EP0543908B1 - Procede et moyens de regulation d'ecoulement - Google Patents

Procede et moyens de regulation d'ecoulement Download PDF

Info

Publication number
EP0543908B1
EP0543908B1 EP91915299A EP91915299A EP0543908B1 EP 0543908 B1 EP0543908 B1 EP 0543908B1 EP 91915299 A EP91915299 A EP 91915299A EP 91915299 A EP91915299 A EP 91915299A EP 0543908 B1 EP0543908 B1 EP 0543908B1
Authority
EP
European Patent Office
Prior art keywords
flow
compressor
pressure gas
injection
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91915299A
Other languages
German (de)
English (en)
Other versions
EP0543908A1 (fr
Inventor
Christopher Freeman
Ivor John Day
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Publication of EP0543908A1 publication Critical patent/EP0543908A1/fr
Application granted granted Critical
Publication of EP0543908B1 publication Critical patent/EP0543908B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0215Arrangements therefor, e.g. bleed or by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0238Details or means for fluid reinjection

Definitions

  • This invention relates to a method of and means for the control of flow disturbances in turbo-compressors, including both instabilities such as the phenomena of rotating stall and surge, in particular axial turbo-compressors, and steady state or quasi steady state disturbances.
  • Rotating stall is an aerodynamic instability which determines the maximum pressure rise capabilities of a turbo-compressor. At that maximum any further demand will lead to the formation of a small patch (usually referred to as a "cell") of disturbed flow in the blading which can then spread rapidly to engulf a large proportion of the annular cross-section of the compressor. As the stall cell forms fully, the delivery pressure at the exit from the compressor falls off just as rapidly. This type of disturbance is called rotating stall because the disturbed or "blocked" sector of the annulus will rotate with the blading, at roughly half (typically between 0.8 and 0.3) the speed of the blading.
  • the system-related instability of surge occurs when a compressor is coupled to a large downstream volume, eg. pipework in an industrial plant or the combustion chamber in a gas turbine. If the pressure rise capability of the compressor is exceeded and a stall condition is initiated there is a fall in delivery pressure which allows compressed gas in the volume downstream of the compressor to blow back through the compressor. In extreme cases this can lead to flames spewing out of the front of an engine. Venting the downstream volume in this way lowers the back pressure on the compressor; the stall condition disappears and the pressure downstream is able to rise again as the downstream volume is refilled. The stalling, venting, refilling cycle will thus start again and a continuous sequence of surge cycles can ensue if the operating conditions remain unchanged.
  • a large downstream volume eg. pipework in an industrial plant or the combustion chamber in a gas turbine.
  • a stall control system for an axial flow compressor in which signals from a number of pressure transducers within the compressor are compared with a reference signal, the value of which is related to the operating conditions in the compressor.
  • the signals from the individual transducers are compared sequentially with the reference signal so that corrective action can be initiated when an abnormal value is sensed by any one sensor.
  • the signals are also summed, and the strength of the corrective action is determined by the summed signal value.
  • the form of corrective action described in US 4196472 takes the form of a controllable bleed from the compressor gas passage, and control of the stagger angle of the stator blades is also suggested.
  • FR2248427 equivalent to GB1481031 there is described an apparatus for controlling surge in axial and radial flow compressors. This discloses using a pressure transducer to detect flow reversal in the boundary layer downstream of the rotor blade. It takes corrective action by bleeding air from a position downstream of the rotor blade and injecting the air into the compressor upstream of the rotor blade either with an upstream component or with neither upstream nor downstream components.
  • a method of controlling gas flow in a compressor comprises the steps of:
  • the series of circumferentially spaced positions is at a chosen axial station in the direction of flow through the compressor, only variations in the flow above a predetermined limit of variation are detected, and the higher-pressure gas is injected into the compressor upstream of the higher-pressure region in a circumferentially selective manner dependent upon the circumferential origins of said variations, thereby to act against flow disturbances indicated by said variations.
  • the higher-pressure gas may be injected in a series of different sectors around the compressor, the flow variations being independently sensed in each of the sectors.
  • the higher pressure gas is taken from the same sector as that into which it is injected.
  • a significant feature of the present invention the use of injected gas to counter a flow disturbance, has the advantage over the method proposed by US 4196472 that the injection of gas improves the basic surge margin of the compressor.
  • the compressor is therefore capable of operating at a higher output than would be the case with a prior art bleed system.
  • Rotating stall conditions may also be experienced in turbo-compressors at low speed, part load conditions.
  • the instability is found to occur at the front of the compressor.
  • the machine is then working at a lower compression ratio than the optimum for which it is designed the early stages are relatively highly loaded compared with the rearmost stages.
  • the flow at the front of the compressor can then reach stalling point, giving an uncontrolled loss of power.
  • the present invention can also be employed to counter this problem by the injection of higher pressure gas into the foremost stages of a turbo-compressor, preferably at the front stage, in a similar manner to that described for high speed operation.
  • any axial region of the compressor may be chosen for the flow injection, depending upon the nature of the disturbance to be countered. It is necessary to ensure that the injection pressure is sufficient to obtain an adequate energy input at a location where it will influence the flow disturbance sensed, but for greatest efficiency the pressure differential should be kept as low as is practical. If a flow is to be injected at the front of the compressor, it may not be desirable therefore to take the injected air from the compressor outlet. From the point of view of aerodynamic efficiency, it would be desirable to have a multiplicity of successive flow injection circuits along the compressor flow path, each spanning only a small part of that path, but the mechanical complexity of such an arrangement will normally be impractical.
  • both high and low speeds stalling can be countered with relatively simple means if there are tappings at the front, rear and intermediate regions of the compressor, so enabling an injection from the rear or outlet to the intermediate region to counter high speed stall in response to detection means at the intermediate region, and from the intermediate region to the front or entry region to counter low speed stall in response to detection means at the entry region.
  • the critical axial station or stations at which a flow disturbance will be initiated can be expected to vary with different designs of turbo-compressor and the locations of the injection and sensing means may therefore be selected empirically. There may also be a need to monitor the compressor flow near its outlet end for incipient surge conditions, independently of monitoring for rotating stall further upstream.
  • gas injection means in response to the sensing of a rotating flow variation gas may be injected sequentially through a circumferentially spaced series of ports at a station.
  • gas may be injected simultaneously through said series of ports.
  • gas injection means at a number of axially spaced stations they can be actuated in response to sensed variations at their respective stations or at other stations as appropriate.
  • the control system may be deployed at a number of axial stations, it may be operated independently at each station or the gas injection at the different stations can be coordinated, eg. to operate in unison or in a predetermined sequence.
  • the method of the present invention can also be employed to counter flow distortions where the flow distribution is non-uniform in the circumferential sense. This condition can occur in aero-engines during transient manoeuvres or when the aircraft is travelling at low speed with the engine axis at a larger angle than usual to the flight path, such as can occur at take-off. A part of the engine air intake area is then effectively "shadowed" by the cowling upstream of it and there can be break away of the flow in the first stage of the compressor.
  • an apparatus for controlling gas flow in a compressor comprising:
  • injector means comprises a circumferential array of injectors and the control means is adapted to operate the injector means in a circumferentially selective manner dependent upon the circumferential positions of the sensors detecting the flow variations, thereby to act against flow disturbances indicated by said variations.
  • control means including means whereby only sensor signals indicating flow variations above a predetermined limit of flow variation cause operation of the injector means.
  • the or each valve controlling the flow is automatically re-shut after an interval, which may be a preset period, since a continuous injection of high-pressure gas would be uneconomic. It may be preferred to do this by tapering off the initial flow whereby the flow control effect is removed gradually. This is particularly applicable when a relatively lengthy period of injection flow is needed to influence the disturbance; should the disturbance appear again before the flow has been shut off, the rate of flow can be increased again to its initial value. With repeated tapering and restoration of the flow, it is ensured that the flow is kept to the minimum to control the disturbance and is cut off as soon as the cause of the disturbance disappears.
  • a timed tapering of the injection flow is able to limit the energy input for operating the corrective system without impairing its efficiency.
  • an on-off characteristic may be equally effective and has the advantage of simplicity. If the disturbance remains when the preset interval has expired, a further period of injection can be immediately initiated. It may also be arranged that the responses of the components of the system ensure in that case that the injection flow is not interrupted between the two periods.
  • the invention can be utilised, whether the control flow is tapered off or is simply cut off, without the control means using a feedback loop. It is possible to initiate corrective action at a maximum rate when gas injection begins, subject only to the threshold disturbance level having been exceeded. If thereafter the injection flow is cut off or its rate of injection is tapered off, it can be assured that full corrective action is restored at any stage if the disturbance continues or restarts.
  • the arrangement permits considerable simplification, as compared with prior art arrangements, without impairing the ability to control disturbances. It is also possible very simply to provide manual actuating means which allows the operator to put the arrangement into operation.
  • control means comprises means for averaging the signal sensed at each said spaced position over a rolling period corresponding to the sensing of the flow at least at three circumferentially successive locations to give a series of mean values from which a flow disturbance is detected.
  • the generation of a series of operative outputs from a plurality of the sensors can then be employed to actuate the injection means in a sequential pattern.
  • control means detects at least one small sharply defined patch of stalled flow.
  • the higher pressure gas is injected toward a circumferential region that follows in the direction of rotation from said circumferential region in which said variation has been detected.
  • the flows through the injection locations are controlled by respective valves for individual ports or groups of ports.
  • groups of ports By grouping the ports the apparatus is simplified but the amount of injection air needed is increased. It may be preferred to provide multiple orifice ports spread over a sector of the circumference at each gas injection location to improve the distribution of the injected flow.
  • the outlet means comprise nozzles in which a projecting portion at each nozzle exit deflects the injection in a downstream direction.
  • the injector means comprises nozzles located between guide vanes.
  • the injector means comprise nozzles located in the inner wall compressor casing.
  • the higher pressure gas is injected toward a circumferential region that follows in the direction of rotation from said circumferential region in which said variation has been detected.
  • the flow may be directed circumferentially in an oblique direction that opposes the direction of rotation of the compressor.
  • an operative signal at one station may also be found useful for an operative signal at one station to actuate an injection flow of another station, for example, if a flow disturbance is more easily detected at a station downstream from its initiation, as for example the appearance of rotating stall nearer the compressor outlet at higher speeds.
  • the sensing means should not be disposed so close to the gas injection sites that their signals are disturbed by the inflowing gas.
  • stall cell in an axial flow compressor can grow from an undetectable disturbance to a fully developed blockage in a matter of milliseconds; this development will usually take place over about 4 to 6 revolutions of the compressor rotor.
  • the stall cell may make its first appearance at any point around the flow passage through the compressor, so that a series of spaced sensors are needed to detect the origin and development of a stall cell.
  • Experiments testing the basis of the present invention were made using a turbo-compressor with a series of hot-wire sensors spaced circumferentially around an axial position immediately ahead of the first rotor disc as shown in Fig.
  • Fig.1 where the outputs from six circumferentially spaced hot-wire sensors I-VI are shown, the flow into the compressor is initially in a steady state with a very low level of disturbance.
  • An emerging stall cell can first be seen as a small disturbance, namely the v-shaped peak at A in trace III, which grows progressively as it passes each successive sensor.
  • the stall cell is a fully developed disturbance rotating steadily around the annular passage.
  • FIG. 2 illustrates to the same time scale as Fig. 1 the initiation of a surge cycle, the first sign of which is the v-shaped stall cell emerging first in trace IV.
  • the subsequent development after a couple of revolutions is notably different from the development of rotating stall, and the outputs from all the sensors show a concurrent and relatively long-lived drop of flow rate.
  • Fig. 2 and Fig. 3 shows, over a longer time scale, the complete "stall-backflow-refill" sequence. Steady flow, dropping slightly as the back pressure builds up, finally breaks down and the flow reverses, steady flow being resumed again at a higher rate because of the reduced back pressure.
  • Fig. 4 illustrates in outline the axial flow compressor C equipped with flow control means in accordance with the invention.
  • the hot wire sensors 2 can be seen immediately between a ring of fixed guide vanes 4 and a ring 6 of rotor blades.
  • a circumferentially distributed series of air inlets 8 blend tangentially with the inner wall 10 of the compressor casing.
  • the inlets are directed rearwards into the adjacent rotor blade ring.
  • the inlets are set at an angle in the circumferential sense that may be determined empirically but that preferably directs them counter to the direction of rotation of the rotor.
  • the inlets 8 are connected by conduits 12 through respective fast-acting shut-off valves 14, to a series of conduits 18 leading from a number of tappings 20 similarly distributed around the circumference of the high-pressure end of the compressor to supply high-pressure air for injection through the inlets.
  • the valves 14 are normally shut but can be opened by a control circuit 22 in dependence upon the signals from the sensors 2. As will be described in more detail below, detection of a disturbance by some or all of the sensors greater than the anticipated level of noise in the steady flow at the compressor inlet triggers the opening of the valves 14 to inject onto the first ring of rotor blades 6 the high pressure flow bled from the outlet end of the compressor.
  • Fig. 5 the outputs from a series of four equispaced hot-wire sensors are shown, with a stall cell appearing first in the trace of sensor II. As the stall cell circulates past sensors III and IV, the control circuit 22 is able to confirm that the disturbance is not an instrument fault and the output from the control circuit is turned on to open the valves 14. Fig. 5 demonstrates how the injection of high pressure air immediately suppresses the stall cell.
  • Fig. 6 illustrates the same set-up in which, conversely, overriding the control unit and switching the valve 14 closed allows the stall cell to reappear and a fully developed rotating stall condition quickly establishes itself.
  • the control unit 22 should close the valves once the stall cell has been suppressed.
  • the use of a timer to switch the valves off is illustrated in an experiment that produced the traces shown in Fig. 7.
  • the steady flow is close enough to a critical condition for a stall cell to appear after a short time with the valves closed, but on each occasion when the control system is operative, the disturbance is quickly removed.
  • the trace S in Fig. 7 the control system was switched off after demonstrating its efficiency, whereupon the next re-emergence of the stall cell led to a rotating stall condition.
  • Figs. 8 and 9 show a similar experiment to that in Fig. 7, here using piezo-electric sensors, which are able to actuate the opening of the individual injection valves each operatively linked with a circumferentially adjacent sensor to inject high pressure air through the inlets 8.
  • Fig. 8 demonstrates how the disturbance is suppressed each time that an incipient stall cell is detected.
  • Fig. 9 shows the opening and closing sequence of the control valves which control the counteracting flow injection. As shown by some of the incidents in traces II and IV, it is possible to arrange for the control unit to respond to a persistent disturbance so fast that in effect the period of valve opening is extended.
  • FIG. 10 there is an illustration of the sensor traces recorded during a typical surge cycle in which the compressor of Fig. 4 delivers its output to a tank to produce a progressive pressure increase at the compressor outlet.
  • Fig. 11 the same surge cycle is shown, to a compressed time scale, in which the control system was switched on for a period in the middle of the cycle.
  • the surge cycle was suppressed by the operation of the injection valves and reappeared when the control system was switched off.
  • the trace shows an output from a single hot-wire sensor ahead of the first rotor stage.
  • Fig. 12 illustrates a typical pressure rise characteristic of an axial flow compressor. Without the use of the present invention, instability and a drastic drop in performance would be met at the point on the characteristic indicated by the arrow A. With the use of the invention, the characteristic extends to the point indicated by the arrow B before breakdown occurs. Since in actual performance it is necessary to operate with a significant safety margin because of the catastrophic consequences of breakdown, the extension of the range of operation offered by the use of the invention is able to yield a substantial improvement in performance.
  • Fig. 13 illustrates schematically the application of control apparatus according to the invention to a gas turbine which comprises an axial flow compressor A, combustion chamber C and turbine T, the compressor and turbine being coupled by a shaft S to rotate together.
  • Flow sensors are located at two axial stations, namely the sensors 102a in front of the first stage of blades disc 106a and the sensors 102b behind a stage 106b near the high pressure outlet. At each station there is a series of three or more of the sensors 102 circumferentially equally spaced around the casing.
  • a first series of injection ports 108a are distributed around the compressor casing upstream of the front stage 106a but circumferent ally offset from the sensors 102a.
  • a similar series of bleed ports 110a around the circumference of an intermediate stage of the compressor allow gas flow through conduits 116 to the lower pressure regime at the injection ports 108a when normally closed valves 114a are opened.
  • a further series of circumferentially distributed injection ports 108b adjacent the bleed ports 110a can receive higher pressure gas from similarly distributed bleed ports 110b through conduits 118 and further normally closed valves 114b.
  • this arrangement of ports and valves is illustrated at diametrically opposite sides, but as is described below, the circumference of the compressor is divided into a number of equal sectors, eg. 6 to 12, each of which has its own pair of valves 114a,114b and associated conduits 116,118 controlling the flow through a series of injection and bleed ports distributed over the sector.
  • Fig. 13 provides two separate recirculation systems which can be operated independently of each other.
  • the intermediate to front stage recirculation through the valves 114a intended to counter low power instabilities, is regulated by a control circuit 202a in response to the signals from the sensors 102a at the front of the compressor.
  • Recirculation from the rear to intermediate stages through the valves 114b is regulated by control circuit 202b in accordance with the signals from sensors 102b near the rear of the compressor. Further details of the control circuit 202 will be described with reference to Figs. 17 and 18.
  • Figs. 14 and 15 illustrate in more detail the air injection arrangement at a typical port 108.
  • the port is located in a ring of guide vanes 122 mounted on the casing inner wall 124 of an axial compressor.
  • Each port comprises a group of three nozzles 126 opening into the compressor gas flow passage from a plenum 128.
  • the nozzles are inclined at 30° to the axial direction to direct injected air I obliquely into the main flow F at as shallow a radial angle as possible.
  • the division of the flow through a number of nozzles helps to keep the radial angle of injection small.
  • a lip 130 shrouds the leading portion of the outlet of each nozzle.
  • the nozzles 126 may also be inclined circumferentially so that the flow through them is injected with some whirl component in a direction counter to the whirl component of the main flow through the guide vanes.
  • Fig. 15a illustrates an alternative location of the ports 126, in the axial gap between the trailing edges of the stator guide vanes 122 and the leading edges of the rotor blades 123.
  • An advantage of the arrangement shown in Fig. 15a is that the circumferential angle of injection can be more freely varied because it is not limited by the proximity of the stator guide vanes. The angle may be varied quite widely but it preferably lies between the axial direction and an angle to that direction substantially equal to the stagger angle of the rotor blades of the adjacent ring.
  • the ports 108 are disposed between each successive pair of guide vanes 122 and they are connected in groups to a series of six plenums 128 so that each plenum supplies injection air to a 60° sector of the compressor circumference.
  • Each 60° sector has its own control valve 114 and is connected to the extraction porting 110 of a corresponding 60° sector at the downstream station.
  • For each 60° sector there may be a single flow sensor 102, or a plurality of circumferentially spaced sensors, preferably at substantially the same axial station as the injection ports.
  • the sensors 102 are preferably static pressure sensors mounted flush in the casing wall, as indicated in Fig. 14.
  • FIG. 16 A preferred form of the valve 114 to obtain an appropriately fast response to the detection of a flow disturbance is shown in Fig. 16.
  • This is an oscillatory rotary valve comprising a rotor 142 mounted on a spindle 144 in a casing 146 through upper and lower bearings 148,150.
  • the rotor 142 is a hollow cylinder closely fitting but freely slidable in a cylindrical stator 152. Both rotor and stator have a series of spaced slots 154 in their cylindrical walls, and the two series of slots can be moved in and out of register by a relatively small rotary movement of the rotor. With the slots out of register flow throug the valve is blocked.
  • valve rotor When the slots are in register, gas from supply conduit 156 reaching the encircling entry chamber 158 in the valve casing 146 can flow through the slots, past the spider 159 supporting the lower bearing 150 and through the valve outlet 160.
  • the valve rotor has a lightweight construction, eg. of a carbon composite material.
  • the stator is preferably made of the same material to ensure fit is maintained over a range of temperatures.
  • Movement of the valve is controlled electromagnetically by a torque motor 162 comprising an electromagnet 164 secured in the casing and an armature 166 attached to the rotor 142.
  • the motor is displaceable between end positions which correspond to the valve open and closed states so that no mechanical stops are required to locate the rotor at either position.
  • a control circuit 202 dealing with an individual sensor output is shown in more detail in Figs. 17 and 18.
  • the electronic signal a from each sensor output is first filtered in a low-pass filter 210 to remove blade order disturbances and the filtered signal b is then processed in an integrator 212.
  • the integrator functions to give an average sensor value c over a rolling period equal to the sampling of at least three successive sensors 102 - for example if there is one sensor per sector the rolling period can be as little as one half revolution.
  • the average value gives a steady but continuously updated base level against which the magnitude of instantaneous variations can be measured.
  • the integrated output c is compared with the filtered instantaneous signal b in a subtraction unit 214, the difference d between the two signals being the perturbation, ie the divergence of the instantaneous signal from the rolling average.
  • a divider circuit 216 calculates the ratio of the perturbation d to the current average value c, so that a non-dimensional measure e of the deviation is obtained.
  • the output e from the divider circuit 216 is fed to at least a first discriminator 218 to be compared with a pre-set level X which must at least be matched if the air injection is to be operated.
  • the output f from the discriminator is on if the magnitude of the division is greater than or equal to X.
  • the pre-set perturbation operation level X is chosen to be the value that would appear in a stall condition.
  • the signals b obtained from the individual sensors and the outputs f are used to actuate an array of AND-gates 219-219n each linked to a respective valve 114.
  • Each valve is opened when its AND-gate receives both an output f and a signal from the sensor circumferentially associated with its valve, and so produces an output which operates relay 220 of the valve.
  • Each of the valves is therefore opened in turn in coordination with the circumferential position of the flow signal sensed when that signal has generated the perturbation output f. It will be seen that the valve to be opened may be for the same segment of the compressor air passage as that in which the perturbation was sensed, or it may be for a sector that follows in the direction of rotation if it is necessary to compensate for a lag in the response.
  • a further discriminator 218' in the circuit of Fig. 18 may also receive the signal e and be tuned to respond with an output f' at a level X' that is greater than the value that would appear in normal engine operating conditions such as acceleration and deceleration, but is less than the level that would appear in a stall condition. This can for example be used to counter flow distortion at extreme flight altitudes, for example.
  • a store 222 has addresses 223 for the outputs from the discriminators 218 for all of the sensors, of each stage.
  • an output f ⁇ (e>X) occurs, that signal is held for at least the rolling period of the integrator 212, as determined by the input signal of compressor speed N.
  • the values held in the store are extracted in step with the scanning of the addresses 223 and are summed in an addition circuit 224 for all of the sensors in the stage.
  • Comparator 228 determines if the summed signals exceed predetermined values, whereupon a valve control circuit 232 is actuated to open the injection valve or valves 114 to the appropriate compressor locations. Simultaneously, a timer 234 is actuated to close the valves 114 again after a set period, which may correspond to as little as one or two revolutions of the compressor.
  • the circuit of Fig. 18 can be further expanded by including a respective further addition circuit 226 for the sensors of different stages but similar circumferential position. It can be expected that these signals will reinforce each other if rotating stall is present.
  • a comparator 230 determines if the summed signals exceed predetermined values to open the valve control circuit 232 in the manner already described.
  • Fig. 19 shows a gas turbine having an installation according to the invention with isolation valves 250 which are similar to the valves 114 but are designed for 3-way operation.
  • Each valve 250 has three alternative positions, (i) closed, in which the conduits 252,254,256 communicating with the valve are isolated from each other, (ii) a first operative position, in which conduits 252,254 are connected together and the conduit 256 remains isolated, and (iii) a second operative position in which the conduits 254,256 are connected together and the conduit 252 is isolated.
  • the valve 250 illustrated and its associated conduits of course represent only one of a series of such air circulation devices distributed at spaced intervals around the circumference of the compressor to take air from and deliver it to rings of nozzles at the chosen take-off and injection stages.
  • the control system shown in Fig. 19 includes an inlet temperature sensor 262 and a shaft speed sensor 264 which provide inputs through A-D convertors 266,268 of temperature T and rotational speed N to an operating unit 270.
  • the unit 270 operates on the inputs to produce an output N ⁇ T which represents the corrected speed, a parameter of flow conditions in the compressor.
  • a processing unit 280 operates in the manner already described with reference to the units 202, in accordance with signals from static pressure sensors 282,284 indicating a flow disturbance actuating the opening of the valves 250 to produce a fixed period of air injection.
  • the value of the N ⁇ T value is input to the processor 280 to determine whether the output from the unit 280 actuates the valve 250 to open the path 254,252 or the path 256,254.
  • Lower values of N ⁇ T indicate lower power operation of the compressor and the valve 250 is actuated so that air tapped from the intermediate station is injected into the front of the compressor via the conduits 252.
  • Higher values of N ⁇ T indicate that any disturbance to be acted upon requires correction in the downstream stages and the valve 250 so opens that air from the compressor exit is injected into the intermediate stage via the conduits 254.
  • the method of control according to the invention can also operate to counter a steady flow distortion, ie. some element of circumferential asymmetry in the flow which, although not necessarily leading to a catastrophic disruption of the flow, reduces the efficiency of the turbo-compressor.
  • the control systems would be arranged to act on the appropriate single injection valves or selected groups of the valves at a particular station and sector when a steady flow distortion is indicated by the signals sensed.
  • the circumferentially corresponding injection conduits at two or more stations may share the same control valve. If injection is required only to counter incipient surge conditions, a circumferential series of injection conduits may be connected to a common control valve.
  • the amount of opening may be graduated, or the injected flow volume may be reduced if the valve is opened and closed several times in quick succession.
  • an initial command opens the valve eg. up to 25%, and then if there is a further command from the logic circuitry to open the valve it is opened wider. In this way detection of a minor unstable condition correctable by partial opening of the valve will not excite an excessive response with the resulting loss of engine efficiency.
  • the form of response may also be matched to the type of instability being detected.
  • the distortion will circulate around the circumference of any particular stage and if the distortion is sensed in sequence by the associated sensors, it may not be necessary to inject pressure air through all the inlets associated with that stage. A sequential injection in phase with the distortion may then be sufficient. That does not apply if the distortion is sensed simultaneously by all the sensors, indicating a surge condition.
  • the speed of response of the system is dependent upon the level of discrimination, which must be sufficiently low to enable corrective action to be initiated before any significant loss of engine power occurs, yet must not be so sensitive as to respond to the normal and inevitable variations that occur in the operation of an axial flow compressor, such as the blade to blade differences and the wake disturbances of each blade giving a blade passing frequency variation. This latter is usually the most significant noise component in the axial flow compressor of an aero engine and would give a variation there of about 2%.
  • the limiting value for initiating corrective action ie. the value of X for the discriminators 218 (Fig. 17), would thus be set above the 2% level in such an installation.

Abstract

L'invention décrit un procédé de régulation d'écoulement de gaz dans un compresseur centrifuge axial, selon lequel l'écoulement, à au moins un poste donné dans le sens d'écoulement à travers le compresseur, est détecté en une série de positions espacées de manière circonférentielle. Des fluctuations d'écoulement au-dessus d'une limite prédéterminée sont évaluées afin de produire une réaction d'actionnement si une perturbation se situant au-dessus d'un niveau acceptable prédéterminé est détectée. Lorsqu'une perturbation est détectée, un gaz à plus haute pression soutiré d'un endroit plus loin en aval est injecté dans ledit poste pour y compléter l'écoulement de gaz principal. Une cellule de décrochage tournant naissante va apparaître sous forme d'une fluctuation ayant lieu séquentiellement à des positions espacées de manière circonférentielle. Lorsqu'on réagit à une telle condition par un écoulement à injection sous pression, il devient possible de supprimer des conditions de décrochage tournant et de pompage dans le compresseur avant que la perturbation ne se développe entièrement. Les mêmes moyens peuvent être agencés pour contrecarrer la distortion en régime permanent.

Claims (35)

  1. Procédé de contrôle de l'écoulement du gaz dans un compresseur (C) comportant les étapes suivantes :
    - sonder l'écoulement à une série de positions (2) espacées circonférentiellement autour du compresseur ;
    - détecter des variations de l'écoulement d'une région circonférentielle par rapport à une autre ; et
    - après avoir détectée une telle variation, injecter (8) du gaz à pression supérieure dans le compresseur,
    caractérisé en ce que le gaz à pression supérieure est injecté généralement dans la direction de l'écoulement à travers le compresseur ; le gaz à pression supérieure est pris dans une région de plus haute pression du compresseur, en aval desdites positions (2) espacées circonférentiellement et est injecté vers une région circonférentielle dans laquelle ladite variation a été détectée, le gaz à pression supérieure est injecté dans le compresseur sous un angle pas sensiblement supérieur à 30° par rapport à la direction axiale.
  2. Procédé selon la revendication 1, dans lequel la série de positions (2) espacées circonférentiellement est à un emplacement axial choisi dans la direction de l'écoulement dans le compresseur (C), seules les variations de l'écoulement au dessus d'une limite de variation prédéterminée sont détectées et le gaz à pression supérieure est injecté dans le compresseur (C) en amont de la région à plus haute pression d'une façon sélective circonférentiellement dépendant des origines circonférentielles desdites variations, pour ainsi agir contre les perturbations d'écoulement indiquées par lesdites variations.
  3. Procédé selon la revendication 1 ou 2, dans lequel le gaz à pression supérieure est injecté dans une série de secteurs différents autour du compresseur, les variations d'écoulement étant sondées indépendamment dans chacun des secteurs.
  4. Procédé selon la revendication 3, dans lequel le gaz à pression supérieure est prélevé dans le même secteur que celui dans lequel il est injecté.
  5. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'injection gaz à pression supérieure est réduite graduellement après l'amorçage.
  6. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'injection gaz à pression supérieure est terminée après une période déterminée.
  7. Procédé selon l'une quelconque des revendications 2 à 6, dans lequel les variations de l'écoulement au dessus de la limite de variation prédéterminée sont détectées à un d'une pluralité d'emplacements espacés les uns des autres dans la direction de l'écoulement et l'injection de gaz à pression supérieure est amorcée à un endroit adjacent audit un emplacement en réponse à ladite détection.
  8. Procédé selon l'une quelconque des revendications 2 à 6, dans lequel les variations de l'écoulement au dessus de la limite de variation prédéterminée sont détectées à un d'une pluralité d'emplacements espacés les uns des autres dans la direction de l'écoulement et l'injection de gaz à pression supérieure est amorcée à une distance sensible en amont dudit un emplacement en réponse à ladite détection.
  9. Procédé selon la revendication 8, dans lequel les variations d'écoulement sont détectées au moins à un premier emplacement adjacent à l'entrée du compresseur, et à un second emplacement intermédiaire sur le trajet de l'écoulement dans celui-ci, et le gaz à pression supérieure est injecté pour agir contre les variations d'écoulement détectées à chaque station, le gaz à pression supérieure pour le premier emplacement étant soutiré à un endroit adjacent au second emplacement et le gaz à pression supérieure pour le second emplacement étant soutiré en aval du second emplacement.
  10. Procédé selon l'une quelconque des revendications précédentes, dans lequel pour détecter une perturbation de l'écoulement, un signal reçu des variations de l'écoulement à chaque position espacée circonférentiellement est moyennisé sur une période courante correspondant au sondage de l'écoulement au moins à trois endroits successifs circonférentiellement pour donner une série de valeurs moyennes du signal reçu.
  11. Procédé selon la revendication 10, dans lequel un signal de différence est dérivé du signal reçu et du signal moyen, une mesure de l'amplitude relative du signal de différence est obtenue, et le gaz à pression supérieure est injecté si l'amplitude relative du signal de différence pour chacune d'une pluralité de positions de sondage est au dessus d'une limite de variation prédéterminée.
  12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel l'injection à pression supérieure de gaz est amorcée quand les variations de l'écoulement au dessus de la limite de variation prédéterminée sont sondées séquentiellement pour au moins certaines des positions espacées circonférentiellement.
  13. Procédé selon l'une quelconque des revendications précédentes, dans lequel la détection des variations comporte la détection d'au moins un petit défaut défini nettement d'un écoulement décroché.
  14. Procédé selon l'une quelconque des revendications précédentes, pour contrôler l'écoulement dans un compresseur axial, dans lequel le gaz à pression supérieure est injecté dans une direction ayant une composante circonférentielle en opposition au sens de rotation du rotor du compresseur.
  15. Procédé selon l'une quelconque des revendications précédentes, dans lequel la limite prédéterminée de variation d'écoulement n'est pas sensiblement inférieure à 2% de la valeur moyenne de l'écoulement principal dans le compresseur.
  16. Appareil pour contrôler l'écoulement du gaz dans un compresseur (C) comportant:
    - une série de sondes (2) pour sonder l'écoulement à une série de positions espacées circonférentiellement autour du compresseur et délivrant à partir de là des signaux en relation avec l'écoulement
    - des moyens de contrôle (22) en communication avec les sondes pour détecter des variations dans l'écoulement d'une région circonférentielle par rapport à une autre et pour délivrer des signaux de contrôle lorsque que de telles variations sont détectées ; et
    - des moyens d'injection (8, 14) pouvant fonctionner sur réception des signaux de contrôle pour injecter du gaz à pression supérieure dans le compresseur,
    caractérisé en ce que les moyens d'injection (8, 14) sont arrangés pour injecter le gaz à pression supérieure généralement suivant la direction de l'écoulement principal dans le compresseur (C), des moyens pour dériver le gaz à pression supérieure d'une région à pression supérieure (C) en aval desdites positions espacées circonférentiellement et les moyens d'injection (8, 14) étant arrangés pour injecter le gaz à pression supérieure vers une région circonférentielle dans laquelle ladite variation a été détectée, les moyens d'injection (8, 14) sont arrangés pour injecter le gaz à pression supérieure dans le compresseur (C) à un angle pas sensiblement supérieur à 30° par rapport à la direction axiale.
  17. Appareil selon la revendication 16, dans lequel les moyens d'injection (8, 14) comportent une série circonférentielle d'injecteurs (8), et les moyens de contrôle (22) sont adaptés à faire fonctionner les moyens d'injection (8, 14) d'une manière circonférentiellement sélective en fonction des positions circonférentielles des sondes 2 détectant les variations d'écoulement indiquées par lesdites variations.
  18. Appareil selon la revendication 16 ou 17, les moyens de contrôle (22) comportant des moyens ayant pour résultat que seulement les signaux de sonde indiquant des variations d'écoulement au dessus d'une limite prédéterminée de variation d'écoulement mettent en fonctionnement les moyens d'injection.
  19. Appareil selon l'une quelconque des revendications 16 à 18, dans lequel lesdites sondes (102a, 102b) sont situées à une pluralité d'emplacements espacés les uns des autres dans la direction de l'écoulement et les moyens d'injection (108a, 108b, 114a, 114b) comportent des injecteurs (108a, 108b) prévus auxdits emplacements ou adjacents à ceux-ci, les moyens de contrôle (202a, 202b) étant adaptés à amorcer ladite injection en réponse à la détection desdites variations d'écoulement auxdits emplacements.
  20. Appareil selon l'une quelconque des revendications 16 à 18, dans lequel lesdites sondes (102a, 102b) sont disposées à une pluralité d'emplacement espacés les uns des autres en direction de l'écoulement, et les moyens d'injection (108a, 108b, 114a, 114b) comportent des injecteurs (108b) prévus à une distances sensible en amont d'une desdites stations (102b), les moyens de contrôle (114b) étant adaptés à amorcer ladite injection en réponse à la détection desdites variations d'écoulement à ladite une station.
  21. Appareil selon la revendication 16, comprenant des sondes (102a) disposées à un premier emplacement axial adjacent à l'entrée du compresseur (C), des sondes (102b) disposées à un second emplacement axial intermédiaire sur le trajet d'écoulement dans celui-ci, les moyens d'injection comprenant des premiers moyens d'injection (108a) prévus à ou adjacent au premier emplacement (102a), des seconds moyens d'injection (108b) prévus à une distance sensible en amont du second emplacement (102b), des premiers moyens de conduit (116) pour connecter les premiers moyens d'injection (108a) à l'écoulement du compresseur principal (C) en aval du premier emplacement (102a) et des seconds moyens de conduit (118) pour connecter les seconds moyens d'injecteur (108b) à l'écoulement du compresseur principal (C) en aval du second emplacement (102b).
  22. Appareil selon la revendication 21, dans lequel les moyens d'injecteur comprennent des moyens de soupape (250) commun aux deux moyens de conduit (252, 254, 256) pour bloquer sélectivement l'injection et chacun desdits moyens de conduit (252, 256) en réponse à des signaux provenant des moyens de contrôle (280).
  23. Appareil selon une quelconque des revendications 16, à 21, dans lequel des moyens de soupape (114) sont prévus pour empêcher sélectivement l'injection de l'air à pression supérieure, les moyens de soupape (114) comprenant au moins une soupape semi-rotative comportant une stator cylindrique (152) et un rotor cylindrique (142) en ajustement de glissement étanche avec ledit stator (152), le stator (152) et le rotor (142) ayant chacun une série d'ouvertures (154) espacés circonférentiellement qui sont amenées en alignement et hors d'alignement par rotation du rotor (142) pour ouvrir et fermer la soupape.
  24. Appareil selon la revendication 23, dans lequel des moyens d'entraînement électromagnétique déterminent les positions extrêmes du mouvement rotatif du rotor.
  25. Appareil selon une quelconque des revendications 16 à 24, les moyens d'injection comportant des moyens de contrôle d'écoulement pour contrôler l'écoulement dans les moyens d'injection, les moyens de contrôle d'écoulement étant sollicités vers une position fermée.
  26. Appareil selon une quelconque des revendications 16 à 25, muni de sondes et de moyens d'injection pour chacun d'une pluralité de différents secteurs du compresseur et des moyens de conduit connectant les moyens d'injection à une région de pression supérieure du compresseur dans chaque secteur, les moyens de contrôle contrôlant le fonctionnement des moyens d'injecteur dans chaque secteur.
  27. Appareil selon la revendication 26, dans lequel il y a au moins six secteurs.
  28. Appareil selon une quelconque des revendications 16 à 27, dans lequel les moyens de contrôle (22) détectent au moins un petit défaut défini nettement d'un écoulement décroché.
  29. Appareil selon une quelconque des revendications 16 à 28, dans lequel les moyens de sortie comportent des tuyères (126) dans lesquelles une partie en saillie (30) à chaque sortie de tuyère (126) défléchit l'injection dans une direction aval.
  30. Appareil selon une quelconque des revendications 17 à 29, comprenant des moyens (22) pour réduire ou arrêter l'injection de gaz à pression supérieure dans une période temps prédéterminée.
  31. Appareil selon une quelconque des revendications 17 à 30, dans lequel les moyens de contrôle comportent des moyens pour moyenniser le signal détecté à chacune desdits emplacement espacés sur une période de fonctionnement correspondant à la détection de l'écoulement à au moins trois emplacements successifs circonférentiellement pour donner une série de valeurs moyennes à partir de laquelle une perturbation d'écoulement est détectée.
  32. Appareil selon la revendication 31, comportant des moyens pour former un signal de différence entre le signal sondé instantanément et le signal moyen, des moyens pour mesurer l'amplitude relative dudit signal de différence et des moyens de génération pour produire un signal d'actionnement pour l'injection lors de la détection d'une amplitude relative supérieure à un niveau prédéterminé de chacun d'une pluralité d'emplacements de détecteur.
  33. Appareil selon une quelconque des revendications 16 à 32, dans lequel les moyens d'injecteur (8, 14) comprennent des tuyères (126) disposées entre des aubes de guidage (122).
  34. Appareil selon une quelconque des revendications 16 à 33, dans lequel les moyens d'injecteur (8, 14) comprennent des tuyères (126) disposées dans la paroi interne (124) de l'enveloppe du compresseur.
  35. Appareil selon une quelconque des revendications 16 à 34, dans lequel le gaz à pression supérieure est injecté vers une région circonférentielle qui suit en direction de rotation la région circonférentielle dans laquelle ladite variation a été détectée.
EP91915299A 1990-08-18 1991-08-19 Procede et moyens de regulation d'ecoulement Expired - Lifetime EP0543908B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9018188 1990-08-18
GB909018188A GB9018188D0 (en) 1990-08-18 1990-08-18 Flow control method and means
PCT/GB1991/001407 WO1992003661A1 (fr) 1990-08-18 1991-08-19 Procede et moyens de regulation d'ecoulement

Publications (2)

Publication Number Publication Date
EP0543908A1 EP0543908A1 (fr) 1993-06-02
EP0543908B1 true EP0543908B1 (fr) 1996-09-18

Family

ID=10680900

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91915299A Expired - Lifetime EP0543908B1 (fr) 1990-08-18 1991-08-19 Procede et moyens de regulation d'ecoulement

Country Status (5)

Country Link
EP (1) EP0543908B1 (fr)
JP (1) JPH05509143A (fr)
DE (1) DE69122258T2 (fr)
GB (1) GB9018188D0 (fr)
WO (1) WO1992003661A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091216A1 (fr) * 2010-12-30 2012-07-05 한국항공우주연구원 Compresseur à flux axial et son procédé de commande de stabilisation de fluide

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2804732B1 (fr) 2000-02-03 2002-04-12 Snecma Procede de detection precoce des instabilites aerodynamiques dans un compresseur de turbomachine
GB2413158B (en) 2004-04-13 2006-08-16 Rolls Royce Plc Flow control arrangement
US7811050B2 (en) * 2006-12-28 2010-10-12 General Electric Company Operating line control of a compression system with flow recirculation
DE102007035927A1 (de) * 2007-07-31 2009-02-05 Mtu Aero Engines Gmbh Regelung für eine Gasturbine mit aktiv stabilisiertem Verdichter
DE102012100339A1 (de) * 2012-01-16 2013-07-18 Universität der Bundeswehr München Verfahren und Vorrichtung zur Stabilisierung eines Verdichterstroms
EP3296573A1 (fr) * 2016-09-20 2018-03-21 Siemens Aktiengesellschaft Technique de contrôle du décrochage tournant dans un compresseur de moteur à turbine à gaz

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1136881A (fr) * 1954-10-06 1957-05-21 Power Jets Res & Dev Ltd Perfectionnements apportés aux compresseurs à plusieurs étages à aubes aérodynamiques
US3901620A (en) * 1973-10-23 1975-08-26 Howell Instruments Method and apparatus for compressor surge control
US4196472A (en) * 1977-09-09 1980-04-01 Calspan Corporation Stall control apparatus for axial flow compressors
GB8610297D0 (en) * 1986-04-28 1986-10-01 Rolls Royce Turbomachinery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091216A1 (fr) * 2010-12-30 2012-07-05 한국항공우주연구원 Compresseur à flux axial et son procédé de commande de stabilisation de fluide

Also Published As

Publication number Publication date
WO1992003661A1 (fr) 1992-03-05
GB9018188D0 (en) 1990-10-03
DE69122258D1 (de) 1996-10-24
JPH05509143A (ja) 1993-12-16
EP0543908A1 (fr) 1993-06-02
DE69122258T2 (de) 1997-01-30

Similar Documents

Publication Publication Date Title
US5340271A (en) Flow control method and means
US5275528A (en) Flow control method and means
Freeman et al. Experiments in active control of stall on an aeroengine gas turbine
JP5518738B2 (ja) ロータプラズマアクチュエータを使用する不安定性緩和システム
US8282336B2 (en) Instability mitigation system
US8282337B2 (en) Instability mitigation system using stator plasma actuators
US9982607B2 (en) Shaft failure detection using passive control methods
JP5698986B2 (ja) ステータプラズマアクチュエータを用いた不安定性軽減システム
EP2881546B1 (fr) Commande de moteur de turbine à gaz
US20090319150A1 (en) Method, system, and apparatus for reducing a turbine clearance
US20090169356A1 (en) Plasma Enhanced Compression System
US20100047055A1 (en) Plasma Enhanced Rotor
EP3453840B1 (fr) Système de commande de jeu actif de moteur à turbine à gaz utilisant un séparateur de particules d'entrée
CA2220172C (fr) Systeme de commande pour turbomachine a soufflante canalisee
GB1581855A (en) Turbomachine performance
EP0543908B1 (fr) Procede et moyens de regulation d'ecoulement
JPH05187269A (ja) 圧縮機失速回復方法および装置
JP3439823B2 (ja) ガスタービンエンジン作動方法
EP3516240B1 (fr) Technique de contrôle du décrochage tournant dans un compresseur de moteur à turbine à gaz
EP0268545B1 (fr) Méthode pour éviter le pompage d'un moteur à turbine à gaz
US4768338A (en) Means for enhancing recovery of a surge condition in a gas turbine engine
US6205771B1 (en) Ducted fan gas turbine engine control system
Freeman et al. Experiments in active control of stall on an aeroengine gas turbine
CN114945734B (zh) 用于控制高压涡轮的间隙以降低egt超调影响的控制方法和单元
Hiller et al. High pressure compressor stabilization by controlled pulsed injection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19940614

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69122258

Country of ref document: DE

Date of ref document: 19961024

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100823

Year of fee payment: 20

Ref country code: FR

Payment date: 20100901

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100819

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69122258

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69122258

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110820