EP0547127B1 - Process for imparting fire resistance to a hydraulic system - Google Patents

Process for imparting fire resistance to a hydraulic system Download PDF

Info

Publication number
EP0547127B1
EP0547127B1 EP91916342A EP91916342A EP0547127B1 EP 0547127 B1 EP0547127 B1 EP 0547127B1 EP 91916342 A EP91916342 A EP 91916342A EP 91916342 A EP91916342 A EP 91916342A EP 0547127 B1 EP0547127 B1 EP 0547127B1
Authority
EP
European Patent Office
Prior art keywords
fluid
base fluid
alkylene
hydraulic
hydraulic system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91916342A
Other languages
German (de)
French (fr)
Other versions
EP0547127A1 (en
EP0547127A4 (en
Inventor
Philip R. Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olin Corp
Original Assignee
Olin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olin Corp filed Critical Olin Corp
Publication of EP0547127A1 publication Critical patent/EP0547127A1/en
Publication of EP0547127A4 publication Critical patent/EP0547127A4/en
Application granted granted Critical
Publication of EP0547127B1 publication Critical patent/EP0547127B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of a saturated carboxylic or carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/123Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/22Acids obtained from polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of saturated carboxylic or carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of saturated carboxylic or carbonic acid
    • C10M2209/062Vinyl esters of saturated carboxylic or carbonic acids, e.g. vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • C10M2209/1045Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • C10M2209/1055Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • C10M2209/1065Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/107Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/107Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
    • C10M2209/1075Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106 used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • C10M2209/1085Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • C10M2209/1095Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/085Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/102Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon only in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/108Phenothiazine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids

Definitions

  • This invention relates generally to hydraulic fluid compositions and, more specifically, to hydraulic fluids characterized by enhanced fire resistance.
  • polyalkylene glycol-based hydraulic fluids have generally required the presence of water therein in order to provide a degree of fire resistance sufficient to meet the Factory Mutual Research, Group I, Class No. 6930 approval (so-called "FM approval") with regard to the flame resistance of the fluid.
  • Water is undesirable as an additive in hydraulic fluids for several reasons, most notably due to operating pressure limitations imparted by the vapor pressure of water and corrosion problems caused by water on the metal surfaces of the hydraulic system.
  • non-aqueous hydraulic fluids that exhibit an improved combination of flame retardancy and shear stability would be highly desired by the hydraulic fluid manufacturing community.
  • the present invention relates to a process for imparting flame retardancy, hydrolytic stability, and reduced wear characteristics to a hydraulic system which comprises adding to the hydraulic system a hydraulic fluid composition comprising:
  • a hydraulic fluid composition can be provided that provides excellent anti-wear properties as well as enhanced flame retardancy over time during use.
  • the hydraulic fluid is polyalkylene glycol based and contains an anti-mist additive exhibiting an improved shear-stable characteristic relative to those utilized in polyol ester type hydraulic fluids.
  • the polyalkylene glycols useful as the base fluid in the hydraulic fluids of the present invention are generally anionically or cationically catalyzed using, for example, an alkali metal salt of a lower alkanol initiator.
  • An illustrative example is a potassium hydroxide catalyzed butanol initiated polypropylene glycol.
  • the various polyalkylene glycols, including monols, diols, triols, and the like, are well-known in the art and are commercially available, for example, under various trademarks, including Olin Corporation's POLY-G trademark, Union Carbide Corporation's UCON trademark, and BASF Corporation's PLURACOL trademark.
  • the anti-mist additive useful in the present invention is an alkylene-vinyl ester copolymer having a molecular weight of between 5,000 and 100,000, wherein the alkylene compound is preferably selected from the group consisting of ethylene, propylene, butylene, and combinations thereof.
  • the copolymer can be a random or block-type copolymer with the ratio of alkylene groups to vinyl ester groups in the copolymer being between 1:10 and 10:1 with the proviso that the copolymer be soluble in the base fluid.
  • the most preferred copolymer is an ethylene-vinyl ester copolymer commercially available as V-152, a product of Functional Products Corporation of Cleveland, Ohio.
  • the copolymer is suitably prepared using known techniques for ethylene-vinyl ester copolymerizations as disclosed, for example, in U.S. Patents 3,254,063 and 3,591,502.
  • the alkylene-vinyl ester copolymer is suitably prepared by copolymerizing the alkylene compound (e.g., ethylene, propylene, butylene, or combinations thereof) with a copolymerizable unsaturated ketone.
  • Suitable ketones include, for example vinyl methyl ketone, vinyl n-octyl ketone, vinyl-isooctyl ketone, vinyl dodecyl ketone, vinyl-cyclohexyl ketone, 3-pentene-2-one, and combinations thereof.
  • the molar percent of alkylene compound to ketone is suitably between 5 and 80 percent based upon the total amount of alkylene compound plus ketone employed to produce the copolymer.
  • the amount of anti-mist additive in the hydraulic fluid of the present invention is preferably between 0.1 and 20 weight percent, and more preferably between 0.5 and 10 weight percent based upon the total amount of anti-mist additive plus base fluid in the hydraulic fluid.
  • the hydraulic fluid of the present invention is non-aqueous or "essentially water free" which is intended to designate that the hydraulic fluid contains no more than 5 weight percent water, preferably no more than 2 weight percent water, based upon the weight of the hydraulic fluid.
  • compositions of this invention it is essential that both the component (a) and the component (b) be present in order to provide the desired flame retardancy and anti-wear properties.
  • Additional optional additives are also suitably employed as desired, including, for example, the functional fluids of this invention will normally contain very minor amounts, typically from 0.01% to 5.0% by weight of various additives of the type commonly incorporated in formulating hydraulic fluids and lubricants such as rust and oxidation inhibitors, corrosion inhibitors, metal passivators, antiwear agents and other special purpose additives.
  • Rust and corrosion inhibitors and metal passivators suitably employed include tolyltriazole, benzothiazole and benzotriazole and their derivatives, alkyl and aryl phosphites and sarcosine and succinic acid derivatives.
  • Antioxidants include dialkylthiodi proprionate, for example, dilaurylthiodiproprionate etc.
  • organic amines for example, dioctyldiphenylamine, phenylnaphthylamine, hindered phenols, phenothiazine, etc.
  • Antiwear additives include dithiophosphates, amine phosphites, organo-molybdenum compounds, phosphorothionates, carbamates, etc.
  • the suitably of such optional additives will depend upon the operating conditions, and the service requirements for the particular application that the hydraulic fluid is employed in. Except for the requirements given above, the relative proportions of and the maximum amount of each of these components and the combination thereof that should be present is not critical to the present invention. Economic factors also help determine what optimum amounts should be used. If used, the optional additives are suitably employed in an amount up to 40 weight percent base upon the total weight of the hydraulic fluid.
  • the hydraulic fluid composition of the present invention preferably has a viscosity of between 15 and 3000 centistokes at 40°C.
  • Hydraulic fluid compositions reflecting the present invention were prepared in accordance with the following procedure utilizing the following formulation: Component Amount Formulation Components (parts by weight) POLY-G WI-285 (a butanol-initiated polypropylene glycol) 95.8 Phenothiazine 0.5 V-152 (ethylene-vinyl ester copolymer) 3.0 Triphenylphosphorothionate 0.5 Ciba Geigy Corporation IRGALUBE 349 0.2
  • a commercially available polyol ester hydraulic fluid was used as a comparison, namely Cosmolubric® HF130 hydraulic fluid manufactured by E.F. Houghton Co. of Valley Forge, PA.
  • a sample of fluid is heated to 60°C (140°F) in a steel container, then pressurized to 7.03x10 5 kg/m 2 (1000 psig) with nitrogen.
  • the sample is discharged into an open space from a 80° hollow cone HAGO oil burner bozzle rated for 5.67 litres/hr (1.5 gal/hr) at 7.03x10 4 kg/m 2 (100 psig).
  • This apparatus is used for both the flame propagation and hot surface tests described below:
  • Hot Surface Ignition Test A steel channel iron inclined 30° from the horizontal and equipped with side heat shields is heated from below by two propane-air burners to 704°C (1300°F). The burners are turned off, then fluid is discharged for 60 seconds at a distance of 15.2 cm (6 inches) The fluid can pass if ignition occurs, but the flame must not follow the spray when directed away from the hot surface.
  • the fluids were also analyzed by GPC in order to determine the loss in molecular weight of the anti-mist additive utilized in the present invention as compared to the additive utilized in the comparison fluid.
  • the additive of the present invention did decrease in molecular weight with time in the pump but did not change significantly in concentration in the hydraulic fluid formulation over time.
  • the comparison fluid suffered a decrease both in molecular weight and in concentration in the comparison hydraulic fluid over time in the pump during the period of the pump test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

The present invention relates to a hydraulic fluid composition comprising: (a) a polyalkylene glycol base fluid and (b) as an anti-mist additive, an alkylene-vinyl ester copolymer having a molecular weight of between about 5,000 and 100,000 and soluble in said base fluid. In another aspect, the present invention relates to a process for imparting flame retardancy and reduced wear characteristics to a hydraulic system which comprises adding to the hydraulic system the above-identified hydraulic fluid composition.

Description

  • This invention relates generally to hydraulic fluid compositions and, more specifically, to hydraulic fluids characterized by enhanced fire resistance.
  • In the past, polyalkylene glycol-based hydraulic fluids have generally required the presence of water therein in order to provide a degree of fire resistance sufficient to meet the Factory Mutual Research, Group I, Class No. 6930 approval (so-called "FM approval") with regard to the flame resistance of the fluid. Water is undesirable as an additive in hydraulic fluids for several reasons, most notably due to operating pressure limitations imparted by the vapor pressure of water and corrosion problems caused by water on the metal surfaces of the hydraulic system.
  • In view of the above, non-aqueous hydraulic fluids that exhibit an improved combination of flame retardancy and shear stability would be highly desired by the hydraulic fluid manufacturing community.
  • The present invention relates to a process for imparting flame retardancy, hydrolytic stability, and reduced wear characteristics to a hydraulic system which comprises adding to the hydraulic system a hydraulic fluid composition comprising:
    • (a) a polyalkylene glycol base fluid, and
    • (b) as an anti-mist additive, an alkylene-vinyl ester copolymer having a molecular weight of between 5,000 and 100,000 and soluble in said base fluid.
  • These and other aspects will become apparent upon reading the following detailed description of the invention.
  • In accordance with the present invention, it has now been surprisingly found that a hydraulic fluid composition can be provided that provides excellent anti-wear properties as well as enhanced flame retardancy over time during use. The hydraulic fluid is polyalkylene glycol based and contains an anti-mist additive exhibiting an improved shear-stable characteristic relative to those utilized in polyol ester type hydraulic fluids.
  • The polyalkylene glycols useful as the base fluid in the hydraulic fluids of the present invention are generally anionically or cationically catalyzed using, for example, an alkali metal salt of a lower alkanol initiator. An illustrative example is a potassium hydroxide catalyzed butanol initiated polypropylene glycol. The various polyalkylene glycols, including monols, diols, triols, and the like, are well-known in the art and are commercially available, for example, under various trademarks, including Olin Corporation's POLY-G trademark, Union Carbide Corporation's UCON trademark, and BASF Corporation's PLURACOL trademark.
  • The anti-mist additive useful in the present invention is an alkylene-vinyl ester copolymer having a molecular weight of between 5,000 and 100,000, wherein the alkylene compound is preferably selected from the group consisting of ethylene, propylene, butylene, and combinations thereof. The copolymer can be a random or block-type copolymer with the ratio of alkylene groups to vinyl ester groups in the copolymer being between 1:10 and 10:1 with the proviso that the copolymer be soluble in the base fluid. The most preferred copolymer is an ethylene-vinyl ester copolymer commercially available as V-152, a product of Functional Products Corporation of Cleveland, Ohio. The copolymer is suitably prepared using known techniques for ethylene-vinyl ester copolymerizations as disclosed, for example, in U.S. Patents 3,254,063 and 3,591,502.
  • Illustratively, the alkylene-vinyl ester copolymer is suitably prepared by copolymerizing the alkylene compound (e.g., ethylene, propylene, butylene, or combinations thereof) with a copolymerizable unsaturated ketone. Suitable ketones include, for example vinyl methyl ketone, vinyl n-octyl ketone, vinyl-isooctyl ketone, vinyl dodecyl ketone, vinyl-cyclohexyl ketone, 3-pentene-2-one, and combinations thereof. The molar percent of alkylene compound to ketone is suitably between 5 and 80 percent based upon the total amount of alkylene compound plus ketone employed to produce the copolymer.
  • The amount of anti-mist additive in the hydraulic fluid of the present invention is preferably between 0.1 and 20 weight percent, and more preferably between 0.5 and 10 weight percent based upon the total amount of anti-mist additive plus base fluid in the hydraulic fluid.
  • The hydraulic fluid of the present invention is non-aqueous or "essentially water free" which is intended to designate that the hydraulic fluid contains no more than 5 weight percent water, preferably no more than 2 weight percent water, based upon the weight of the hydraulic fluid.
  • In compositions of this invention, it is essential that both the component (a) and the component (b) be present in order to provide the desired flame retardancy and anti-wear properties. Additional optional additives are also suitably employed as desired, including, for example, the functional fluids of this invention will normally contain very minor amounts, typically from 0.01% to 5.0% by weight of various additives of the type commonly incorporated in formulating hydraulic fluids and lubricants such as rust and oxidation inhibitors, corrosion inhibitors, metal passivators, antiwear agents and other special purpose additives.
  • Rust and corrosion inhibitors and metal passivators suitably employed include tolyltriazole, benzothiazole and benzotriazole and their derivatives, alkyl and aryl phosphites and sarcosine and succinic acid derivatives. Antioxidants include dialkylthiodi proprionate, for example, dilaurylthiodiproprionate etc. organic amines, for example, dioctyldiphenylamine, phenylnaphthylamine, hindered phenols, phenothiazine, etc. Antiwear additives include dithiophosphates, amine phosphites, organo-molybdenum compounds, phosphorothionates, carbamates, etc. The suitably of such optional additives will depend upon the operating conditions, and the service requirements for the particular application that the hydraulic fluid is employed in. Except for the requirements given above, the relative proportions of and the maximum amount of each of these components and the combination thereof that should be present is not critical to the present invention. Economic factors also help determine what optimum amounts should be used. If used, the optional additives are suitably employed in an amount up to 40 weight percent base upon the total weight of the hydraulic fluid.
  • The hydraulic fluid composition of the present invention preferably has a viscosity of between 15 and 3000 centistokes at 40°C.
  • The following examples are intended to illustrate, but in no way limit the scope of, the present invention.
  • Example 1 Preparation of Hydraulic Fluids and Pump Testing Thereof
  • Hydraulic fluid compositions reflecting the present invention were prepared in accordance with the following procedure utilizing the following formulation:
    Component Amount
    Formulation Components (parts by weight)
    POLY-G WI-285 (a butanol-initiated polypropylene glycol) 95.8
    Phenothiazine 0.5
    V-152 (ethylene-vinyl ester copolymer) 3.0
    Triphenylphosphorothionate 0.5
    Ciba Geigy Corps IRGALUBE 349 0.2
  • A commercially available polyol ester hydraulic fluid was used as a comparison, namely Cosmolubric® HF130 hydraulic fluid manufactured by E.F. Houghton Co. of Valley Forge, PA.
  • The formulations were tested using a laboratory hydraulic fluid pump test in accordance with ASTM-D2882 in order to measure the extent of pump wear resulting from the use of a specific fluid. Briefly, this test is conducted as follows:
  • Five gallons of a hydraulic fluid are circulated through a rotary vane pump system for 100 hours at a pump speed of 1200±60 rpm and a pump outlet pressure of 1.41x106±2.81x104 kg/m2 (2000±40 psi). Fluid temperature at the pump inlet is 65.6±2.8°C (150±5°F). The result obtained is the total cam ring and vane (12) weight losses during the test.
  • The results of several pump wear tests ranged from 0.1 mg to 10.0 mg, indicating that this fluid is a premium performance hydraulic fluid. In comparison, the polyol ester hydraulic fluid wear amount ranged from 2.0 - 15 mg of weight loss during the 100 hour wear test.
  • The hydraulic fluids were also tested for fire resistance in accordance with the test procedure of Factory Mutual Research, Group II, Class No. 6930. Briefly, this test was conducted as follows:
  • A sample of fluid is heated to 60°C (140°F) in a steel container, then pressurized to 7.03x105kg/m2 (1000 psig) with nitrogen. The sample is discharged into an open space from a 80° hollow cone HAGO oil burner bozzle rated for 5.67 litres/hr (1.5 gal/hr) at 7.03x104kg/m2 (100 psig). This apparatus is used for both the flame propagation and hot surface tests described below:
  • Flame propagation test - A propane torch is introduced into an atomized spray for each fluid at points of 15.2 cm (6 inches) and 45.7 cm (18 inches) from the nozzle tip.
  • Ten attempts at ignition are made at each distance and any resulting fluid ignition is timed. Ignition lasting more than 5 seconds for any one of the ten attempts is considered a failure.
  • Hot Surface Ignition Test - A steel channel iron inclined 30° from the horizontal and equipped with side heat shields is heated from below by two propane-air burners to 704°C (1300°F). The burners are turned off, then fluid is discharged for 60 seconds at a distance of 15.2 cm (6 inches) The fluid can pass if ignition occurs, but the flame must not follow the spray when directed away from the hot surface.
  • The results of the fire resistance testing indicated that the polyalkylene glycol-containing compositions of the present invention passed the test and maintained their fire resistance for a time period of at least three times longer than the comparison polyol-ester type fluid (24 hours on average versus less than 8 hours on average for the comparison fluid in the pump test). This is based on periodic sampling of the two fluids during ASTM D2882 pump testing. It must be noted that the equipment used as part of this pump stand includes a pressure control valve thus creating an extreme shear condition, the degree of which is not experienced in normal field service. It is also noted that this fire resistance test was also performed on an analogous formulation to that described above, but replacing the butanol-initiated polypropylene glycol with a polypropylene glycol diol. This analogous formulation also passed the fire resistance test.
  • The fluids were also analyzed by GPC in order to determine the loss in molecular weight of the anti-mist additive utilized in the present invention as compared to the additive utilized in the comparison fluid. The additive of the present invention did decrease in molecular weight with time in the pump but did not change significantly in concentration in the hydraulic fluid formulation over time. In contrast, the comparison fluid suffered a decrease both in molecular weight and in concentration in the comparison hydraulic fluid over time in the pump during the period of the pump test.

Claims (4)

  1. A process for imparting flame retardancy and reduced wear characteristics to a hydraulic system which comprises adding to the hydraulic system a hydraulic fluid composition comprising:
    (a) a polyalkylene glycol base fluid, and
    (b) as an anti-mist additive, an alkylene-vinyl ester copolymer having a molecular weight of between 5,000 and 100,000 and soluble in said base fluid, wherein the ratio of alkylene groups to vinyl ester groups in the copolymer is between 1:10 and 10:1, and wherein said anti-mist additive is present in an amount of between 0.1 and 20 weight percent based upon the total amount of anti-mist additive plus base fluid in the composition
  2. The process of claim 1 characterized in that said polyalkylene glycol base fluid is selected from polyethylene glycol, polypropyleneglycol, polybutylene glycol, and combinations thereof.
  3. The process of claim 1 or claim 2 characterized in that said alkylene-vinyl ester copolymer employs alkylene moieties selected from ethylene, propylene, butylene, and combinations thereof.
  4. The process of claim 1 characterized in that said polyalkylene glycol base fluid is a lower alkanol-started polyalkylene glycol.
EP91916342A 1990-08-31 1991-08-06 Process for imparting fire resistance to a hydraulic system Expired - Lifetime EP0547127B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US576301 1984-02-02
US57630190A 1990-08-31 1990-08-31
PCT/US1991/005573 WO1992004428A1 (en) 1990-08-31 1991-08-06 Fire resistant hydraulic fluid composition

Publications (3)

Publication Number Publication Date
EP0547127A1 EP0547127A1 (en) 1993-06-23
EP0547127A4 EP0547127A4 (en) 1993-11-24
EP0547127B1 true EP0547127B1 (en) 1997-09-24

Family

ID=24303839

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91916342A Expired - Lifetime EP0547127B1 (en) 1990-08-31 1991-08-06 Process for imparting fire resistance to a hydraulic system

Country Status (7)

Country Link
EP (1) EP0547127B1 (en)
JP (1) JP3017803B2 (en)
KR (1) KR0157643B1 (en)
AU (1) AU8530791A (en)
DE (1) DE69127754T2 (en)
ES (1) ES2106085T3 (en)
WO (1) WO1992004428A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090126469A1 (en) * 2005-09-09 2009-05-21 Castrol Limited Method of Monitoring Fire Resistance of Hydraulic Fluids
JP5764298B2 (en) 2010-03-31 2015-08-19 出光興産株式会社 Biodegradable lubricating oil composition having flame retardancy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2499723A (en) * 1947-07-28 1950-03-07 Du Pont Lubricants containing copolymers of ethylene and vinyl acetate
NL134313C (en) * 1966-06-01
DE1914756C3 (en) * 1968-04-01 1985-05-15 Exxon Research and Engineering Co., Linden, N.J. Use of ethylene-vinyl acetate copolymers for petroleum distillates

Also Published As

Publication number Publication date
AU8530791A (en) 1992-03-30
EP0547127A1 (en) 1993-06-23
ES2106085T3 (en) 1997-11-01
EP0547127A4 (en) 1993-11-24
WO1992004428A1 (en) 1992-03-19
DE69127754D1 (en) 1997-10-30
DE69127754T2 (en) 1998-04-30
JP3017803B2 (en) 2000-03-13
JPH06500587A (en) 1994-01-20
KR0157643B1 (en) 1999-02-18

Similar Documents

Publication Publication Date Title
AU632942B2 (en) Polyalkylene glycol lubricant compositions
CA2564414C (en) Functional fluids containing alkylene oxide copolymers having low pulmonary toxicity
AU617536B2 (en) Soluble phosporus antiwear additives for lubricants
US3992312A (en) Non-inflammable hydraulic fluid
US4486324A (en) Hydraulic fluids
US3346501A (en) Non-inflammable hydraulic fluid
US5141663A (en) Fire resistant hydraulic fluid composition
EP0547127B1 (en) Process for imparting fire resistance to a hydraulic system
US4588511A (en) Functional fluids and concentrates containing associative polyether thickeners and certain metal dialkyldithiophosphates
EP0359071A1 (en) Fire-resistant hydraulic fluid and process of manufacture
AU696147B2 (en) Alkenyl-substituted dicarboxylic acid or anhydride ester derivatives
EP0273460B1 (en) Energy transmitting fluid
JPS6043396B2 (en) Water-based energy transfer fluid compositions
WO2004053031A2 (en) Alkoxylates as such or as base oils for hydraulic compositions
EP0076595B1 (en) Hydraulic fluids containing water and hydroxyalkylated isocyanurates
CA1163041A (en) Synergistically-thickened hydraulic fluid utilising alpha-olefin oxide modified polyethers
EP0787714B1 (en) Polyolefin-substituted dicarboxylic acid or anhydride ester derivatives
GB2117787A (en) A gearbox lubricant composition based on a polyoxyalkylene fluid
CA1265780A (en) Functional fluids and concentrates containing associative polyether thickeners and certain metal dialkyldithiophosphates
JPS60223898A (en) Lubricating oil
CA2113954A1 (en) Amino alkyl phosphonate as antiwear additive for lubricant containing hydrophilic basestock

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

A4 Supplementary search report drawn up and despatched

Effective date: 19931004

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19950613

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69127754

Country of ref document: DE

Date of ref document: 19971030

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2106085

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080826

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080828

Year of fee payment: 18

Ref country code: FR

Payment date: 20080818

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080827

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080930

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090806

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090807