EP0541158A1 - Process for extracting cerium from an aqueous solution containing a mixture of rare earth elements - Google Patents

Process for extracting cerium from an aqueous solution containing a mixture of rare earth elements Download PDF

Info

Publication number
EP0541158A1
EP0541158A1 EP92203314A EP92203314A EP0541158A1 EP 0541158 A1 EP0541158 A1 EP 0541158A1 EP 92203314 A EP92203314 A EP 92203314A EP 92203314 A EP92203314 A EP 92203314A EP 0541158 A1 EP0541158 A1 EP 0541158A1
Authority
EP
European Patent Office
Prior art keywords
aqueous solution
cerium
rare earth
earth elements
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92203314A
Other languages
German (de)
French (fr)
Inventor
Marc Demets
Luiz Morino
Fernando Lellis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay SA
Original Assignee
Solvay SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay SA filed Critical Solvay SA
Publication of EP0541158A1 publication Critical patent/EP0541158A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals

Definitions

  • the invention relates to a method for the selective extraction of cerium from an aqueous solution of salts of rare earth elements, comprising a dissolved cerium salt.
  • the industrial extraction of rare earth elements from their ore involves obtaining an aqueous solution of salts of said elements, from which these elements are selectively collected by an operation of fractionation, which may include treatment on a cation exchanger.
  • fractionation which may include treatment on a cation exchanger.
  • the aqueous solution contains a high content of trivalent cerium salt, it is desirable to extract the latter from the solution before subjecting the latter to the fractionation operation.
  • this reagent In processes using sodium hypochlorite, this reagent is usually used in the form of an aqueous solution at a pH between 3 and 4.5.
  • these known hypochlorite processes have given good results on a laboratory scale, they have proved impractical on an industrial scale, because of the very low filtration speed, due to the gelatinous nature of the reaction medium. subject to filtration.
  • These known methods also require a significant amount of sodium hypochlorite, significantly greater than the stoichiometric amount.
  • the invention remedies these drawbacks by providing a means which makes it possible to facilitate and accelerate the separation of the precipitate of ceric hydroxide in the case of the hypochlorite process and thus to make this process operational on an industrial scale.
  • the invention relates to a process for the selective extraction of cerium from an aqueous solution of a mixture of rare earth elements comprising a trivalent cerium salt, according to which alkali metal hypochlorite is added to the aqueous solution for precipitating the cerium in the state of ceric hydroxide and separating from the resulting broth, on the one hand a precipitate of ceric hydroxide and, on the other hand, mother liquor containing the other elements in the dissolved state ; according to the invention, the pH is maintained at a value greater than 4.5 during the addition of the alkali metal hypochlorite to the aqueous solution.
  • the alkali metal hypochlorite must be used in an amount sufficient to convert all of the trivalent cerium salt into ceric hydroxide (tetravalent cerium hydroxide).
  • the alkali metal hypochlorite is generally used in the form of an aqueous solution. This is advantageously an aqueous solution of sodium hypochlorite.
  • the pH of the reaction medium is maintained above 4.5 during the addition of the alkali metal hypochlorite to the aqueous solution. Maintaining the pH above 4.5 can be easily achieved by regulating the flow rate of the alkali metal hypochlorite solution.
  • the working temperature must be lower than the boiling temperature of the reaction mixture. It can advantageously be room temperature.
  • maintaining the pH above 4.5 during the addition of the alkali metal hypochlorite has a double advantage. On the one hand, it reduces the consumption of alkali metal hypochlorite; on the other hand, it gives the slurry a remarkable fluidity, allowing easy and rapid separation of the precipitate of ceric hydroxide.
  • the process according to the invention lends itself well to easy, rapid and economical separation of the ceric hydroxide by a decantation or filtration operation.
  • the pH of the reaction medium tends to decrease in order to stabilize at a value substantially between 3.5 and 4.5 during the precipitation of the ceric hydroxide.
  • the pH can be lowered by adding hydrochloric acid to the broth.
  • the cerium content in mother water is practically negligible.
  • the other rare earth elements are present in the form of dissolved salts.
  • the mother liquor is subjected to a fractionation treatment.
  • Solution fractionation treatments are well known in the technique of extracting rare earth elements and include, for example, treatment on a cation exchanger.
  • the broth generally contains active chlorine which it is desirable to remove, for example before treating the mother water on a cation exchanger.
  • the broth is subjected to a dechlorination treatment by physical entrainment in an inert gas, and then a sufficient quantity of hyposulfite is added thereto. of alkali metal (eg sodium) to remove the active chlorine it contains.
  • alkali metal eg sodium
  • the gas must be chosen from those which are inert with respect to ceric hydroxide and the constituents of mother water and which are insoluble in it. It can for example be air, argon or nitrogen. Air is preferred.
  • the origin of the aqueous solution of salts of rare earth elements is not critical.
  • the invention finds, for example, a particularly advantageous application for the treatment of aqueous solutions of chlorides of rare earth elements, obtained by means of the known method comprising the treatment of a precipitate of hydroxides of said elements with hydrochloric acid, this precipitate being produced by the reaction of a monazite ore (phosphate ore of rare earth elements) with an aqueous solution of alkali metal hydroxide, for example sodium.
  • This known process is notably described in the document Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Edition, Vol. 5, 1979, pages 318-319 and in the document Mineral chemistry treaty, Mineral technology, third part, K. Winnacker and L. kuchler, translated by A. Zundel, Ed. Eyrolles, Paris, 1965, pages 434-436) .
  • the method according to the invention allows efficient extraction of cerium, with a high yield, generally between 97 and 99% by weight, the cerium obtained having a degree of purity of 95 to 99% by weight.
  • the process according to the invention saves on the consumption of alkali metal hypochlorite. It also facilitates the separation of the ceric hydroxide by filtration.
  • the reference notation 1 designates a phosphate ore of rare earth elements. It may be a monazite ore whose deposits exist in particular in the United States, India and Brazil and which contains, in addition to cerium, for example yttrium and elements belonging to the lanthanide group (in particular lanthanum, praseodymium, neodymium, samarium, gadolinium, ytterbium and dysprosium).
  • the ore 1, ground, is treated in a reaction chamber 2 with a sufficient quantity of an aqueous solution of sodium hydroxide 3 to convert the phosphates into hydroxides.
  • a suspension 4 of hydroxides of rare earth elements in an aqueous solution of sodium phosphate is treated on a filter 5 where the aqueous sodium phosphate solution 6 and a precipitate 7 are separated, containing the rare earth elements in the form of hydroxides.
  • the precipitate 7 is sent to a reaction chamber 8, where it is treated with an aqueous solution of hydrochloric acid 9 in an amount sufficient to dissolve the rare earth elements in the form of chlorides.
  • the liquid 10 collected from the chamber 8 is treated on a filter 11 to remove the insoluble matter 12 (in particular thorium and silica from the gangue of the ore).
  • An aqueous solution 13 of chlorides of the rare earth elements of the ore is collected from the filter 11.
  • the solution 13 is introduced into a reaction chamber 14 and an aqueous solution 15 of sodium hypochlorite is added to it in an amount sufficient to oxidize the trivalent cerium to tetravalent cerium.
  • the introduction of the aqueous sodium hypochlorite solution 15 into the chamber 14 is regulated, so as to maintain the pH of the reaction medium permanently between 6 and 6.5.
  • the trivalent cerium is gradually oxidized to tetravalent cerium.
  • a maturation chamber 17 from which a broth 19 of ceric hydroxide is collected.
  • the broth is sent to a chamber 20, where its pH is lowered to a value equal to or less than 4 by the addition of an aqueous solution of hydrochloric acid 21.
  • the broth 25 collected from the chamber 20 contains almost all of the cerium from ore 1 in the form of insoluble ceric hydroxide and the other rare earth elements from ore 1 in the form of dissolved chlorides. It is introduced at the head of a column 26 supplied, at the base, by a stream of air 27. In the column 26, the slurry 25 circulates in the opposite direction to the ascending stream of air which leaves the column at 18.
  • the air stream 27 has the function of extracting the chlorine contained in the slurry 25.
  • the air stream 18 leaving the column 26 is therefore charged with chlorine.
  • the broth 28 which is collected at the bottom of the column 26 still contains a little active chlorine originating from the treatment with sodium hypochlorite.
  • the slurry 28 is introduced into a reaction chamber 29 where an aqueous solution 30 of sodium hyposulfite is added to it.
  • the dechlorinated broth 47 collected from the chamber 29 is sent to a filter 31 where a declorated precipitate of ceric hydroxide 48 and a dechlorinated aqueous solution 32 are separated.
  • the aqueous solution 32 collected from the filter 31 is treated in a manner known per se cation exchanger 33 to selectively extract the rare earth elements therein.
  • a monazite ore was treated as described in the description of FIG. 1 and an aqueous solution 13 of chlorides of rare earth elements was collected, containing 55.0 g of said elements (expressed in the form of oxides) by liter.
  • an aqueous solution of sodium hypochlorite 15 was used, having a weight content of active chlorine of 13%.
  • the two solutions were introduced into the reaction chamber 14, in a continuous process and at the respective flow rates of 12.0 l / h for the chloride solution 13 and 8.0 l / h for the hypochlorite solution 15.
  • the steps of the process shown diagrammatically in FIG. 1 were then followed. At the end of the process, a precipitate 48 rich in cerium and a mother liquor 32 containing the other rare earth elements of the ore were collected.
  • the concentration and composition of the starting solution 13, the concentration and the composition of the mother liquors 32, 40 and 46 and the composition of the precipitates 48, 39 and 45 are recorded in Table 1.
  • the table provides the weight contents (in %) of the elements expressed in the form of oxides.
  • precipitates 39 and 48 the balance at 100% of the precipitate consists mainly of sodium chloride.
  • Examples 2, 3 and 4 serve to show the progress made by the invention.
  • Example 2 is in accordance with the invention, while Examples 3 and 4 are reference examples, not in accordance with the invention.
  • an aqueous solution of sodium hypochlorite 15 was used, having a weight content of active chlorine of 13%.
  • the two solutions 13 and 15 were introduced into the reaction chamber 14, at the respective flow rates of 12.0 l / h for solution 13 and 8.0 l / h for solution 15.
  • reaction mixture 19 was collected, filtered and the filtrate was analyzed.
  • the pH of the reaction medium in chamber 14 was kept at the constant value 6.8.
  • the reaction mixture 19 was filtered, the filtrate was collected and analyzed.
  • Table 3 provides the composition of the filtrate.
  • Table 4 Composition (% by weight) Concentration (g / l) La2O3 CeO2 About Nd2O3 Sm2O3 23.1 46.0 5.3 18.3 2.8 26.9
  • Example 3 The test of Example 3 was repeated, setting the pH value in reaction chamber 14 to 4.5, by introduction of hydrochloric acid into solution 13.
  • Table 5 Composition (% by weight) Concentration (g / l) La2O3 CeO2 About Nd2O3 Sm2O3 23.5 45.0 5.36 18.6 2.9 25.6
  • Example 2 Composition (% by weight) Concentration (g / l) La2O3 CeO2 About Nd2O3 Sm2O3 Solution 13 22.4 47.5 5.1 17.7 2.8 46.3
  • Example 2 45.0 0.33 9.61 32.5 4.68 15.5
  • Example 3 23.1 46.0 5.3 18.3 2.8 26.9
  • Example 4 23.5 45.0 5.36 18.6 2.9 25.6

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Process for the selective extraction of cerium from an aqueous solution of rare-earth elements, according to which alkali metal hypochlorite (15) is added to the aqueous solution (13) while the pH is maintained at a value above 4.5, to precipitate the cerium in the form of ceric hydroxide and from the resulting slurry there are separated (19, 25, 28, 47), on the one hand, a precipitate of ceric hydroxide (48) and, on the other hand, a mother liquor (32) containing the other elements in the dissolved state. <IMAGE>

Description

L'invention concerne un procédé pour l'extraction sélective de cérium d'une solution aqueuse de sels d'éléments des terres rares, comprenant un sel de cérium dissous.The invention relates to a method for the selective extraction of cerium from an aqueous solution of salts of rare earth elements, comprising a dissolved cerium salt.

L'extraction industrielle d'éléments des terres rares à partir de leur minerai (par exemple de monazite ou de bastnasite) passe par l'obtention d'une solution aqueuse de sels desdits éléments, de laquelle on recueille sélectivement ces éléments par une opération de fractionnement, qui peut comprendre un traitement sur un échangeur cationique. Lorsque la solution aqueuse contient une teneur élevée en sel de cérium trivalent il est souhaitable d'extraire celui-ci de la solution avant de soumettre cette dernière à l'opération de fractionnement. A cet effet, on a proposé d'oxyder le cérium trivalent pour précipiter de l'hydroxyde cérique que l'on sépare par filtration. Divers oxydants ont été suggérés pour oxyder le cérium trivalent, en particulier le peroxyde d'hydrogène et l'hypochlorite de sodium (Kiyoe Umeda "Separação des Elementos das Terras Raras Individuais, por associação das Técnicas de Precipitação Homogênea e de Troca Iônica" Dissertação de mestrado, Escola Politécnica da Universidade de Sao Paulo, 1973; Pavanin, L.A. et coll., Publ. ACIESP n° 36, 1982, pages 225-244, Chemical Abstracts n° 98-208981; Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Edition, Vol. 5, 1979, pages 318-319).The industrial extraction of rare earth elements from their ore (for example monazite or bastnasite) involves obtaining an aqueous solution of salts of said elements, from which these elements are selectively collected by an operation of fractionation, which may include treatment on a cation exchanger. When the aqueous solution contains a high content of trivalent cerium salt, it is desirable to extract the latter from the solution before subjecting the latter to the fractionation operation. To this end, it has been proposed to oxidize the trivalent cerium to precipitate ceric hydroxide which is separated by filtration. Various oxidants have been suggested to oxidize trivalent cerium, in particular hydrogen peroxide and sodium hypochlorite (Kiyoe Umeda "Separação des Elementos das Terras Raras Individuais, por associação das Técnicas de Precipitação Homogênea e de Troca Iônica" Dissertação de mestrado, Escola Politécnica da Universidade de Sao Paulo, 1973; Pavanin, LA et al., Publ ACIESP n ° 36, 1982, pages 225-244, Chemical Abstracts n ° 98-208981; Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Edition, Vol. 5, 1979, pages 318-319).

Dans les procédés faisant usage d'hypochlorite de sodium, ce réactif est habituellement mis en oeuvre à l'état d'une solution aqueuse à pH compris entre 3 et 4,5. Bien que ces procédés connus à l'hypochlorite aient donné de bons résultats à l'échelle du laboratoire, ils se sont révélés impraticables à l'échelle industrielle, à cause de la très faible vitesse de la filtration, imputable au caractère gélatineux du milieu réactionnel soumis à la filtration. Ces procédés connus nécessitent par ailleurs une quantité importante d'hypochlorite de sodium, nettement supérieure à la quantité stoechiométrique.In processes using sodium hypochlorite, this reagent is usually used in the form of an aqueous solution at a pH between 3 and 4.5. Although these known hypochlorite processes have given good results on a laboratory scale, they have proved impractical on an industrial scale, because of the very low filtration speed, due to the gelatinous nature of the reaction medium. subject to filtration. These known methods also require a significant amount of sodium hypochlorite, significantly greater than the stoichiometric amount.

L'invention remédie à ces inconvénients, en fournissant un moyen permettant de faciliter et d'accélérer la séparation du précipité d'hydroxyde cérique dans le cas du procédé à l'hypochlorite et de rendre ainsi ce procédé opérationnel à l'échelle industrielle.The invention remedies these drawbacks by providing a means which makes it possible to facilitate and accelerate the separation of the precipitate of ceric hydroxide in the case of the hypochlorite process and thus to make this process operational on an industrial scale.

En conséquence l'invention concerne un procédé pour l'extraction sélective de cérium d'une solution aqueuse d'un mélange d'éléments des terres rares comprenant un sel de cérium trivalent, selon lequel on ajoute de l'hypochlorite de métal alcalin à la solution aqueuse pour précipiter le cérium à l'état d'hydroxyde cérique et on sépare du brouet résultant, d'une part un précipité d'hydroxyde cérique et, d'autre part, une eau mère contenant les autres éléments à l'état dissous; selon l'invention, on maintient le pH à une valeur supérieure à 4,5 pendant l'addition de l'hypochlorite de métal alcalin à la solution aqueuse.Consequently, the invention relates to a process for the selective extraction of cerium from an aqueous solution of a mixture of rare earth elements comprising a trivalent cerium salt, according to which alkali metal hypochlorite is added to the aqueous solution for precipitating the cerium in the state of ceric hydroxide and separating from the resulting broth, on the one hand a precipitate of ceric hydroxide and, on the other hand, mother liquor containing the other elements in the dissolved state ; according to the invention, the pH is maintained at a value greater than 4.5 during the addition of the alkali metal hypochlorite to the aqueous solution.

Dans le procédé selon l'invention, l'hypochlorite de métal alcalin doit être mis en oeuvre en une quantité suffisante pour convertir la totalité du sel de cérium trivalent en hydroxyde cérique (hydroxyde de cérium tétravalent). L'hypochlorite de métal alcalin est généralement mis en oeuvre à l'état d'une solution aqueuse. Celle-ci est avantageusement une solution aqueuse d'hypochlorite de sodium.In the process according to the invention, the alkali metal hypochlorite must be used in an amount sufficient to convert all of the trivalent cerium salt into ceric hydroxide (tetravalent cerium hydroxide). The alkali metal hypochlorite is generally used in the form of an aqueous solution. This is advantageously an aqueous solution of sodium hypochlorite.

Selon l'invention, le pH du milieu réactionnel est maintenu au-dessus de 4,5 pendant l'addition de l'hypochlorite de métal alcalin à la solution aqueuse. Le maintien du pH à une valeur supérieure à 4,5 peut être aisément réalisé par une régulation du débit de la solution d'hypochlorite de métal alcalin.According to the invention, the pH of the reaction medium is maintained above 4.5 during the addition of the alkali metal hypochlorite to the aqueous solution. Maintaining the pH above 4.5 can be easily achieved by regulating the flow rate of the alkali metal hypochlorite solution.

La température de travail doit être inférieure à la température d'ébullition du mélange réactionnel. Elle peut avantageusement être la température ambiante.The working temperature must be lower than the boiling temperature of the reaction mixture. It can advantageously be room temperature.

Dans le procédé selon l'invention, le maintien du pH au-dessus de 4,5 pendant l'addition de l'hypochlorite de métal alcalin présente un double avantage. D'une part, il réduit la consommation d'hypochlorite de métal alcalin; d'autre part, il confère au brouet une fluidité remarquable, permettant une séparation facile et rapide du précipité d'hydroxyde cérique. Le procédé selon l'invention se prête bien à une séparation facile, rapide et économique de l'hydroxyde cérique par une opération de décantation ou de filtration.In the process according to the invention, maintaining the pH above 4.5 during the addition of the alkali metal hypochlorite has a double advantage. On the one hand, it reduces the consumption of alkali metal hypochlorite; on the other hand, it gives the slurry a remarkable fluidity, allowing easy and rapid separation of the precipitate of ceric hydroxide. The process according to the invention lends itself well to easy, rapid and economical separation of the ceric hydroxide by a decantation or filtration operation.

On préfère, selon une forme d'exécution particulière du procédé, sélectionner une valeur de pH comprise entre 6 et 7, de préférence entre 6 et 6,5. Ces valeurs de pH optimisent la séparation ultérieure de l'hydroxyde cérique et de l'eau mère par une opération de décantation et/ou de filtration.It is preferred, according to a particular embodiment of the process, to select a pH value of between 6 and 7, preferably between 6 and 6.5. These pH values optimize the subsequent separation of the ceric hydroxide and the mother water by a decantation and / or filtration operation.

Après l'addition de l'hypochlorite de métal alcalin, le pH du milieu réactionnel tend à diminuer pour se stabiliser à une valeur sensiblement comprise entre 3,5 et 4,5 pendant la précipitation de l'hydroxyde cérique. Après que l'hydroxyde cérique a précipité, il peut se révéler avantageux, conformément à l'invention de baisser davantage le pH, par exemple entre 2,5 et 3,5, de manière à redissoudre les hydroxydes des autres éléments des terres rares qui ont coprécipité avec l'hydroxyde cérique. L'abaissement du pH peut être effectué par addition d'acide chlorhydrique au brouet.After the addition of the alkali metal hypochlorite, the pH of the reaction medium tends to decrease in order to stabilize at a value substantially between 3.5 and 4.5 during the precipitation of the ceric hydroxide. After the ceric hydroxide has precipitated, it may prove advantageous, in accordance with the invention, to lower the pH further, for example between 2.5 and 3.5, so as to redissolve the hydroxides of the other rare earth elements which coprecipitated with ceric hydroxide. The pH can be lowered by adding hydrochloric acid to the broth.

La teneur en cérium de l'eau mère est pratiquement négligeable. Les autres éléments des terres rares y sont présents à l'état de sels dissous. Pour les recueillir sélectivement, on soumet l'eau mère à un traitement de fractionnement. Les traitements de fractionnement des solutions sont bien connus en technique d'extraction des éléments des terres rares et comprennent par exemple le traitement sur un échangeur cationique.The cerium content in mother water is practically negligible. The other rare earth elements are present in the form of dissolved salts. To collect them selectively, the mother liquor is subjected to a fractionation treatment. Solution fractionation treatments are well known in the technique of extracting rare earth elements and include, for example, treatment on a cation exchanger.

Dans le procédé selon l'invention, le brouet contient généralement du chlore actif qu'il est souhaitable d'éliminer, par exemple avant de traiter l'eau mère sur un échangeur cationique. A cet effet, dans une forme d'exécution particulière du procédé selon l'invention, on soumet le brouet à un traitement de déchloration par entraînement physique dans un gaz inerte, et on lui additionne ensuite une quantité suffisante d'hyposulfite de métal alcalin (par exemple de sodium) pour éliminer le chlore actif qu'il contient. Dans cette variante de l'invention, le gaz doit être choisi parmi ceux qui sont inertes vis-à-vis de l'hydroxyde cérique et des constituants de l'eau mère et qui sont insolubles dans celle-ci. Il peut être par exemple de l'air, de l'argon ou de l'azote. L'air est préfére.In the process according to the invention, the broth generally contains active chlorine which it is desirable to remove, for example before treating the mother water on a cation exchanger. To this end, in a particular embodiment of the process according to the invention, the broth is subjected to a dechlorination treatment by physical entrainment in an inert gas, and then a sufficient quantity of hyposulfite is added thereto. of alkali metal (eg sodium) to remove the active chlorine it contains. In this variant of the invention, the gas must be chosen from those which are inert with respect to ceric hydroxide and the constituents of mother water and which are insoluble in it. It can for example be air, argon or nitrogen. Air is preferred.

Dans le procédé selon l'invention, l'origine de la solution aqueuse de sels d'éléments des terres rares n'est pas critique.In the process according to the invention, the origin of the aqueous solution of salts of rare earth elements is not critical.

L'invention trouve par exemple une application spécialement intéressante pour le traitement des solutions aqueuses de chlorures d'éléments des terres rares, obtenues au moyen du procédé connu comprenant le traitement d'un précipité d'hydroxydes desdits éléments avec de l'acide chlorhydrique, ce précipité étant issu de la réaction d'un minerai de monazite (minerai phosphaté d'éléments des terres rares) avec une solution aqueuse d'hydroxyde de métal alcalin, par exemple de sodium. Ce procédé connu se trouve notamment décrit dans le document Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Edition, Vol. 5, 1979, pages 318-319 et dans le document Traité de chimie minérale, Technologie minérale, troisième partie, K. Winnacker et L. Küchler, traduit par A. Zundel, Ed. Eyrolles, Paris, 1965, pages 434-436).The invention finds, for example, a particularly advantageous application for the treatment of aqueous solutions of chlorides of rare earth elements, obtained by means of the known method comprising the treatment of a precipitate of hydroxides of said elements with hydrochloric acid, this precipitate being produced by the reaction of a monazite ore (phosphate ore of rare earth elements) with an aqueous solution of alkali metal hydroxide, for example sodium. This known process is notably described in the document Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Edition, Vol. 5, 1979, pages 318-319 and in the document Mineral chemistry treaty, Mineral technology, third part, K. Winnacker and L. Küchler, translated by A. Zundel, Ed. Eyrolles, Paris, 1965, pages 434-436) .

Le procédé selon l'invention permet une extraction efficace du cérium, avec un rendement élevé, généralement compris entre 97 et 99 % en poids, le cérium obtenu présentant un degré de pureté de 95 à 99 % en poids. Comparé au procédé connu dans lequel le traitement avec la solution d'hypochlorite de métal alcalin est exécuté à pH inférieur à 4,5, le procédé selon l'invention réalise une économie sur la consommation d'hypochlorite de métal alcalin. Il facilite par ailleurs la séparation de l'hydroxyde cérique par filtration.The method according to the invention allows efficient extraction of cerium, with a high yield, generally between 97 and 99% by weight, the cerium obtained having a degree of purity of 95 to 99% by weight. Compared to the known process in which the treatment with the alkali metal hypochlorite solution is carried out at a pH below 4.5, the process according to the invention saves on the consumption of alkali metal hypochlorite. It also facilitates the separation of the ceric hydroxide by filtration.

Des particularités et détails de l'invention vont ressortir de la description suivante des deux figures annexées, qui représentent les schémas de deux formes de réalisation particulières du procédé selon l'invention. Dans ces figures, des mêmes notations de référence désignent des éléments identiques.Special features and details of the invention will emerge from the following description of the two appended figures, which show the diagrams of two particular embodiments of the method according to the invention. In these figures, the same reference notations designate identical elements.

A la figure 1, on a désigné par la notation de référence 1 un minerai phosphaté d'éléments des terres rares. Il peut s'agir d'un minerai de monazite dont des gisements existent notamment aux Etats-Unis, en Inde et au Brésil et qui contient, outre du cérium, par exemple de l'yttrium et des éléments appartenant au groupe des lanthanides (notamment du lanthane, du praseodyme, du néodyme, du samarium, du gadolinium, de l'ytterbium et du dysprosium).In FIG. 1, the reference notation 1 designates a phosphate ore of rare earth elements. It may be a monazite ore whose deposits exist in particular in the United States, India and Brazil and which contains, in addition to cerium, for example yttrium and elements belonging to the lanthanide group (in particular lanthanum, praseodymium, neodymium, samarium, gadolinium, ytterbium and dysprosium).

Le minerai 1, broyé, est traité dans une chambre de réaction 2 avec une quantité suffisante d'une solution aqueuse d'hydroxyde de sodium 3 pour convertir les phosphates en hydroxydes. On soutire de la chambre de réaction 2, une suspension 4 d'hydroxydes d'éléments des terres rares dans une solution aqueuse de phosphate de sodium. La suspension 4 est traitée sur un filtre 5 où on sépare la solution aqueuse de phosphate de sodium 6 et un précipité 7 contenant les éléments des terres rares à l'état d'hydroxydes. Le précipité 7 est envoyé dans une chambre de réaction 8, où il est traité avec une solution aqueuse d'acide chlorhydrique 9 en quantité suffisante pour dissoudre les éléments des terres rares à l'état de chlorures. Le liquide 10 recueilli de la chambre 8 est traité sur un filtre 11 pour en éliminer les matières insolubles 12 (notamment du thorium et la silice provenant de la gangue du minerai). On recueille du filtre 11 une solution aqueuse 13 de chlorures des éléments des terres rares du minerai.The ore 1, ground, is treated in a reaction chamber 2 with a sufficient quantity of an aqueous solution of sodium hydroxide 3 to convert the phosphates into hydroxides. Is withdrawn from the reaction chamber 2, a suspension 4 of hydroxides of rare earth elements in an aqueous solution of sodium phosphate. The suspension 4 is treated on a filter 5 where the aqueous sodium phosphate solution 6 and a precipitate 7 are separated, containing the rare earth elements in the form of hydroxides. The precipitate 7 is sent to a reaction chamber 8, where it is treated with an aqueous solution of hydrochloric acid 9 in an amount sufficient to dissolve the rare earth elements in the form of chlorides. The liquid 10 collected from the chamber 8 is treated on a filter 11 to remove the insoluble matter 12 (in particular thorium and silica from the gangue of the ore). An aqueous solution 13 of chlorides of the rare earth elements of the ore is collected from the filter 11.

On introduit la solution 13 dans une chambre de réaction 14 et on lui ajoute une solution aqueuse 15 d'hypochlorite de sodium en une quantité suffisante pour oxyder le cérium trivalent en cérium tétravalent. Conformément à l'invention, on règle l'introduction de la solution aqueuse d'hypochlorite de sodium 15 dans la chambre 14, de manière à maintenir le pH du milieu réactionnel en permanence compris entre 6 et 6,5. Pendant l'introduction de la solution d'hypochlorite de sodium dans la chambre 14, le cérium trivalent est progressivement oxydé en cérium tétravalent. Immédiatement après la fin de l'introduction de la solution d'hypochlorite de sodium 15 dans la chambre 14, on envoie le mélange réactionnel 16 dans une chambre de maturation 17 de laquelle on recueille un brouet 19 d'hydroxyde cérique. On envoie le brouet 19 dans une chambre 20, où on abaisse son pH à une valeur égale ou inférieure à 4 par une addition d'une solution aqueuse d'acide chlorhydrique 21. Le brouet 25 recueilli de la chambre 20 contient la quasi totalité du cérium du minerai 1 à l'état d'hydroxyde cérique insoluble et les autres éléments des terres rares du minerai 1 à l'état de chlorures dissous. Il est introduit en tête d'une colonne 26 alimentée, à la base, par un courant d'air 27. Dans la colonne 26, le brouet 25 circule à contre-sens du courant ascendant d'air qui quitte la colonne en 18. Le courant d'air 27 a pour fonction d'extraire le chlore contenu dans le brouet 25. Le courant d'air 18 quittant la colonne 26 est dès lors chargé de chlore. On le traite dans une colonne d'absorption 22 avec une quantité suffisante d'une solution aqueuse d'hydroxyde de sodium 23 pour former une solution aqueuse d'hypochlorite de sodium 24 que l'on envoie dans la chambre de réaction 14. L'air déchloré quitte la colonne 22 en 49.The solution 13 is introduced into a reaction chamber 14 and an aqueous solution 15 of sodium hypochlorite is added to it in an amount sufficient to oxidize the trivalent cerium to tetravalent cerium. In accordance with the invention, the introduction of the aqueous sodium hypochlorite solution 15 into the chamber 14 is regulated, so as to maintain the pH of the reaction medium permanently between 6 and 6.5. During the introduction of the sodium hypochlorite solution into chamber 14, the trivalent cerium is gradually oxidized to tetravalent cerium. Immediately after the end of the introduction of the sodium hypochlorite solution 15 into the chamber 14, one sends the reaction mixture 16 to a maturation chamber 17 from which a broth 19 of ceric hydroxide is collected. The broth is sent to a chamber 20, where its pH is lowered to a value equal to or less than 4 by the addition of an aqueous solution of hydrochloric acid 21. The broth 25 collected from the chamber 20 contains almost all of the cerium from ore 1 in the form of insoluble ceric hydroxide and the other rare earth elements from ore 1 in the form of dissolved chlorides. It is introduced at the head of a column 26 supplied, at the base, by a stream of air 27. In the column 26, the slurry 25 circulates in the opposite direction to the ascending stream of air which leaves the column at 18. The air stream 27 has the function of extracting the chlorine contained in the slurry 25. The air stream 18 leaving the column 26 is therefore charged with chlorine. It is treated in an absorption column 22 with a sufficient quantity of an aqueous solution of sodium hydroxide 23 to form an aqueous solution of sodium hypochlorite 24 which is sent to the reaction chamber 14. The dechlorinated air leaves column 22 at 49.

Le brouet 28 que l'on recueille au pied de la colonne 26 contient encore un peu de chlore actif provenant du traitement avec l'hypochlorite de sodium. Pour éliminer ce chlore actif, on introduit le brouet 28 dans une chambre de réaction 29 où on lui additionne une solution aqueuse 30 d'hyposulfite de sodium. Le brouet déchloré 47 recueilli de la chambre 29 est envoyé sur un filtre 31 où on sépare un précipité décloré d'hydroxyde cérique 48 et une solution aqueuse déchlorée 32. La solution aqueuse 32 recueillie du filtre 31 est traitée de manière connue en soi sur un échangeur cationique 33 pour en extraire de manière sélective les éléments des terres rares qu'elle contient. Des informations sur l'échangeur cationique 33 et sur le processus d'extraction des éléments des terres rares de la solution 32 sont accessibles dans les brevets US-A-2 798 789 et US-A-3 228 750. Il est souhaitable de soumettre le précipité d'hydroxyde cérique 48 à un lavage avec de l'eau acidulée, pour éliminer les éléments métalliques qui pourraient le contaminer. Le lavage avec l'eau acidulée peut être opéré sur le filtre 31. L'eau acidulée recueillie après le lavage peut être recyclée dans la chambre de réaction 8, avec la solution d'acide chlorhydrique 9.The broth 28 which is collected at the bottom of the column 26 still contains a little active chlorine originating from the treatment with sodium hypochlorite. To remove this active chlorine, the slurry 28 is introduced into a reaction chamber 29 where an aqueous solution 30 of sodium hyposulfite is added to it. The dechlorinated broth 47 collected from the chamber 29 is sent to a filter 31 where a declorated precipitate of ceric hydroxide 48 and a dechlorinated aqueous solution 32 are separated. The aqueous solution 32 collected from the filter 31 is treated in a manner known per se cation exchanger 33 to selectively extract the rare earth elements therein. Information on the cation exchanger 33 and on the process for extracting the rare earth elements from solution 32 can be found in patents US-A-2 798 789 and US-A-3 228 750. It is desirable to submit the precipitate of ceric hydroxide 48 in a wash with acidulated water, to remove the metallic elements which could contaminate it. Washing with water acidulated can be operated on the filter 31. The acidulated water collected after washing can be recycled in the reaction chamber 8, with the hydrochloric acid solution 9.

Les exemples suivants servent à illuster l'invention.The following examples serve to illustrate the invention.

Exemple 1 (conforme a l'invention)Example 1 (according to the invention)

Cet exemple est décrit en se référant à la figure 2.This example is described with reference to Figure 2.

Un minerai de monazite a été traité comme exposé dans la description de la figure 1 et on a recueilli une solution aqueuse 13 de chlorures d'éléments des terres rares, contenant 55,0 g desdits éléments (exprimés sous la forme d'oxydes) par litre. On a par ailleurs mis en oeuvre une solution aqueuse d'hypochlorite de sodium 15, ayant une teneur pondérale en chlore actif de 13 %. On a introduit les deux solutions dans la chambre de réaction 14, suivant un processus continu et aux débits respectifs de 12,0 l/h pour la solution de chlorures 13 et de 8,0 l/h pour la solution d'hypochlorite 15. On a ensuite suivi les étapes du procédé schématisé à la figure 1. A l'issue du procédé, on a recueilli un précipité 48 riche en cérium et une eau mère 32 contenant les autres éléments des terres rares du minerai.A monazite ore was treated as described in the description of FIG. 1 and an aqueous solution 13 of chlorides of rare earth elements was collected, containing 55.0 g of said elements (expressed in the form of oxides) by liter. In addition, an aqueous solution of sodium hypochlorite 15 was used, having a weight content of active chlorine of 13%. The two solutions were introduced into the reaction chamber 14, in a continuous process and at the respective flow rates of 12.0 l / h for the chloride solution 13 and 8.0 l / h for the hypochlorite solution 15. The steps of the process shown diagrammatically in FIG. 1 were then followed. At the end of the process, a precipitate 48 rich in cerium and a mother liquor 32 containing the other rare earth elements of the ore were collected.

Le précipité 48 a été soumis à deux lavages successifs avec de l'eau. A cet effet, on l'a introduit dans une chambre de mélange 36 avec de l'eau acidulée 35 [eau acidulée au moyen d'acide chlorhydrique (pH = 3)] et la dispersion résultante 37 a été envoyée sur un filtre 38. On a recueilli un second précipité 39 et une eau mère 40. Le précipité 39 a été traité avec de l'eau 41 dans une seconde chambre de mélange 42. La dispersion résultante 43 a été filtrée sur un filtre 44, duquel on a recueilli un précipité 45 et une eau mère 46.Precipitate 48 was subjected to two successive washes with water. For this purpose, it was introduced into a mixing chamber 36 with acidulated water 35 [water acidulated with hydrochloric acid (pH = 3)] and the resulting dispersion 37 was sent to a filter 38. A second precipitate 39 and a mother liquor 40 were collected. The precipitate 39 was treated with water 41 in a second mixing chamber 42. The resulting dispersion 43 was filtered through a filter 44, from which a precipitate 45 and mother liquor 46.

On a consigné au tableau 1 la concentration et la composition de la solution de départ 13, la concentration et la composition des eaux mères 32, 40 et 46 et la composition des précipités 48, 39 et 45. Le tableau fournit les teneurs pondérales (en %) des éléments exprimés sous la forme d'oxydes. Pour ce qui concerne les précipités 39 et 48, le solde à 100 % du précipité est constitué en majeure partie par du chlorure de sodium.

Figure imgb0001
The concentration and composition of the starting solution 13, the concentration and the composition of the mother liquors 32, 40 and 46 and the composition of the precipitates 48, 39 and 45 are recorded in Table 1. The table provides the weight contents (in %) of the elements expressed in the form of oxides. With regard to precipitates 39 and 48, the balance at 100% of the precipitate consists mainly of sodium chloride.
Figure imgb0001

Les exemples 2, 3 et 4 servent à montrer le progrès apporté par l'invention. L'exemple 2 est conforme à l'invention, tandis que les exemples 3 et 4 sont des exemples de référence, non conformes à l'invention.Examples 2, 3 and 4 serve to show the progress made by the invention. Example 2 is in accordance with the invention, while Examples 3 and 4 are reference examples, not in accordance with the invention.

Dans ces exemples, on a opéré comme décrit plus haut en référence à la figure 1 et on a obtenu une solution aqueuse 13 de chlorures d'éléments des terres rares, contenant 46,3 g desdits éléments (exprimés sous la forme d'oxydes) par litre. La composition de la solution 13 est mentionnée au tableau 2. Dans ce tableau, le poids des éléments (considérés à l'état d'oxydes) est exprimé en % du poids total des éléments à l'état sec (et considérés à l'état d'oxydes). Tableau 2 Composition (% en poids) Concentration (g/l) La₂O₃ CeO₂ Pr₆O₁₁ Nd₂O₃ Sm₂O₃ 22,4 47,5 5,1 17,7 2,8 46,3 In these examples, the operation was carried out as described above with reference to FIG. 1 and an aqueous solution 13 of chlorides of rare earth elements was obtained, containing 46.3 g of said elements (expressed in the form of oxides) per liter. The composition of solution 13 is mentioned in Table 2. In this table, the weight of the elements (considered as oxides) is expressed in% of the total weight of the elements in the dry state (and considered as state of oxides). Table 2 Composition (% by weight) Concentration (g / l) La₂O₃ CeO₂ About Nd₂O₃ Sm₂O₃ 22.4 47.5 5.1 17.7 2.8 46.3

On a par ailleurs mis en oeuvre une solution aqueuse d'hypochlorite de sodium 15, ayant une teneur pondérale en chlore actif de 13 %.In addition, an aqueous solution of sodium hypochlorite 15 was used, having a weight content of active chlorine of 13%.

On a introduit les deux solutions 13 et 15 dans la chambre de réaction 14, aux débits respectifs de 12,0 l/h pour la solution 13 et de 8,0 l/h pour la solution 15.The two solutions 13 and 15 were introduced into the reaction chamber 14, at the respective flow rates of 12.0 l / h for solution 13 and 8.0 l / h for solution 15.

Après passage dans la chambre de maturation 17, on a recueilli le mélange réactionnel 19, on l'a filtré et on a analysé le filtrat.After passing through the maturation chamber 17, the reaction mixture 19 was collected, filtered and the filtrate was analyzed.

Exemple 2 (conforme à l'invention)Example 2 (according to the invention)

Dans cet exemple, le pH du milieu réactionnel dans la chambre 14 a été maintenu à la valeur constante 6,8.In this example, the pH of the reaction medium in chamber 14 was kept at the constant value 6.8.

On a filtré le mélange réactionnel 19, on a recueilli le filtrat et on l'a analysé. Le tableau 3 fournit la composition du filtrat.The reaction mixture 19 was filtered, the filtrate was collected and analyzed. Table 3 provides the composition of the filtrate.

Dans ce tableau, la concentration de la solution (g/l) et sa composition pondérale (%) ont la même définition qu'au tableau 2. Tableau 3 Composition (% en poids) Concentration (g/l) La₂O₃ CeO₂ Pr₆O₁₁ Nd₂O₃ Sm₂O₃ 45 0,33 9,61 32,5 4,68 15,5 In this table, the concentration of the solution (g / l) and its weight composition (%) have the same definition as in Table 2. Table 3 Composition (% by weight) Concentration (g / l) La₂O₃ CeO₂ About Nd₂O₃ Sm₂O₃ 45 0.33 9.61 32.5 4.68 15.5

Une comparaison des tableaux 2 et 3 montre qu'une fraction importante du cérium est passée dans le gâteau de filtration.A comparison of Tables 2 and 3 shows that a large fraction of the cerium has passed through the filter cake.

Exemple 3 (exemple de référence)Example 3 (reference example)

On a opéré comme à l'exemple 2, à la seule différence que le pH du milieu réactionnel dans la chambre 14 a été fixé à 3, par introduction d'acide chlorhydrique dans la solution 13.The procedure was as in Example 2, with the only difference that the pH of the reaction medium in chamber 14 was fixed at 3, by introduction of hydrochloric acid in solution 13.

Les résultats de l'essai (composition du filtrat obtenu après filtration du mélange 19) sont reproduits au tableau 4. Tableau 4 Composition (% en poids) Concentration (g/l) La₂O₃ CeO₂ Pr₆O₁₁ Nd₂O₃ Sm₂O₃ 23,1 46,0 5,3 18,3 2,8 26,9 The results of the test (composition of the filtrate obtained after filtration of the mixture 19) are reproduced in Table 4. Table 4 Composition (% by weight) Concentration (g / l) La₂O₃ CeO₂ About Nd₂O₃ Sm₂O₃ 23.1 46.0 5.3 18.3 2.8 26.9

Exemple 4 (exemple de référence)Example 4 (reference example)

On a répété l'essai de l'exemple 3, en fixant à 4,5 la valeur du pH dans la chambre de réaction 14, par introduction, d'acide chlorhydrique dans la solution 13.The test of Example 3 was repeated, setting the pH value in reaction chamber 14 to 4.5, by introduction of hydrochloric acid into solution 13.

Les résultats de l'essai sont reproduits au tableau 5. Tableau 5 Composition (% en poids) Concentration (g/l) La₂O₃ CeO₂ Pr₆O₁₁ Nd₂O₃ Sm₂O₃ 23,5 45,0 5,36 18,6 2,9 25,6 The results of the test are shown in Table 5. Table 5 Composition (% by weight) Concentration (g / l) La₂O₃ CeO₂ About Nd₂O₃ Sm₂O₃ 23.5 45.0 5.36 18.6 2.9 25.6

Une comparaison des résultats des tableaux 4 et 5 avec le tableau 2 montre que dans les exemples 3 et 4, la quasi totalité du cérium est restée dissoute.A comparison of the results of Tables 4 and 5 with Table 2 shows that in Examples 3 and 4, almost all of the cerium remained dissolved.

Les résultats des exemples 2, 3 et 4 sont rassemblés dans le tableau 6. Tableau 6 Composition (% en poids) Concentration (g/l) La₂O₃ CeO₂ Pr₆O₁₁ Nd₂O₃ Sm₂O₃ Solution 13 22,4 47,5 5,1 17,7 2,8 46,3 Exemple 2 45,0 0,33 9,61 32,5 4,68 15,5 Exemple 3 23,1 46,0 5,3 18,3 2,8 26,9 Exemple 4 23,5 45,0 5,36 18,6 2,9 25,6 The results of Examples 2, 3 and 4 are collated in Table 6. Table 6 Composition (% by weight) Concentration (g / l) La₂O₃ CeO₂ About Nd₂O₃ Sm₂O₃ Solution 13 22.4 47.5 5.1 17.7 2.8 46.3 Example 2 45.0 0.33 9.61 32.5 4.68 15.5 Example 3 23.1 46.0 5.3 18.3 2.8 26.9 Example 4 23.5 45.0 5.36 18.6 2.9 25.6

Il ressort des exemples 2, 3 et 4 que, toutes autres choses égales, la valeur du pH dans la chambre de réaction 14 a exerce une action importante sur la précipitation de l'hydroxyde cérique. A pH supérieur à 4,5 (Exemple 2), une fraction très importante d'hydroxyde cérique a précipité; par contre, à pH égal ou inférieur à 4,5 (Exemples 3 et 4), seule une fraction infime d'hydroxyde cérique a précipité. On en déduit qu'à pH égal ou inférieur à 4,5 (Exemples 3 et 4), la précipitation d'hydroxyde cérique aurait nécessité une quantité plus importante d'hypochlorite de sodium.It emerges from Examples 2, 3 and 4 that, all other things being equal, the pH value in the reaction chamber 14 a has an important action on the precipitation of the ceric hydroxide. At a pH above 4.5 (Example 2), a very large fraction of ceric hydroxide precipitated; on the other hand, at a pH equal to or less than 4.5 (Examples 3 and 4), only a tiny fraction of ceric hydroxide precipitated. It is deduced therefrom that at a pH equal to or less than 4.5 (Examples 3 and 4), the precipitation of ceric hydroxide would have required a greater quantity of sodium hypochlorite.

Claims (7)

Procédé pour l'extraction sélective de cérium d'une solution aqueuse d'éléments des terres rares contenant un sel de cérium trivalent, selon lequel on ajoute de l'hypochlorite de métal alcalin (15) à la solution aqueuse (13) pour précipiter le cérium à l'état d'hydroxyde cérique, et on sépare du brouet résultant (19, 25, 28, 47), d'une part un précipité d'hydroxyde cérique (48) et, d'autre part, une eau mère (32) contenant les autres éléments à l'état dissous, caractérisé en ce qu'on maintient le pH à une valeur supérieure à 4,5 pendant l'addition de l'hypochlorite de métal alcalin à la solution aqueuse.Process for the selective extraction of cerium from an aqueous solution of rare earth elements containing a trivalent cerium salt, according to which alkali metal hypochlorite (15) is added to the aqueous solution (13) to precipitate the cerium in the form of ceric hydroxide, and the resulting broth is separated (19, 25, 28, 47), on the one hand, a precipitate of ceric hydroxide (48) and, on the other hand, a mother liquor ( 32) containing the other elements in the dissolved state, characterized in that the pH is maintained at a value greater than 4.5 during the addition of the alkali metal hypochlorite to the aqueous solution. Procédé selon la revendication 1, caractérisé en ce qu'on maintient le pH à une valeur comprise entre 6 et 7.Method according to claim 1, characterized in that the pH is maintained at a value between 6 and 7. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'après avoir précipité l'hydroxyde cérique, on règle le pH du brouet (19) à une valeur comprise entre 2,5 et 3,5.Method according to claim 1 or 2, characterized in that after precipitating the ceric hydroxide, the pH of the broth (19) is adjusted to a value between 2.5 and 3.5. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'on soumet le brouet (25) à une déchloration par entraînement au moyen d'un gaz inerte (27) et on lui additionne ensuite une quantité suffisante d'hyposulfite de métal alcalin (30) pour éliminer le chlore actif qu'il contient.Process according to any one of Claims 1 to 3, characterized in that the broth (25) is subjected to dechlorination by entrainment using an inert gas (27) and a sufficient quantity of hyposulfite is then added thereto of alkali metal (30) to remove the active chlorine it contains. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le sel de cérium de la solution aqueuse (13) est du chlorure de cérium.Process according to any one of Claims 1 to 4, characterized in that the cerium salt of the aqueous solution (13) is cerium chloride. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le métal alcalin est le sodium.Process according to any one of Claims 1 to 5, characterized in that the alkali metal is sodium. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la solution aqueuse (13) est une solution aqueuse de chlorures d'éléments des terres rares, obtenue en traitant avec de l'acide chlorhydrique (9) un précipité d'hydroxydes desdits éléments (7) issu de la réaction d'un minerai phosphaté d'éléments des terres rares (1) avec une solution aqueuse d'hydroxyde de métal alcalin (3).Process according to any one of Claims 1 to 6, characterized in that the aqueous solution (13) is an aqueous solution of chlorides of rare earth elements, obtained by treating with hydrochloric acid (9) a precipitate of hydroxides of said elements (7) resulting from the reaction of a phosphate ore of rare earth elements (1) with an aqueous solution of alkali metal hydroxide (3 ).
EP92203314A 1991-11-06 1992-10-28 Process for extracting cerium from an aqueous solution containing a mixture of rare earth elements Withdrawn EP0541158A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR919104844A BR9104844A (en) 1991-11-06 1991-11-06 PROCESS FOR THE SELECTIVE EXTRACTION OF CERIO FROM AN Aqueous SOLUTION OF ELEMENTS FROM RARE LANDS
BR9104844 1991-11-06

Publications (1)

Publication Number Publication Date
EP0541158A1 true EP0541158A1 (en) 1993-05-12

Family

ID=4053182

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92203314A Withdrawn EP0541158A1 (en) 1991-11-06 1992-10-28 Process for extracting cerium from an aqueous solution containing a mixture of rare earth elements

Country Status (6)

Country Link
EP (1) EP0541158A1 (en)
JP (1) JPH05254832A (en)
CN (1) CN1073487A (en)
AU (1) AU2737892A (en)
BR (1) BR9104844A (en)
NO (1) NO924266L (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19922144C2 (en) * 1998-05-12 2001-11-15 Sumitomo Metal Mining Co Process for the preparation of a material composition from material containing rare earth elements
US7686976B2 (en) 2003-01-29 2010-03-30 Molycorp Minerals, Llc Composition for removing arsenic from aqueous streams
US8066874B2 (en) 2006-12-28 2011-11-29 Molycorp Minerals, Llc Apparatus for treating a flow of an aqueous solution containing arsenic
CN102605198A (en) * 2012-01-13 2012-07-25 东北大学 Decomposition method of bastnaesite
US8252087B2 (en) 2007-10-31 2012-08-28 Molycorp Minerals, Llc Process and apparatus for treating a gas containing a contaminant
US20120324800A1 (en) * 2010-11-22 2012-12-27 Tomohiro Iwano Method for producing abrasive grains, method for producing slurry, and method for producing polishing liquid
US8349764B2 (en) 2007-10-31 2013-01-08 Molycorp Minerals, Llc Composition for treating a fluid
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
US9881802B2 (en) 2010-11-22 2018-01-30 Hitachi Chemical Company, Ltd Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US9932497B2 (en) 2012-05-22 2018-04-03 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
US9982177B2 (en) 2010-03-12 2018-05-29 Hitachi Chemical Company, Ltd Slurry, polishing fluid set, polishing fluid, and substrate polishing method using same
US9988573B2 (en) 2010-11-22 2018-06-05 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US10196542B2 (en) 2012-02-21 2019-02-05 Hitachi Chemical Company, Ltd Abrasive, abrasive set, and method for abrading substrate
US10549399B2 (en) 2012-05-22 2020-02-04 Hitachi Chemcial Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US10557058B2 (en) 2012-02-21 2020-02-11 Hitachi Chemical Company, Ltd. Polishing agent, polishing agent set, and substrate polishing method
US10557059B2 (en) 2012-05-22 2020-02-11 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7313429B2 (en) * 2018-05-03 2023-07-24 アラフラ・リソーシズ・リミテッド Treatment of rare earth sulfate solutions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE725484C (en) * 1938-09-05 1942-09-23 Degussa Process for the production of cerium dioxide
US3111375A (en) * 1957-09-02 1963-11-19 Gottdenker Friedrich Process for the separation of thorium, cerium and rare earths starting from their oxides or hydroxides
US3594117A (en) * 1968-10-30 1971-07-20 Sylvania Electric Prod Process for removing cerium and thorium from the other rare earth metals
EP0239479A2 (en) * 1986-03-26 1987-09-30 Rhone-Poulenc Chimie Aqueous colloidal dispersions of a cerium IV compound, and process for their preparation
CN1047110A (en) * 1989-05-09 1990-11-21 兰州大学 The novel method of from mishmetal, separating cerium dioxide
US4976939A (en) * 1985-09-10 1990-12-11 Rhone-Poulenc Specialites Chimiques Processing of rare earth ores

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE725484C (en) * 1938-09-05 1942-09-23 Degussa Process for the production of cerium dioxide
US3111375A (en) * 1957-09-02 1963-11-19 Gottdenker Friedrich Process for the separation of thorium, cerium and rare earths starting from their oxides or hydroxides
US3594117A (en) * 1968-10-30 1971-07-20 Sylvania Electric Prod Process for removing cerium and thorium from the other rare earth metals
US4976939A (en) * 1985-09-10 1990-12-11 Rhone-Poulenc Specialites Chimiques Processing of rare earth ores
EP0239479A2 (en) * 1986-03-26 1987-09-30 Rhone-Poulenc Chimie Aqueous colloidal dispersions of a cerium IV compound, and process for their preparation
CN1047110A (en) * 1989-05-09 1990-11-21 兰州大学 The novel method of from mishmetal, separating cerium dioxide

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 114, no. 24, 17 juin 1991, page 156, abrégé no. 231503e, Columbus, Ohio, US; & CN-A-1 047 110 (LANZHOU UNIVERSITY) 21-11-1990 *
CHEMICAL ABSTRACTS, vol. 69, no. 26, 1968, page 10568, colonne de gauche, abrégé no. 112944s, Columbus, Ohio, US; S.K. TOBIA et al.: "Separation of thorium, cerium, and light lanthanons from monazite by selective precipitation", & ARAB. SCI. CONGR., 5TH, BAGDAD 1966, 341-8 *
CHEMICAL ABSTRACTS, vol. 87, no. 16, 17 octobre 1977, page 207, colonne de droite, abrégé no. 121013m, Columbus, Ohio, US; & JP-A-52 050 920 (MITSUI MINING AND SMELTING CO., LTD) 23-04-1977 *
CHEMICAL ABSTRACTS, vol. 98, no. 24, 1983, page 683, colonne de gauche, abrégé no. 208980a, Columbus, Ohio, US; C.A. da SILVA QUEIROZ et al.: "Separation of cerium and fractionation of rare earths from mixed chlorides", & ACIESP 1982, 36(AN. SIMP. ANU. ACIESP, 6TH, VL), 200-24 *
CHEMICAL PROCESSING, vol. XIV, no. 11, novembre 1968, pages 16-19, Londres, GB; "Recovery of cerium and lanthanum" *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19922144C2 (en) * 1998-05-12 2001-11-15 Sumitomo Metal Mining Co Process for the preparation of a material composition from material containing rare earth elements
US7686976B2 (en) 2003-01-29 2010-03-30 Molycorp Minerals, Llc Composition for removing arsenic from aqueous streams
US8475658B2 (en) 2003-01-29 2013-07-02 Molycorp Minerals, Llc Water purification device for arsenic removal
US8066874B2 (en) 2006-12-28 2011-11-29 Molycorp Minerals, Llc Apparatus for treating a flow of an aqueous solution containing arsenic
US8557730B2 (en) 2007-10-31 2013-10-15 Molycorp Minerals, Llc Composition and process for making the composition
US8252087B2 (en) 2007-10-31 2012-08-28 Molycorp Minerals, Llc Process and apparatus for treating a gas containing a contaminant
US8349764B2 (en) 2007-10-31 2013-01-08 Molycorp Minerals, Llc Composition for treating a fluid
US10703947B2 (en) 2010-03-12 2020-07-07 Hitachi Chemical Company, Ltd. Slurry, polishing fluid set, polishing fluid, and substrate polishing method using same
US9982177B2 (en) 2010-03-12 2018-05-29 Hitachi Chemical Company, Ltd Slurry, polishing fluid set, polishing fluid, and substrate polishing method using same
US9881802B2 (en) 2010-11-22 2018-01-30 Hitachi Chemical Company, Ltd Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US20120324800A1 (en) * 2010-11-22 2012-12-27 Tomohiro Iwano Method for producing abrasive grains, method for producing slurry, and method for producing polishing liquid
US10825687B2 (en) 2010-11-22 2020-11-03 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US9988573B2 (en) 2010-11-22 2018-06-05 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US9881801B2 (en) 2010-11-22 2018-01-30 Hitachi Chemical Company, Ltd. Slurry, polishing liquid set, polishing liquid, method for polishing substrate, and substrate
US9039796B2 (en) * 2010-11-22 2015-05-26 Hitachi Chemical Company, Ltd. Method for producing abrasive grains, method for producing slurry, and method for producing polishing liquid
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
CN102605198B (en) * 2012-01-13 2013-09-25 东北大学 Decomposition method of bastnaesite
CN102605198A (en) * 2012-01-13 2012-07-25 东北大学 Decomposition method of bastnaesite
US10196542B2 (en) 2012-02-21 2019-02-05 Hitachi Chemical Company, Ltd Abrasive, abrasive set, and method for abrading substrate
US10557058B2 (en) 2012-02-21 2020-02-11 Hitachi Chemical Company, Ltd. Polishing agent, polishing agent set, and substrate polishing method
US9932497B2 (en) 2012-05-22 2018-04-03 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US10549399B2 (en) 2012-05-22 2020-02-04 Hitachi Chemcial Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US10557059B2 (en) 2012-05-22 2020-02-11 Hitachi Chemical Company, Ltd. Slurry, polishing-solution set, polishing solution, substrate polishing method, and substrate
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
US10577259B2 (en) 2014-03-07 2020-03-03 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions

Also Published As

Publication number Publication date
BR9104844A (en) 1993-05-11
AU2737892A (en) 1993-05-13
NO924266L (en) 1993-05-07
JPH05254832A (en) 1993-10-05
CN1073487A (en) 1993-06-23
NO924266D0 (en) 1992-11-05

Similar Documents

Publication Publication Date Title
EP0541158A1 (en) Process for extracting cerium from an aqueous solution containing a mixture of rare earth elements
RU2323200C2 (en) Method for extraction of 1,3-propanediol from enzymatic broth
WO2003010362B1 (en) Process for direct electrowinning of copper
FR2742150A1 (en) A new method for the preparation of propylene
WO1982000664A1 (en) Process for selective extraction of germanium
EP0297998A1 (en) Process for extracting and purifying gallium from Bayer liquors
US4389248A (en) Method of recovering gold from anode slimes
EP0015811B1 (en) Process for the recovery of uranium present in impure phosphoric acid
FR2636343A1 (en)
EP0003709B1 (en) Hot leaching of ores with a liquid mainly containing a soluble bicarbonate
EP0014111B1 (en) Process for producing oxhydryl-containing nickel compounds and compounds thus obtained
RU2323159C2 (en) Aluminum hydroxide prepared by bayer process with low content of organic carbon
EP0386205A1 (en) IMPROVED PROCESS FOR OBTAINING IMPURITY-FREE COMPOUNDS OF Ta AND/OR Nb FROM MATERIALS CONTAINING THESE METALS.
FR2557090A1 (en) PROCESS FOR PURIFYING PHOSPHORIC ACID FROM WETWAY BY REMOVING CADMIUM
EP0309312B1 (en) Process for the recuperation of gallium by liquid-liquid extraction
EP0324963A1 (en) Metal extraction process
EP0290318B1 (en) Method of recovering gallium by liquid-liquid extraction
CA1136423A (en) Method for reclaiming uranium from raw phosphoric acid
BE506950A (en)
EP0016264B1 (en) Process for extracting uranium from phosphoric acid
FR2502608A1 (en) PROCESS FOR PRODUCING ARSENIEOUS ANHYDRIDE FROM A SUBSTANCE CONTAINING ARSENIC SULFIDE
EP0011517A2 (en) Process and apparatus for removing hydrogen sulfide from gas streams
CA1142365A (en) Process for extracting uranium from contaminated phosphoric acid
EP0024987A1 (en) Process for the treatment of lead chloride solutions
JPH11209831A (en) Method for refining and recovering zirconium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19931028

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950503