EP0542189B1 - Method to rapidly achieve the service temperature of a mass by use of a liquid or pourable heat transfer medium, particularly for rapid heating of an internal combustion engine during a cold start - Google Patents

Method to rapidly achieve the service temperature of a mass by use of a liquid or pourable heat transfer medium, particularly for rapid heating of an internal combustion engine during a cold start Download PDF

Info

Publication number
EP0542189B1
EP0542189B1 EP92119196A EP92119196A EP0542189B1 EP 0542189 B1 EP0542189 B1 EP 0542189B1 EP 92119196 A EP92119196 A EP 92119196A EP 92119196 A EP92119196 A EP 92119196A EP 0542189 B1 EP0542189 B1 EP 0542189B1
Authority
EP
European Patent Office
Prior art keywords
heat
storage
mass
coolant
transfer medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92119196A
Other languages
German (de)
French (fr)
Other versions
EP0542189A1 (en
Inventor
Oskar Dr.-Ing. Schatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schatz Thermo System GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0542189A1 publication Critical patent/EP0542189A1/en
Application granted granted Critical
Publication of EP0542189B1 publication Critical patent/EP0542189B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/02Aiding engine start by thermal means, e.g. using lighted wicks
    • F02N19/04Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines
    • F02N19/10Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines by heating of engine coolants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/20Indicating devices; Other safety devices concerning atmospheric freezing conditions, e.g. automatically draining or heating during frosty weather
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P2011/205Indicating devices; Other safety devices using heat-accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the invention relates to a method for quickly adjusting the operating temperature of a mass which is in heat exchange with a system comprising a memory for sensible heat and containing a flowable or free-flowing heat transfer medium, in particular for rapid heating of a motor vehicle engine during a cold start
  • a typical example of a process of the type mentioned above is the operation of an internal combustion engine, for example for motor vehicles, in which after the cold start the engine or essential parts thereof must first be brought to a minimum operating temperature, whereupon the maximum permissible operating temperature by heat dissipation via a coolant circuit and maintaining a heat exchanger involved in this until the engine is stopped. It is known to load a heat accumulator with the heat to be dissipated from the engine, which can emit heat in an operating state with a heat deficit or also during a cold start and thus to reduce wear, fuel consumption, exhaust gas emissions and noise or to improve the cold start and Driveability contributes, but also enables an early effect of the cabin heating.
  • latent heat stores are proposed because they have a high energy density, which is particularly advantageous in the case of demands for low weight and low volume in passenger cars affects.
  • the acquisition costs for latent heat storage are relatively high.
  • Such heat accumulators for sensible heat in which the heat is stored in the heat transfer medium, which in turn is stored in the heat accumulator, transfer their heat to the heat sink or the area to be heated in that the heat transfer medium is continuously pumped around. This results in a compensation temperature which is established in the ratio of the heat-active masses of the heat accumulator and the system to be heated between the temperature in the heat accumulator and in the area to be heated when the heat accumulator begins to discharge.
  • the heat output of the heat accumulator therefore corresponds to the temperature difference between the heat transfer medium located in the heat accumulator before and after the discharge.
  • the temperature in the heat transfer medium before discharge is made up of the maximum possible loading temperature, which is generally 85 ° C in modern motor vehicle engines, and the temperature drop in the heat transfer medium during the storage phase, which depends on the duration of storage and the heat losses the memory is dependent on the environment.
  • the size of the heat store depends on the temperature difference before and after the discharge is dependent. The bigger the realizable temperature difference is, the smaller and lighter the storage can be.
  • the sensible heat store consists of an insulated storage container which is connected at its lower end to the coolant circuit of the motor vehicle engine and at its upper end to its accumulator.
  • the coolant circulating in the coolant circuit is pumped into the accumulator, and air in the accumulator is hereby displaced into the accumulator.
  • the compressed air in the accumulator displaces the coolant from the accumulator back into the coolant circuit so that it can heat up the engine.
  • the invention is based on the object of designing a method of the type mentioned above such that the fastest possible temperature change can be implemented with the most cost-effective means and with the smallest possible space and weight requirements, and that the usable temperature difference of the storage medium increases, and also in relation to a certain amount of heat to be supplied to the motor is reduced.
  • the system contains only a quantity of the heat transfer medium which fills the functional area and which is in the functional area of the system during operation and, on the other hand, is in the memory during idle operation, the remaining system volume being filled with air.
  • the entire amount of the heat transfer medium is kept as far as possible at the operating temperature by the heat insulation of the accumulator, so that only the solid mass which is in heat exchange during operation with the heat transfer medium will adapt to the ambient temperature.
  • the heat transfer medium When operation is resumed, the heat transfer medium is released from the storage into the functional area and can then transfer the stored amount of heat fully to the solid mass in heat exchange with the system, without part of the amount of heat - as before - for Heating of a quantity of the heat carrier remaining in the functional area and subject to the adaptation to the ambient temperature must be released.
  • An advantageous embodiment consists in that storage losses occurring during the storage period are compensated for by at least one latent storage element arranged in the memory.
  • a further expedient embodiment consists in that the heat transfer medium for loading the latent storage element is guided over the store when the mass has reached its operating temperature.
  • a particularly advantageous embodiment, in which the residual heat is used after the engine has been stopped, is that the heat transfer medium transferred into the memory when the operational silence occurs after heating the solid mass of the memory and / or charging the latent storage element into the mass in the area of the system which is in the heat exchange process and is transferred back to the store after renewed heat absorption.
  • An internal combustion engine 10 is included in a coolant system, designated overall by 12, which is connected to the engine 10 via a coolant inlet 14 and a coolant outlet 16.
  • a coolant outlet 16 follows a branch 18, from which the coolant on the one hand via an air-controlled heater 20, a directional valve 22, a three-way valve 24 and a coolant pump 26 to the coolant inlet 14 and, depending on the position of a thermostatic valve 28, either via a line 30 and a Directional valve 32 or via a line 33 and a cooler 34 to the coolant pump 26 and flows from this to the coolant inlet 14.
  • a heat-insulated reservoir 36 At the deepest point of the system there is a heat-insulated reservoir 36, the volume of which is dimensioned such that it can essentially hold the coolant circulating through it during operation of the engine 10.
  • the reservoir 36 is connected to the three-way valve 24 via a fill and drain line 38.
  • an air line 40 is connected in the upper area of the memory 36, which leads to the branch 18.
  • a shut-off valve can be provided in the air line 40 which, after the reservoir 36 has been emptied, into the coolant system 12 leading via the engine 10 or the filling of the coolant channels in the engine 10 can be closed and opened again when the memory 36 is filled. If such a shut-off valve is provided, an expansion tank should also be provided in the coolant system 12, as shown in FIG. 2.
  • the coolant While the engine 10 is idle, the coolant is in the reservoir 36, while the coolant system 12, insofar as it is free of coolant, is filled with air.
  • the coolant is drawn off from the accumulator 36 by an electric pump 42 in the line 38 and transferred to the coolant system 12 via the three-way valve 24 set for flow from the line 38 to the coolant pump 26 .
  • the air is displaced and transferred to the memory 36 via the line 40.
  • the three-way valve 24 is set to flow from the directional valve 22 to the coolant pump 26, so that the coolant is held in the coolant system 12.
  • the three-way valve 26 is switched over again, so that the hot coolant flows back into the reservoir 36 under the influence of gravity. Heat is given off to the storage tank.
  • a latent storage element 44 can be provided in the memory 36, to which heat is likewise given off to charge it. In order to compensate for this heat loss, the coolant is pumped back into the coolant system 12 again after a few minutes by the electric pump 42 in order to absorb the residual heat of the engine, whereupon it flows back into the accumulator. While Heat losses occurring during storage can be compensated for for some time by heat being released by the latent storage element.
  • FIG. 2 An arrangement according to FIG. 2 can be provided in which a high-lying storage 36 arranged above the coolant system 12 is provided.
  • the electric pump 42 transfers the coolant from the coolant system 12 via the filling and emptying line 38 into the store 36, whereupon the backflow of the coolant into the coolant system 12 is prevented for the storage period by closing a shut-off valve 46.
  • the air leaves the reservoir 36 via the air line 40 and an expansion tank 48 and enters the coolant system 12 at 18a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

Die Erfindung betrifft ein Verfahren zur schnellen Einstellung der Betriebstemperatur einer Masse, die mit einem einen Speicher für fühlbare Wärme umfassenden, einen fließ- oder rieselfähigen Wärmeträger enthaltenden System im Wärmetausch steht, insbesondere zur Schnellaufheizung eines Kraftfahrzeugmotors beim KaltstartThe invention relates to a method for quickly adjusting the operating temperature of a mass which is in heat exchange with a system comprising a memory for sensible heat and containing a flowable or free-flowing heat transfer medium, in particular for rapid heating of a motor vehicle engine during a cold start

In der Technik sind vielfach Vorgänge bekannt, für deren optimalen Verlauf eine in einem vorgegebenen Bereich liegende Betriebstemperatur der Vorrichtung oder Anlage erforderlich ist, in der der Vorgang abläuft, wobei für die gegebenenfalls erforderlich werdende Wärmezu- oder -abfuhr ein Wärmeträger eingesetzt werden kann, der in einem mit der Vorrichtung oder Anlage einen Wärmeaustausch ermöglichenden System bewegbar ist. Dabei ist es bekannt, diesem System einen Wärmespeicher zuzuordnen, in dem gespeist durch den während des Betriebs die Betriebstemperatur annehmenden Wärmeträger eine Wärmemenge gespeichert werden kann, die im Bedarfsfall, insbesondere nach einer Betriebsunterbrechung mit entsprechender Annäherung der Temperatur der Vorrichtung oder Anlage an die Umgebungstemperatur, eingesetzt werden kann, um die Vorrichtung oder Anlage ganz oder teilweise möglichst rasch wieder auf die optimale Betriebstemperatur zu bringen. Es ist dabei je nach Art des ablaufenden Vorgangs und der dabei benötigten Betriebstemperatur sowohl möglich, Wärme zuzuführen, wenn die Betriebstemperatur über der Umgebungstemperatur liegt, als auch Wärme abzuführen, wenn die Betriebstemperatur unter der Umgebungstemperatur liegt.Many processes are known in the art for the optimal course of which an operating temperature of the device or system in which the process takes place is required, in which process the process takes place, a heat carrier being able to be used for the heat supply or heat removal that may be required is movable in a system that enables heat exchange with the device or system. It is known to assign a heat store to this system, in which a quantity of heat can be stored, fed by the heat transfer medium which assumes the operating temperature during operation, which, if necessary, in particular after an interruption in operation with the temperature of the device or system approaching the ambient temperature, can be used to bring the device or system back to the optimum operating temperature as quickly as possible in whole or in part. Depending on the type of process taking place and the operating temperature required, it is possible both to supply heat when the operating temperature is above the ambient temperature and to remove heat when the operating temperature is below the ambient temperature.

Ein typisches Beispiel für einen Vorgang der vorstehend erwähnten Art ist der Betrieb eines Verbrennungsmotors, beispielsweise für Kraftfahrzeuge, bei dem nach dem Kaltstart der Motor oder wesentliche Teile desselben zunächst auf eine minimale Betriebstemperatur gebracht werden muß, worauf die maximal zulässige Betriebstemperatur durch Wärmeabfuhr über einen Kühlmittelkreislauf und einen in diesen einbezogenen Wärmetauscher aufrechterhalten wird, bis der Motor stillgesetzt wird. Dabei ist es bekannt, mit der abzuführende Verlustwärme des Motors einen Wärmespeicher zu laden, der bei einem Betriebszustand mit Wärmedefizit oder aber auch beim Kaltstart Wärme abgeben kann und damit zur Reduzierung von Verschleiß, Kraftstoffverbrauch, Abgasemissionen und Lärm bzw. zur Verbesserung der Kaltstart- und Fahrfähigkeit beiträgt, aber auch eine frühzeitige Wirkung der Kabinenheizung ermöglicht.A typical example of a process of the type mentioned above is the operation of an internal combustion engine, for example for motor vehicles, in which after the cold start the engine or essential parts thereof must first be brought to a minimum operating temperature, whereupon the maximum permissible operating temperature by heat dissipation via a coolant circuit and maintaining a heat exchanger involved in this until the engine is stopped. It is known to load a heat accumulator with the heat to be dissipated from the engine, which can emit heat in an operating state with a heat deficit or also during a cold start and thus to reduce wear, fuel consumption, exhaust gas emissions and noise or to improve the cold start and Driveability contributes, but also enables an early effect of the cabin heating.

Als Speicher werden nach dem Stand der Technik (siehe z.B. BWK Brennstoff Wärme Kraft Bd. 43 Nr.6 5.333-337) Latentwärmespeicher vorgeschlagen, weil sie eine hohe Energiedichte aufweisen, was sich insbesondere bei den Forderungen nach geringem Gewicht und geringem Volumen bei Personenkraftwagen vorteilhaft auswirkt. Andererseits sind die Anschaffungskosten für Latentwärmespeicher verhältnismäßig hoch.According to the state of the art (see, for example, BWK Fuel Heat Power Vol. 43 No. 6 5.333-337), latent heat stores are proposed because they have a high energy density, which is particularly advantageous in the case of demands for low weight and low volume in passenger cars affects. On the other hand, the acquisition costs for latent heat storage are relatively high.

Es sind auch Speicher für fühlbare Wärme bekannt, beispielsweise solche, die mit flüssigen Wärmeträgern zusammenwirken, indem sie das übliche Kühlmittel von Kraftfahrzeugmotoren speichern. Solche Speicher führen zu niedrigen Kosten und kurzen Be- und Entladezeiten, verursachen andererseits aber ein prohibitiv hohes Volumen und Gewicht, was den Einbau in moderne Kraftfahrzeuge verhindert oder zumindest sehr erschwert.There are also known sensible heat stores, for example those which interact with liquid heat carriers by storing the usual coolant of motor vehicle engines. Such storage facilities lead to low costs and short loading and unloading times, but on the other hand cause prohibitively high volume and weight, which means installation in modern ones Motor vehicles prevented or at least very difficult.

Solche Wärmespeicher für fühlbare Wärme, bei welchen die Wärme im Wärmeträger gespeichert wird, der seinerseits im Wärmespeicher eingelagert wird, transferieren ihre Wärme an die Wärmesenke bzw. den aufzuheizenden Bereich dadurch, daß der Wärmeträger kontinuierlich umgepumpt wird. Dadurch ergibt sich eine Ausgleichstemperatur, die sich im Verhältnis der wärmeaktiven Massen des Wärmespeichers und des aufzuheizenden Systems zwischen der Temperatur im Wärmespeicher und im aufzuheizenden Bereich bei Entladebeginn des Wärmespeichers einstellt.Such heat accumulators for sensible heat, in which the heat is stored in the heat transfer medium, which in turn is stored in the heat accumulator, transfer their heat to the heat sink or the area to be heated in that the heat transfer medium is continuously pumped around. This results in a compensation temperature which is established in the ratio of the heat-active masses of the heat accumulator and the system to be heated between the temperature in the heat accumulator and in the area to be heated when the heat accumulator begins to discharge.

Die Wärmeabgabe des Wärmespeichers entspricht demnach der Temperaturdifferenz des im Wärmespeicher befindlichen Wärmeträgers vor und nach der Entladung. Beim Betrieb von Verbrennungsmotoren setzt sich die Temperatur im Wärmeträger vor der Entladung zusammen aus der maximal möglichen Beladetemperatur, die bei modernen Kraftfahrzeugmotoren in der Regel 85°C beträgt, und dem Temperaturabfall im Wärmeträger während der Speicherungsphase, der von der Dauer der Speicherung und den Wärmeverlusten des Speichers an die Umgebung abhängig ist.The heat output of the heat accumulator therefore corresponds to the temperature difference between the heat transfer medium located in the heat accumulator before and after the discharge. When operating internal combustion engines, the temperature in the heat transfer medium before discharge is made up of the maximum possible loading temperature, which is generally 85 ° C in modern motor vehicle engines, and the temperature drop in the heat transfer medium during the storage phase, which depends on the duration of storage and the heat losses the memory is dependent on the environment.

Da für die Wärmeabgabe an den Motor zur Erzielung einer bestimmten Reduzierung der Abgase eine gewisse Mindestmenge an Wärme erforderlich ist, um die erforderliche Temperaturerhöhung zumindest der relevanten Motorteile zu bewirken, ergibt sich daraus, daß die Größe des Wärmespeichers von der Temperaturdifferenz vor und nach der Entladung abhängig ist. Je größer die realisierbare Temperaturdifferenz ist, desto kleiner und leichter kann der Speicher werden.Since a certain minimum amount of heat is required to give off a certain amount of heat to the engine in order to achieve a certain reduction in the exhaust gases, in order to bring about the necessary temperature increase of at least the relevant engine parts, it follows that the size of the heat store depends on the temperature difference before and after the discharge is dependent. The bigger the realizable temperature difference is, the smaller and lighter the storage can be.

Ein Verfahren nach dem Oberbegriffs des Anspruchs 1 ist aus der US-A-4,217,864 bekannt. Bei diesem Stand der Technik besteht der Speicher für fühlbare Wärme aus einem isolierten Speicherbehälter, der an seinem unteren Ende mit dem Kühlmittelkreislauf des Kraftfahrzeugmotors und an seiem oberen Ende mit seinem Akkumulator verbunden ist. Beim Abschalten des Motors wird das im Kühlmittelkreislauf umlaufende Kühlmittel in den Speicher gepumpt, und hierbei wird im Speicher befindliche Luft in den Akkumulator verdrängt. Bei Anlassen des Motors verdrängt umgekehrt die komprimierte Luft im Akkumulator das Kühlmittel aus dem Speicher zurück in den Kühlmittelkreislauf, so daß es den Motor aufheizen kann. - Bei diesem Verfahren ist eine sowohl hinsichtlich der Kosten wie auch des Platz- und Gewichtsbedarfs aufwendige Isolierung erforderlich, um die Wärme im Speicher möglichst lange zu halten. Auch der zusätzlich zum Speicher vorgesehene Akkumulator erhöht den Platz- und Gewichtsbedarf.A method according to the preamble of claim 1 is known from US-A-4,217,864. In this prior art, the sensible heat store consists of an insulated storage container which is connected at its lower end to the coolant circuit of the motor vehicle engine and at its upper end to its accumulator. When the engine is switched off, the coolant circulating in the coolant circuit is pumped into the accumulator, and air in the accumulator is hereby displaced into the accumulator. Conversely, when the engine is started, the compressed air in the accumulator displaces the coolant from the accumulator back into the coolant circuit so that it can heat up the engine. - With this method, a costly insulation, both in terms of cost and space and weight, is required in order to keep the heat in the storage unit as long as possible. The accumulator provided in addition to the memory also increases the space and weight requirements.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der vorstehend genannten Art so auszugestalten, daß mit möglichst kostengünstigen Mitteln und mit möglichst geringem Platz- und Gewichtsbedarf eine möglichst schnelle Temperaturänderung realisierbar ist, und daß die nutzbare Temperaturdifferenz des Speichermediums erhöht, sowie die in Bezug auf eine bestimmte Motorwirkung zuzuführende Wärmemenge reduziert wird.The invention is based on the object of designing a method of the type mentioned above such that the fastest possible temperature change can be implemented with the most cost-effective means and with the smallest possible space and weight requirements, and that the usable temperature difference of the storage medium increases, and also in relation to a certain amount of heat to be supplied to the motor is reduced.

Die Lösung dieser Aufgabe ist in Anspruch 1 und Anspruch 3 definiert.The solution to this problem is defined in claim 1 and claim 3.

Abweichend von der bisher üblichen Praxis enthält das System nur eine den Funktionsbereich füllende Menge des Wärmeträgers, die sich während des Betriebs im Funktionsbereich des Systems, während der Betriebsruhe dagegen im Speicher befindet, wobei das verbleibende Systemvolumen mit Luft gefüllt ist. Damit ergibt sich eine Gewichtseinsparung. Außerdem wird die gesamte Menge des Wärmeträgers bei Eintritt der Betriebsruhe durch die Wärmeisolation des Speichers so weit wie möglich auf der Betriebstemperatur gehalten, so daß sich nur die während des Betriebs mit dem Wärmeträger im Wärmetausch stehende feste Masse an die Umgebungstemperatur anpassen wird. Bei Wiederaufnahme des Betriebs wird der Wärmeträger aus dem Speicher in den Funktionsbereich abgegeben und kann dann die gespeicherte Wärmemenge voll an die mit dem System im Wärmetausch stehende feste Masse abgeben, ohne daß ein Teil der Wärmemenge - wie bisher - zur Erwärmung einer im Funktionsbereich verbliebenen und der Anpassung an die Umgebungstemperatur unterworfenen Menge des Wärmeträgers abgegeben werden muß.Deviating from the previous practice, the system contains only a quantity of the heat transfer medium which fills the functional area and which is in the functional area of the system during operation and, on the other hand, is in the memory during idle operation, the remaining system volume being filled with air. This results in a weight saving. In addition, the entire amount of the heat transfer medium is kept as far as possible at the operating temperature by the heat insulation of the accumulator, so that only the solid mass which is in heat exchange during operation with the heat transfer medium will adapt to the ambient temperature. When operation is resumed, the heat transfer medium is released from the storage into the functional area and can then transfer the stored amount of heat fully to the solid mass in heat exchange with the system, without part of the amount of heat - as before - for Heating of a quantity of the heat carrier remaining in the functional area and subject to the adaptation to the ambient temperature must be released.

Eine vorteilhafte Ausgestaltung besteht darin, daß während der Speicherungsdauer auftretende Speicherungsverluste durch mindestens ein im Speicher angeordnetes Latentspeicherelement ausgeglichen werden.An advantageous embodiment consists in that storage losses occurring during the storage period are compensated for by at least one latent storage element arranged in the memory.

Dabei besteht eine weitere zweckmäßige Ausführungsform darin, daß der Wärmeträger zur Beladung des Latentspeicherelements über den Speicher geführt wird, wenn die Masse ihre Betriebstemperatur erreicht hat.A further expedient embodiment consists in that the heat transfer medium for loading the latent storage element is guided over the store when the mass has reached its operating temperature.

Eine besonders vorteilhafte Ausgestaltung, bei der die Restwärme nach dem Stillsetzen des Motors genutzt wird, besteht darin, daß der bei Eintritt des Betriebsruhe in den Speicher überführte Wärmeträger nach der Aufheizung der festen Masse des Speichers und/oder Ladung des Latentspeicherelements in den mit der Masse im Wärmetausch stehenden Bereich des Systems zurückgeführt und nach erneuter Wärmeaufnahme wieder in den Speicher überführt wird.A particularly advantageous embodiment, in which the residual heat is used after the engine has been stopped, is that the heat transfer medium transferred into the memory when the operational silence occurs after heating the solid mass of the memory and / or charging the latent storage element into the mass in the area of the system which is in the heat exchange process and is transferred back to the store after renewed heat absorption.

Anhand der nun folgenden Beschreibung der in der Zeichnung dargestellten Ausführungsbeispiele von Kühlmittelsystemen von Kraftfahrzeugverbrennungsmotoren zur Durchführung der Erfindung wird diese näher erläutert.The following description of the exemplary embodiments of coolant systems of motor vehicle internal combustion engines for carrying out the invention shown in the drawing explains this in more detail.

Es zeigt:

Fig. 1
eine schematische Darstellung eines Kraftfahrzeugverbrennungsmotors mit seinem Kühlmittelsystems in einer ersten Ausführungsform mit tiefliegendem Speicher und
Fig. 2
eine Ausführungsform des Kühlmittelsystems mit hochliegendem Speicher.
It shows:
Fig. 1
a schematic representation of a motor vehicle internal combustion engine with its coolant system in a first embodiment with deep storage and
Fig. 2
an embodiment of the coolant system with high-lying memory.

Übereinstimmende oder einander entsprechende Elemente werden in den Figuren mit gleichen Bezugszeichen gekennzeichnet.Corresponding or corresponding elements are identified in the figures with the same reference symbols.

Ein Verbrennungsmotor 10 ist in ein insgesamt mit 12 bezeichnetes Kühlmittelsystem einbezogen, das mit dem Motor 10 über einen Kühlmitteleinlaß 14 und einen Kühlmittelauslaß 16 verbunden ist. Auf den Kühlmittelauslaß 16 folgt eine Verzweigung 18, von der aus das Kühlmittel einerseits über eine luftgeregelte Heizung 20, ein Richtungsventil 22, ein Dreiwegeventil 24 und eine Kühlmittelpumpe 26 zum Kühlmitteleinlaß 14 und andererseits je nach Stellung eines Thermostatventils 28 entweder über eine Leitung 30 und ein Richtungsventil 32 oder über eine Leitung 33 und einen Kühler 34 zur Kühlmittelpumpe 26 und von dieser zum Kühlmitteleinlaß 14 strömt.An internal combustion engine 10 is included in a coolant system, designated overall by 12, which is connected to the engine 10 via a coolant inlet 14 and a coolant outlet 16. On the coolant outlet 16 follows a branch 18, from which the coolant on the one hand via an air-controlled heater 20, a directional valve 22, a three-way valve 24 and a coolant pump 26 to the coolant inlet 14 and, depending on the position of a thermostatic valve 28, either via a line 30 and a Directional valve 32 or via a line 33 and a cooler 34 to the coolant pump 26 and flows from this to the coolant inlet 14.

An der tiefsten Stelle des Systems ist ein wärmeisolierter Speicher 36 angeordnet, dessen Volumen so bemessen ist, daß er im wesentlichen das während des Betriebs des Motors 10 über diesen zirkulierende Kühlmittel aufnehmen kann. Der Speicher 36 ist über eine Füll- und Entleerungsleitung 38 mit dem Dreiwegeventil 24 verbunden. Außerdem ist im oberen Bereich des Speichers 36 eine Luftleitung 40 angeschlossen, die zur Verzweigung 18 führt. Vor der Einmündung der Luftleitung 40 in die Verzweigung 18 kann in der Luftleitung 40 ein Absperrventil vorgesehen sein, das nach der Entleerung des Speichers 36 in das über den Motor 10 führende Kühlmittelsystem 12 bzw. der Füllung der Kühlmittelkanäle im Motor 10 geschlossen und bei der Füllung des Speichers 36 wieder geöffnet werden kann. Falls ein solches Absperrventil vorgesehen wird, sollte auch ein Ausgleichsbehälter im Kühlmittelsystem 12 vorgesehen werden, wie er in Fig. 2 gezeigt ist.At the deepest point of the system there is a heat-insulated reservoir 36, the volume of which is dimensioned such that it can essentially hold the coolant circulating through it during operation of the engine 10. The reservoir 36 is connected to the three-way valve 24 via a fill and drain line 38. In addition, an air line 40 is connected in the upper area of the memory 36, which leads to the branch 18. Before the air line 40 opens into the branch 18, a shut-off valve can be provided in the air line 40 which, after the reservoir 36 has been emptied, into the coolant system 12 leading via the engine 10 or the filling of the coolant channels in the engine 10 can be closed and opened again when the memory 36 is filled. If such a shut-off valve is provided, an expansion tank should also be provided in the coolant system 12, as shown in FIG. 2.

Während der Betriebsruhe des Motors 10 befindet sich das Kühlmittel im Speicher 36, während das Kühlmittelsystem 12, soweit es frei von Kühlmittel ist, mit Luft gefüllt ist. Beim Start des Motors 10 oder kurz danach sobald Bedarf an Kühlung besteht, wird durch eine Elektropumpe 42 in der Leitung 38 das Kühlmittel aus dem Speicher 36 abgezogen und über das auf Durchfluß von der Leitung 38 zur Kühlmittelpumpe 26 eingestellte Dtreiwegeventil 24 in das Kühlmittelsystem 12 überführt. Dabei wird die Luft verdrängt und über die Leitung 40 in den Speicher 36 überführt.While the engine 10 is idle, the coolant is in the reservoir 36, while the coolant system 12, insofar as it is free of coolant, is filled with air. When the engine 10 is started or shortly thereafter as soon as there is a need for cooling, the coolant is drawn off from the accumulator 36 by an electric pump 42 in the line 38 and transferred to the coolant system 12 via the three-way valve 24 set for flow from the line 38 to the coolant pump 26 . The air is displaced and transferred to the memory 36 via the line 40.

Sobald der Speicher 36 entleert ist, wird das Dreiwegeventil 24 auf Durchfluß vom Richtungsventil 22 zur Kühlmittelpumpe 26 gestellt, so daß das Kühlmittel im Kühlmittelsystem 12 gehalten wird.As soon as the reservoir 36 is emptied, the three-way valve 24 is set to flow from the directional valve 22 to the coolant pump 26, so that the coolant is held in the coolant system 12.

Wird der Motor 10 stillgesetzt, wird das Dreiwegeventil 26 wieder umgeschaltet, so daß das heiße Kühlmittel unter dem Einfluß der Schwerkraft in den Speicher 36 zurückfließt. Dabei wird an den Speicher Wärme abgegeben. Außerdem kann im Speicher 36 ein Latentspeicherelement 44 vorgesehen sein, an das zu dessen Ladung ebenfalls Wärme abgegeben wird. Um diesen Wärmeverlust auszugleichen, wird nach wenigen Minuten durch die Elektropumpe 42 das Kühlmittel noch einmal in das Kühlmittelsystem 12 zurückgepumpt, um die Restwärme des Motors aufzunehmen, worauf es wieder in den Speicher zurückströmt. Während der Speicherung eintretende Wärmeverluste können für geraume Zeit durch Wärmeabgabe des Latentspeicherelements ausgeglichen werden.If the engine 10 is stopped, the three-way valve 26 is switched over again, so that the hot coolant flows back into the reservoir 36 under the influence of gravity. Heat is given off to the storage tank. In addition, a latent storage element 44 can be provided in the memory 36, to which heat is likewise given off to charge it. In order to compensate for this heat loss, the coolant is pumped back into the coolant system 12 again after a few minutes by the electric pump 42 in order to absorb the residual heat of the engine, whereupon it flows back into the accumulator. While Heat losses occurring during storage can be compensated for for some time by heat being released by the latent storage element.

Falls es die räumlichen Verhältnisse nicht zulassen, den Speicher 36 tiefliegend anzuordnen, kann eine Anordnung nach Fig. 2 vorgesehen werden, bei der ein über dem Kühlmittelsystem 12 angeordneter, hochliegender Speicher 36 vorgesehen ist. Nach dem Stillsetzen des Motors 10 wird durch die Elektropumpe 42 das Kühlmittel aus dem Kühlmittelsystem 12 über die Füll- und Entleerungsleitung 38 in den Speicher 36 überführt, worauf durch Schließen eines Absperrventils 46 der Rückfluß des Kühlmittels in das Kühlmittelsystem 12 für die Speicherdauer verhindert wird. Die Luft verläßt den Speicher 36 über die Luftleitung 40 und einen Ausgleichsbehälter 48 und tritt bei 18a in das Kühlmittelsystem 12 ein.If the spatial conditions do not allow the storage 36 to be arranged low, an arrangement according to FIG. 2 can be provided in which a high-lying storage 36 arranged above the coolant system 12 is provided. After the motor 10 has been stopped, the electric pump 42 transfers the coolant from the coolant system 12 via the filling and emptying line 38 into the store 36, whereupon the backflow of the coolant into the coolant system 12 is prevented for the storage period by closing a shut-off valve 46. The air leaves the reservoir 36 via the air line 40 and an expansion tank 48 and enters the coolant system 12 at 18a.

Claims (3)

  1. A method of rapidly adjusting the operative temperature of a mass which is in heat exchange relationship with a system including a storage for sensible heat and containing a flowable heat carrier, in particular for rapidly heating an automotive engine during cold starting, wherein the heat carrier is fed into the storage at the beginning of an inoperative period and is fed into the section of the system which is in heat exchange relationship with the mass no later than at the beginning of an operative period,
    characterized in that heat storage losses occuring during the storing period are compensated for by at least one latent heat storage element disposed in the heat storage and the heat carrier is fed through the heat storage for loading the latent heat storage when the mass has reached its operative temperature.
  2. The method of claim 1, characterized in that the heat carrier that has been fed into the heat storage at the beginning of the inoperative period is refed into the section of the heat carrier system which is in heat exchange relationship with the mass, when the heat storage has been heated up and/or the latent heat storage element has been loaded, and thereafter the heat carrier after having again absorbed heat energy is again fed into the storage.
  3. An apparatus for performing the method of claim 1 or claim 2, including a storage (36) for sensible heat which is in heat exchange relationship with a system containing a flowable heat carrier, and at least one latent heat storage element (44) which is disposed in the storage (36) in order to compensate for storing losses occuring during the storage period.
EP92119196A 1991-11-09 1992-11-09 Method to rapidly achieve the service temperature of a mass by use of a liquid or pourable heat transfer medium, particularly for rapid heating of an internal combustion engine during a cold start Expired - Lifetime EP0542189B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4136910 1991-11-09
DE4136910A DE4136910C2 (en) 1991-11-09 1991-11-09 Method for quickly setting the operating temperature of a mass by means of a flowable or free-flowing heat transfer medium, in particular for rapid heating of a motor vehicle engine during a cold start

Publications (2)

Publication Number Publication Date
EP0542189A1 EP0542189A1 (en) 1993-05-19
EP0542189B1 true EP0542189B1 (en) 1996-05-15

Family

ID=6444436

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92119196A Expired - Lifetime EP0542189B1 (en) 1991-11-09 1992-11-09 Method to rapidly achieve the service temperature of a mass by use of a liquid or pourable heat transfer medium, particularly for rapid heating of an internal combustion engine during a cold start

Country Status (5)

Country Link
US (1) US5299630A (en)
EP (1) EP0542189B1 (en)
JP (1) JPH05248238A (en)
DE (2) DE4136910C2 (en)
ES (1) ES2087402T3 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5553662A (en) * 1993-12-10 1996-09-10 Store Heat & Producte Energy, Inc. Plumbed thermal energy storage system
DE19512821A1 (en) * 1994-04-27 1995-11-02 Schatz Thermo System Gmbh Method and circuit arrangement for operating heat stores for sensible heat
US6059016A (en) * 1994-08-11 2000-05-09 Store Heat And Produce Energy, Inc. Thermal energy storage and delivery system
DE4444820A1 (en) * 1994-12-15 1996-06-20 Bayerische Motoren Werke Ag Car air conditioning installation
DE19500476A1 (en) * 1995-01-10 1996-07-11 Schatz Thermo Gastech Gmbh Car passenger compartment heating system
DE19535027A1 (en) * 1995-09-19 1997-03-27 Schatz Thermo System Gmbh Automobile storage heater operating system for cold starting of engine
WO1996031694A1 (en) * 1995-04-05 1996-10-10 Schatz Thermo System Gmbh Method and switching arrangement for operating heat accumulators, in particular for sensible heat
DE19525661C2 (en) * 1995-07-14 2003-05-08 Daimler Chrysler Ag Latent heat storage
DE19601319A1 (en) * 1996-01-16 1997-07-17 Wilo Gmbh Radiator of an automobile engine
DE19616586A1 (en) * 1996-04-25 1997-10-30 Schatz Thermo System Gmbh Method of operating heat store in IC engine cooling circuit esp. in motor vehicle and heating engine at cold start
WO1999006781A1 (en) * 1997-07-31 1999-02-11 Wilo Gmbh Latent heat storage device for use in a vehicle
DE19818030C2 (en) * 1998-04-22 2003-12-18 Schatz Thermo System Gmbh Method and device for operating a coolant circuit of an internal combustion engine
US6128948A (en) * 1999-02-16 2000-10-10 General Motors Corporation Methodology for diagnosing engine cooling system warm-up behavior
US6243642B1 (en) 1999-03-31 2001-06-05 Detroit Diesel Corporation System and method for detecting cold engine operation
DE10234608A1 (en) * 2002-07-30 2004-02-19 Robert Bosch Gmbh Method for operating a cooling and heating circuit of a motor vehicle
DE10344018B4 (en) * 2003-09-15 2016-12-22 Mahle International Gmbh Cooling system set up for an internal combustion engine with a hot water tank
US7140330B2 (en) * 2004-07-13 2006-11-28 Modine Manufacturing Company Coolant system with thermal energy storage and method of operating same
DE102005040052B4 (en) * 2005-06-10 2014-03-20 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle with a reformer system with a cooling device
KR101620112B1 (en) 2008-02-22 2016-05-11 다우 글로벌 테크놀로지스 엘엘씨 Thermal energy storage materials
FR2938296B1 (en) * 2008-11-10 2014-08-08 Renault Sas DEVICE AND METHOD FOR THERMAL CONTROL OF AN ENGINE
US8979474B2 (en) * 2009-06-25 2015-03-17 Tbk Co., Ltd. Variable flow rate pump
DE102010013047B4 (en) * 2010-03-27 2014-08-28 Innovationsschatz Gmbh Method for utilizing the waste heat of an internal combustion engine, in particular a piston engine, by means of a heat accumulator and cooling system for carrying out the method
EP2619420A2 (en) * 2010-09-20 2013-07-31 State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University A system and method for storing energy and purifying fluid
US20130078583A1 (en) * 2011-09-23 2013-03-28 Yu-Po Lee Heat Recycling System for a High-Temperature Exhaust Gas
US8794195B2 (en) * 2012-02-03 2014-08-05 Ford Global Technologies, Llc Heat storage system for an engine
FR3009018B1 (en) * 2013-07-25 2019-06-21 Renault S.A.S COOLING SYSTEM OF A MOTOR VEHICLE HEAT ENGINE AND METHOD OF MANAGING THE SAME
CN104832267A (en) * 2014-02-27 2015-08-12 北汽福田汽车股份有限公司 Engine heating apparatus for engine and automobile comprising same
JP6337675B2 (en) * 2014-07-29 2018-06-06 株式会社デンソー Heat storage system
CN104343524B (en) * 2014-08-28 2016-08-31 河南柴油机重工有限责任公司 A kind of external gas machine modular cooling device and cooling means
EP3246541B1 (en) 2016-05-16 2018-07-18 C.R.F. Società Consortile per Azioni Cooling system for an internal combustion engine of a motor vehicle
EP3369907B1 (en) 2017-03-03 2019-04-10 C.R.F. Società Consortile per Azioni Cooling system for an internal combustion engine of a motor-vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2363686A1 (en) * 1973-12-21 1975-06-26 Steidle Irene I.C. engine with thermal storage - to reheat engine in connection with starting, in a controlled sequence
US4217864A (en) * 1978-11-08 1980-08-19 Theodore Vernon M Heating apparatus for internal combustion engines
DE3300946A1 (en) * 1983-01-13 1984-07-19 Erich Dr. 4320 Hattingen Zimmermann Pre-heating of intermittently working combustion engines by means of stored waste heat
DE4041626C1 (en) * 1990-12-22 1992-04-30 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Motor vehicle heating system - has hot water tank with intermediate storage facility

Also Published As

Publication number Publication date
DE59206296D1 (en) 1996-06-20
EP0542189A1 (en) 1993-05-19
DE4136910C2 (en) 1994-10-20
DE4136910A1 (en) 1993-05-13
ES2087402T3 (en) 1996-07-16
JPH05248238A (en) 1993-09-24
US5299630A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
EP0542189B1 (en) Method to rapidly achieve the service temperature of a mass by use of a liquid or pourable heat transfer medium, particularly for rapid heating of an internal combustion engine during a cold start
EP0593928B1 (en) Heat-storing system for cold start of combustion motors
DE19860057A1 (en) Air conditioning system for vehicle with cold storage device has secondary circuit with at least one additional heat exchanger that exchanges heat with evaporator in primary circuit
DE102018207011B3 (en) Hybrid drive comprising an internal combustion engine and a further torque source for driving a motor vehicle
DE102009028863A1 (en) Latent heat storage and method for controlling the temperature of an internal combustion engine
DE2916216A1 (en) Preheating system for IC engine - stores waste heat as latent heat and uses salt solution changing from crystalline to liquid form releasing heat to oil circuit
DE202015100468U1 (en) Device for heat transfer for a vehicle
DE19818030A1 (en) Operating equipment for automotive-engine cooling system
DE3245026A1 (en) Method and heat-exchanger arrangement for controlling the temperature in motor vehicles with an internal combustion engine
DE3638471C2 (en) Vehicle heating
DE102010013047B4 (en) Method for utilizing the waste heat of an internal combustion engine, in particular a piston engine, by means of a heat accumulator and cooling system for carrying out the method
DE102017211303A1 (en) Heat storage arrangement for a vehicle battery and method for their operation
DE102014213674A1 (en) Vehicle with heat accumulator and method for operating a heat accumulator in a vehicle
DE102015208100B4 (en) Motor vehicle with heat accumulator and method for operating a heat accumulator in a motor vehicle
DE102014220491A1 (en) Temperature control arrangement for transmission oil and method for controlling the temperature of transmission oil
DE102018210572B4 (en) Low-pressure exhaust gas recirculation system, motor vehicle and method for temperature control of an EGR cooler and / or an EGR valve
DE3720319C2 (en)
EP0424700A1 (en) Vehicle with an engine producing waste heat
DE3819647A1 (en) Device for controlling the temperature of the passenger compartment of a vehicle
DE102011116387B4 (en) Internal combustion engine, in particular for motor vehicles with a heat accumulator for the use of engine waste heat and method for their use
DE102007044165A1 (en) Device for operating power plants with vegetable oil has at least one heating device in tank which holds vegetable oil and is connected in non-positive or positive locking manner to open-pore metal foam structure
DE19512821A1 (en) Method and circuit arrangement for operating heat stores for sensible heat
DE102015200534B3 (en) Method and device for heat transfer for a vehicle
DE4328715C2 (en) Internal combustion engine
DE19621674C2 (en) Coolant circuit of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19930618

17Q First examination report despatched

Effective date: 19940603

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SCHATZ THERMO SYSTEM GMBH

RIN2 Information on inventor provided after grant (corrected)

Free format text: SCHATZ, OSKAR, DR.-ING.

REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2087402

Country of ref document: ES

Kind code of ref document: T3

REF Corresponds to:

Ref document number: 59206296

Country of ref document: DE

Date of ref document: 19960620

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2087402

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960617

ITF It: translation for a ep patent filed

Owner name: INVENTION S.N.C.

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961031

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961126

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971109

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19981125

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991110

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010801

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051109