètres, à 300K pour une gehlenite de l'invention. La figure 1 est relative à la transition optique 4F3/2╌> 4I11/2 la plus intéressante du point vue laser et la figure 2 correspond à la transition 4F3/2╌> 4I13/2 ; cette dernière transition présente un intérêt pour la transmission d'information par fibres optiques. On constate d'après ces courbes que l'émission laser s'effectue sur une large bande, de 1050 à 1100nm pour la transition 4F3/2╌> 4I11/2 et de 1300 à 1430nm pour la transition 4F3/2╌> 4I13/2. In FIGS. 1 and 2, the variations in the fluorescence intensity I f (in arbitrary units) are represented diagrammatically as a function of the wavelength expressed in nanometers, at 300K for a gehlenite of the invention. Figure 1 relates to the optical transition 4 F 3/2 ╌> 4 I 11/2 the most interesting from the laser point of view and Figure 2 corresponds to the transition 4 F 3/2 ╌> 4 I 13/2 ; this last transition is of interest for the transmission of information by optical fibers. It can be seen from these curves that the laser emission takes place over a wide band, from 1050 to 1100nm for the 4 F 3/2 transition ╌> 4 I 11/2 and from 1300 to 1430nm for the 4 F 3 transition / 2 ╌> 4 I 13/2 .
Ainsi, les cristaux de l'invention présentent une large accordabilité en longueur d'onde ainsi qu'une émission laser à plus grande longueur d'onde que celle de la plupart des autres cristaux lasers dopés au néodyme. En particulier, le LNA dopé au néodyme émet à 1054nm, 1083nm et 1320nm avec une accordabi li té en longueur d'onde de quelques nm (inférieure à 10nm) et le YAG dopé au néodyme émet à 1064nm avec une accordabi li té inférieure à 0,6 nm.  Thus, the crystals of the invention have a broad wavelength tunability as well as a laser emission with a longer wavelength than that of most other laser crystals doped with neodymium. In particular, the neodymium-doped LNA emits at 1054nm, 1083nm and 1320nm with a wavelength tunability of a few nm (less than 10nm) and the neodymium-doped YAG emits at 1064nm with a tunability of less than 0 , 6 nm.
Ces spectres de fluorescence ont été obtenus en utilisant une longueur d'onde d'excitation de 577 nm, correspondant a la transition 4I9/2╌>4G5/2, 2G7/2 en absorption du cristal, et une composition x en néodyme de 0,02. Notons toutefois que l'allure générale ce spectre est valable quelle que soit la quantité de néodyme ; seule l'intensité d'absorption peut être légèrement différente. These fluorescence spectra were obtained using an excitation wavelength of 577 nm, corresponding to the transition 4 I 9/2 ╌> 4 G 5/2 , 2 G 7/2 in absorption of the crystal, and a composition x in neodymium of 0.02. Note however that the general appearance of this spectrum is valid regardless of the amount of neodymium; only the absorption intensity may be slightly different.
Bien que cela n'apparaisse pas sur les courbes, le cristal de l'invention émet aussi entre 870 et 930nm, ce qui correspond à la transition 4F3/2╌> 4I9/2. Although this does not appear on the curves, the crystal of the invention also emits between 870 and 930nm, which corresponds to the transition 4 F 3/2 ╌> 4I 9/2 .
Dans le tableau I ci-après, on donne la durée de vie de l'état excité 4F3/2 en fonction de la quantité d'ions Nd3+ pour quatre des cristaux de gehlenite selon l'invention. In Table I below, the lifetime of the excited state 4 F 3/2 is given as a function of the quantity of Nd 3+ ions for four of the gehlenite crystals according to the invention.
Dans ce tableau, x indique la quantité d'ions Nd3+, les deux colonnes du milieu donnent le temps de vie court et long de l'effet laser et la dernière colonne donne l'intensité de fluorescence en unités arbitraires. Ces valeurs ont été établies pour un cristal de 1mm d'épaisseur. D'après ce tableau I, on constate que la décroissance du temps de vie et de l'intensité de fluorescence pour x=0,20 est liée au phénomène d'autoextinction. Au-dessus de x=0,30, le temps de vie et l'intensité de fluorescence sont insuffisants pour utiliser ce composé comme émetteur laser. In this table, x indicates the quantity of Nd 3+ ions, the two middle columns give the short and long lifetime of the laser effect and the last column gives the fluorescence intensity in arbitrary units. These values have been established for a crystal 1mm thick. From this table I, it can be seen that the decrease in the life time and in the fluorescence intensity for x = 0.20 is linked to the self-extinction phenomenon. Above x = 0.30, the life time and the fluorescence intensity are insufficient to use this compound as a laser emitter.
Le composé numéro 2 est. celui qui présente les meilleurs propriétés lasers.  Compound number 2 is. the one with the best laser properties.
La figure 3 donne les variations de l'intensité de fluorescence If (en unité arbitraire) en fonction du taux de dopage x en néodyme dans des cristaux de formule (I). La courbe de la figure 3 a été déterminée expérimentalement.  FIG. 3 gives the variations in the fluorescence intensity If (in arbitrary units) as a function of the doping rate x in neodymium in crystals of formula (I). The curve of Figure 3 was determined experimentally.
Dans cette courbe, il ressort clairement que le maximum d'intensité se situe pour x≤0,05 et en particulier entre 0,025 et 0,05 et plus précisément à x=0,04.  In this curve, it is clear that the maximum intensity is for x≤0.05 and in particular between 0.025 and 0.05 and more precisely at x = 0.04.
Sur la figure 4 , on a représenté le spectre d'absorption d'un cristal de gehlenite de l'invention et sur la figure 5, le spectre d'absorption d'un cristal de LNA d o p é a u n éo d ym e . C e s c o u r b e s d o nn e nt l e s de n s i t é s optiques (D.O.) en fonction de la longueur d'onde exprimée en nanomètres.  In FIG. 4, the absorption spectrum of a gehlenite crystal of the invention has been represented and in FIG. 5, the absorption spectrum of an LNA crystal from p o a to n eo d ym e. These are the optical optics (D.O.) as a function of the wavelength expressed in nanometers.
Sur ces figures, on a fait apparaître les transitions d'absorption.  In these figures, the absorption transitions have been shown.
D'après la figure 4, on constate que le spectre d'absorption de la gehlenite dopée Nd3+ selon l'invention présente une bande d'absorption intense et large autour de 800 nm. Les pics A et B correspondent respectivement à des longueurs d'onde d'absorption de 797,1 nm et 806,7 nm. C'est dans ce domaine de longueurs d'onde qu'émettent les diodes lasers. From FIG. 4, it can be seen that the absorption spectrum of the Nd 3+ doped gehlenite according to the invention has an intense and wide absorption band around 800 nm. The peaks A and B correspond respectively to absorption wavelengths of 797.1 nm and 806.7 nm. It is in this wavelength range that the laser diodes emit.
Les cristaux de l'invention présentent aussi une bande d'absorption vers 590 nm (domaine hypersensible), pic C de la courbe d'absorption, comme la plupart des autres matériaux dopés au néodyme, mais cette bande d'absorption, contrairement aux autres composés dopés au néodyme, est beaucoup moins intense que celle autour de 800nm. The crystals of the invention also have an absorption band around 590 nm (hypersensitive domain), peak C of the absorption curve, like the most other neodymium doped materials, but this absorption band, unlike other neodymium doped compounds, is much less intense than that around 800nm.
Ceci est en particulier illustré par la figure 5 où le maximum d'absorption se situe autour de 580 nm, pic D de la courbe d'absorption, alors que l'intensité d'absorption autour de 800 nm, pic E de la courbe 4, est beaucoup plus faible que celle à 580 nm.  This is in particular illustrated by FIG. 5 where the maximum absorption is around 580 nm, peak D of the absorption curve, while the absorption intensity around 800 nm, peak E of curve 4 , is much weaker than that at 580 nm.
A titre indicatif, on donne ci-après dans le tableau II, les forces d'oscillateur des transitions d'absorption. Ces forces d'oscillateur sont parmi les plus élevées observées pour les composés connus dopés au néodyme.  As an indication, in Table II, the oscillator forces of the absorption transitions are given below. These oscillator forces are among the highest observed for known compounds doped with neodymium.
Du fait de la large bande d'absorption autour de 800-805nm et de la forte intensité d'absorption, il n'est pas nécessaire d'utiliser un système de contrôle de la température de la diode du type composant à effet Peltier. En effet, le pompage optique peut être assuré entre 790 et 820nm et couvrir ainsi la dérive en longueur d'onde de la diode.  Due to the wide absorption band around 800-805nm and the high absorption intensity, it is not necessary to use a diode temperature control system of the Peltier component type. Indeed, the optical pumping can be ensured between 790 and 820nm and thus cover the wavelength drift of the diode.
Aussi, les cristaux de l'invention se révèlent parfaitement bien adaptés pour un pompage optique par diode laser.  Also, the crystals of the invention prove to be perfectly well suited for optical pumping by laser diode.
La figure 6 donne les variations de la puissance d'émission laser (en mW) en fonction de la puissance de pompe (en mW) d'un cristal de gehlenite de composition Ca1 ,98Nd0,02Al2,02Si0,98O7. Ces courbes établies expérimentalement prouvent nettement que les cristaux de l'invention présentent l'effet laser. Figure 6 gives the variations of the laser emission power (in mW) versus pump power (mW) of a crystal composition of Ca 1 gehlenite, 98 Nd 0.02 Al 2.02 Si 0 , 98 O 7 . These curves established experimentally clearly prove that the crystals of the invention exhibit the laser effect.
Il ressort de ces résultats donnés à titre qualitatif que le cristal testé correspondant à x=0,02 conduit à un rendement différentiel de l'ordre de 40%. Or, ce cristal n'était pas optimisé. En effet, sa qualité cristalline était médiocre et son taux de dopage ne correspondait pas à la teneur optimale en Nd3+ déterminée sur la courbe de la figure 3. It appears from these results, given on a qualitative basis, that the crystal tested corresponding to x = 0.02 leads to a differential yield of the order of 40%. However, this crystal was not optimized. Indeed, its crystalline quality was poor and its rate of doping did not correspond to the optimal Nd 3+ content determined on the curve of FIG. 3.
Il est donc sûr qu'avec un cristal de meilleure qualité cristalline et de teneur x en Nd3+ comprise entre 0,03 et, 0,05, le rendement laser du matériau croîtra considérablement. It is therefore certain that with a crystal of better crystalline quality and with an Nd 3+ content of between 0.03 and 0.05, the laser yield of the material will increase considerably.
Sur la figure 7, on a représenté schématiquement un laser de puissance fonctionnant en continu, utilisant comme émetteur laser un cristal de l'invention.  In Figure 7, there is shown schematically a power laser operating continuously, using as laser transmitter a crystal of the invention.
Ce laser comprend une cavité laser 2 contenant un barreau 4 du composé numéro 2, disposé perpendiculairement à l'axe longitudinal 3 du laser, l'axe c du barreau étant confondu avec l'axe 3 du laser. L'émission laser se situe dans l'infrarouge This laser comprises a laser cavity 2 containing a bar 4 of the compound number 2, arranged perpendicular to the longitudinal axis 3 of the laser, the axis c of the bar being coincident with the axis 3 of the laser. The laser emission is located in the infrared
(voir figure 4). (see figure 4).
Une source de lumière monochromatique 6, telle qu'une diode laser ou une barrette de diodes laser, permet d'irradier le barreau de gehlenite 4, via une lentille de convergence 7, afin d'assurer le pompage optique du barreau 4. Un dispositif 5 de circulation d'eau distillée autour du barreau 4 assure son refroidissement. En revanche, aucun contrôle en température de la diode n'est prévu.  A monochromatic light source 6, such as a laser diode or a strip of laser diodes, makes it possible to irradiate the gehlenite bar 4, via a convergence lens 7, in order to ensure the optical pumping of the bar 4. A device 5 of circulation of distilled water around the bar 4 ensures its cooling. However, no temperature control of the diode is provided.
Pour un rendement laser élevé, il est préférable que le champ électrique dé la lumière de pompe émise par la diode soit perpendiculaire à l'axe c du cristal.  For a high laser yield, it is preferable that the electric field of the pump light emitted by the diode is perpendicular to the axis c of the crystal.
La cavité laser 2 se compose aussi d'une lentille convergente 8 transformant la lumière émise par le barreau de gehlenite 4 en un faisceau de lumière parallèle qui est envoyé sur un miroir de sortie 10.  The laser cavity 2 also consists of a converging lens 8 transforming the light emitted by the gehlenite bar 4 into a parallel beam of light which is sent to an exit mirror 10.
Après réflexion sur ce miroir 10, le faisceau lumineux traverse à nouveau la lentille convergente 8 et le milieu amplificateur ou barreau 4. Le faisceau laser amplifié est alors réfléchi par un miroir d'entrée dichroïque 12 à proximité duquel est placé le barreau 4 ; ce miroir 12 est transparent à la lumière émise par la source monochromatique 6 et opaque à celle émise par le monocristal de gehlenite 4. After reflection on this mirror 10, the light beam again crosses the converging lens 8 and the amplifying medium or bar 4. The beam amplified laser is then reflected by a dichroic input mirror 12 near which is placed the bar 4; this mirror 12 is transparent to the light emitted by the monochromatic source 6 and opaque to that emitted by the single crystal of gehlenite 4.
Le faisceau laser suffisamment amplifié dans la cavité 2 est alors envoyé vers l'extérieur de la cavité laser, via le miroir 10, qui est partiellement transparent à la lumière émise par le monocristal de gehlenite 4.  The sufficiently amplified laser beam in the cavity 2 is then sent to the outside of the laser cavity, via the mirror 10, which is partially transparent to the light emitted by the gehlenite single crystal 4.
L'accordabilité en longueur d'onde peut être obtenue à l'aide d'un système de sélection en longueur d'onde 14 intercalé entre la lentille convergente 8 et le miroir de sortie 10 de la cavité laser 2, du type prisme à angle de Brewster ou filtre de Lyot formé de plusieurs lames en matériau biréfringent.  Wavelength tunability can be obtained using a wavelength selection system 14 interposed between the converging lens 8 and the output mirror 10 of the laser cavity 2, of the angle prism type Brewster filter or Lyot filter formed by several blades of birefringent material.
En outre, un étalon solide 15 du type lame à faces parallèles peut être intercalé entre la lentille convergente 8 et le filtre de Lyot 14 pour fixer la longueur d'onde d'émission.  In addition, a solid standard 15 of the blade type with parallel faces can be interposed between the converging lens 8 and the Lyot filter 14 to fix the emission wavelength.
La diode 6 a l'avantage d'être extrêmement petite, diminuant de façon considérable les dimensions totales du laser à cristal ; elle émet à une longueur d'onde autour de 800nm. Or, le spectre d'absorption de la figure 3 met en évidence une bande d'absorption large et intense autour de 800-805nm.  Diode 6 has the advantage of being extremely small, considerably reducing the total dimensions of the crystal laser; it emits at a wavelength around 800nm. However, the absorption spectrum of Figure 3 highlights a wide and intense absorption band around 800-805nm.
En outre, les diodes lasers ont un rendement excellent de l'ordre de 50% et la conversion laser est de l'ordre de 30 à 40%, ce qui correspond à un rendement de l'effet laser de 20% au moins à partir du courant électrique.  In addition, the laser diodes have an excellent efficiency of around 50% and the laser conversion is around 30 to 40%, which corresponds to a laser effect efficiency of at least 20% from electric current.
Les monocristaux de l'invention peuvent être utilisés dans toutes les applications utilisant actuellement un émetteur laser du type YAG. En particulier, ces monocristaux peuvent être utilisés dans des lasers destinés à la découpe ou au marquage de matériaux ainsi que pour réaliser des soudures. The single crystals of the invention can be used in all applications currently using a YAG type laser transmitter. In particular, these single crystals can be used in lasers intended for cutting or marking materials as well as for welding.
En plus des applications du type YAG, ces oxydes présentent des applications qui leur sont propres. Ils sont particulièrement propices au pompage par diodes laser et donc à la réalisation de dispositifs miniaturisés (applications militaires, recherche scientifique, applications médicales). En outre, leurs longueurs d'onde d'émission particulières et l'accordabilité de ces dernières peuvent être mises à profit dans les télécommunications optiques ou pour la polarisation de certains atomes par pompage optique. In addition to YAG type applications, these oxides have their own applications. They are particularly suitable for pumping by laser diodes and therefore for making miniaturized devices (military applications, scientific research, medical applications). In addition, their particular emission wavelengths and the tunability of the latter can be used to advantage in optical telecommunications or for the polarization of certain atoms by optical pumping.

Claims

REVENDICATIONS
1. Cristal de gehlenite dopée au néodyme de formule Ca2-xNdxAl2+xSi1-xO7 avec 0<x≤1. 1. Neodymium doped gehlenite crystal of formula Ca 2-x Nd x Al 2 + x Si 1-x O 7 with 0 <x≤1.
2. Cristal selon la revendication 1, caractérisé en ce que x est choisi de sorte que 0<x≤0,3.  2. Crystal according to claim 1, characterized in that x is chosen so that 0 <x≤0.3.
3. Cristal seIon la revendication 1 ou 2, caractérisé en ce que x est choisi de sorte que 0,01≤x≤0,2.  3. Crystal according to claim 1 or 2, characterized in that x is chosen so that 0.01≤x≤0.2.
4. Cristal selon la revendication 1, caractérisé en ce que x est choisi de sorte que 0,025≤x≤0,05.  4. Crystal according to claim 1, characterized in that x is chosen so that 0.025≤x≤0.05.
5. Cristal selon la revendication 1, caractérisé en ce que x vaut 0,04.  5. Crystal according to claim 1, characterized in that x is 0.04.
6. Laser compo rt an t essentiellement une cavité laser (2) renfermant comme émetteur de lumière un monocristal (4), des moyens d'amplification (10, 12) de la lumière issue du monocristal, des moyens d'extraction (10) de la lumière hors de la cavité laser et des moyens de pompage (6, 7), caractérisé en ce que le monocristal est une gehlenite dopée au néodyme de formule Ca2-xNdxAl2+xSi1-xO7 avec 0<x≤1. 6. Laser essentially comprising a laser cavity (2) containing as a light emitter a single crystal (4), amplification means (10, 12) of the light coming from the single crystal, extraction means (10) light outside the laser cavity and pumping means (6, 7), characterized in that the single crystal is a neodymium doped gehlenite of formula Ca 2-x Nd x Al 2 + x Si 1-x O 7 with 0 <x≤1.
7. Laser selon la revendication 6, accordable en longueur d'onde dans l'infrarouge, caractérisé en ce qu'il comprend des moyens d'accordabilité (14).  7. Laser according to claim 6, tunable in wavelength in the infrared, characterized in that it comprises tunability means (14).
8. Laser selon la revendication 6, caractérisé en ce que les moyens de pompage consistent en au moins une diode laser.  8. Laser according to claim 6, characterized in that the pumping means consist of at least one laser diode.
9. Laser selon la revendication 8, caractérisé en ce que la diode laser est une diode émettant vers 800-805nm.  9. Laser according to claim 8, characterized in that the laser diode is a diode emitting around 800-805nm.
10. Laser selon l'une quelconque des revendications 6 à 9, caractérisé en ce que x est choisi de sorte que 0<x≤0,3. 10. Laser according to any one of claims 6 to 9, characterized in that x is chosen so that 0 <x≤0.3.
11. Laser selon l'une quelconque des revendications 6 à 9, caractérisé en ce que x est choisi de sorte que 0,01≤x≤0,2. 11. Laser according to any one of claims 6 to 9, characterized in that x is chosen so that 0.01≤x≤0.2.
12. Laser selon la revendication 6, caractérisé en ce que x est choisi de sorte que 0,025≤x≤0,05.  12. The laser as claimed in claim 6, characterized in that x is chosen so that 0.025≤x≤0.05.
13. Laser selon la revendication 6, caractérisé en ce que x vaut 0,04.  13. Laser according to claim 6, characterized in that x is equal to 0.04.
EP92915597A 1991-07-04 1992-07-03 Neodymium-doped gehlenite crystal and laser using same Withdrawn EP0547212A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9108395 1991-07-04
FR9108395A FR2678648A1 (en) 1991-07-04 1991-07-04 Neodymium-doped gehlenite crystal and laser employing this crystal

Publications (1)

Publication Number Publication Date
EP0547212A1 true EP0547212A1 (en) 1993-06-23

Family

ID=9414722

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92915597A Withdrawn EP0547212A1 (en) 1991-07-04 1992-07-03 Neodymium-doped gehlenite crystal and laser using same

Country Status (4)

Country Link
US (1) US5416789A (en)
EP (1) EP0547212A1 (en)
FR (1) FR2678648A1 (en)
WO (1) WO1993001139A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535051A (en) * 1995-01-24 1996-07-09 At&T Corp. WDM optical fiber system using crystal optical amplifier
JP2003198018A (en) * 2001-12-28 2003-07-11 Communication Research Laboratory Light stimulated solid-state laser oscillator
CN109401714A (en) * 2018-10-16 2019-03-01 深圳日高胶带新材料有限公司 A kind of OCA optics adhesive and its preparation method and application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL148622B1 (en) * 1986-06-27 1989-11-30 An active material for manufacturing laser bars

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9301139A1 *

Also Published As

Publication number Publication date
US5416789A (en) 1995-05-16
FR2678648A1 (en) 1993-01-08
WO1993001139A1 (en) 1993-01-21

Similar Documents

Publication Publication Date Title
EP0451001B1 (en) Strontium and lanthanide mixed oxides and laser using single crystals of these oxides
Lu et al. Highly efficient 2% Nd: yttrium aluminum garnet ceramic laser
EP0483003B1 (en) Laser using mixed yttrium and lanthanide silicates single crystals
EP0250305B1 (en) Mixed lanthanium-magnesium aluminates, lasers using monocrystals of these aluminates
EP0252784B1 (en) Mixed lanthanium-magnesium-gallates and lasers using these gallates
FR2683948A1 (en) INTEGRATED OPTICAL COMPONENT STRUCTURE CONTAINING RARE EARTH, METHOD OF MAKING SAME AND APPLICATIONS.
WO1993001139A1 (en) Neodymium-doped gehlenite crystal and laser using same
EP1846993A2 (en) Cr3+-doped laser materials and lasers and methods of making and using
Ubizskii et al. Optical properties of epitaxial YAG: Yb films
EP0274298B1 (en) Mixed aluminates of lanthanium-magnesium, and lasers using single crystals of these aluminates
Yan-Li et al. High efficient laser operation of the high-doped Nd: YAG crystal grown by temperature gradient technology
FR2771107A1 (en) LIQUID EPITAXY GROWTH PREPARATION PROCESS OF MONOCRYSTALLINE LAYERS OF LANTHANE MAGNESIUM ALUMINATE (LMA) AND OPTICAL COMPONENTS COMPRISING SUCH LAYERS
CA1270932A (en) Electro-optic device having a semiconductor, and method for emitting light
JP2882351B2 (en) Crystal for solid-state laser, its manufacturing method and laser device
EP3850715B1 (en) Laser crystal with at least two co-dopants
Zavartsev et al. Lasing in a crystal pumped into the transition
JP2010073936A (en) Vacuum ultraviolet light-emitting element
Barnes et al. Flashlamp pumped Nd: BaY2F8
Baillard et al. Liquid Phase Epitaxy Growth and Spectroscopy of Tb 3+-Doped LiYF 4 Crystalline Layers for Visible Waveguide Lasers
RU2231187C2 (en) Laser material
Urata et al. Diode-pumped CW Tm: GdVO4 laser using floating zone-grown crystals
RU2222852C1 (en) Laser material
RU2106050C1 (en) Laser material
Ogawa et al. Optical properties of highly Nd-doped GdVO4 crystals grown by the floating zone method
Lin et al. Growth and laser properties of Nd 3+: Sr 6 YSc (BO 3) 6 crystal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19960201