EP0535425B1 - Procédé d'amplification de signaux acoustiques pour les malentendants et dispositif pour la réalisation du procédé - Google Patents

Procédé d'amplification de signaux acoustiques pour les malentendants et dispositif pour la réalisation du procédé Download PDF

Info

Publication number
EP0535425B1
EP0535425B1 EP92115626A EP92115626A EP0535425B1 EP 0535425 B1 EP0535425 B1 EP 0535425B1 EP 92115626 A EP92115626 A EP 92115626A EP 92115626 A EP92115626 A EP 92115626A EP 0535425 B1 EP0535425 B1 EP 0535425B1
Authority
EP
European Patent Office
Prior art keywords
stage
frequency
spectrum
hearing
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92115626A
Other languages
German (de)
English (en)
Other versions
EP0535425A3 (en
EP0535425A2 (fr
Inventor
Thomas Fröhlich
Norbert Dr. Dillier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bernafon AG
Original Assignee
Ascom Audiosys AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ascom Audiosys AG filed Critical Ascom Audiosys AG
Publication of EP0535425A2 publication Critical patent/EP0535425A2/fr
Publication of EP0535425A3 publication Critical patent/EP0535425A3/de
Application granted granted Critical
Publication of EP0535425B1 publication Critical patent/EP0535425B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/353Frequency, e.g. frequency shift or compression

Definitions

  • the present invention relates to a method for amplifying acoustic signals for the hearing impaired by transforming signals that are not audible for the hearing impaired into the audible range, the hearing loss being determined in the hearing impaired person and this hearing loss being used to determine the necessary amplification, for which purpose the acoustic
  • the signal is digitized and transformed block by block from the time domain into the frequency domain and the resulting short-term spectrum is used to estimate the loudness, as well as a device for carrying out this method, with an amplifier stage for amplifying the acoustic signals and for determining the amplifier factors of the amplifier stage, in which one
  • the hearing loss is calculated for different frequencies as a function of the sound level, an input stage for the acoustic signal, in which the signals are filtered and digitized, which r the input stage is followed by a block formation stage for multiplying the digitized signal by a window function and the block formation stage is followed by a transformation stage for transforming the output signal of the block formation stage from the time domain to
  • the symptoms of partial hearing loss are varied, the following may be mentioned here: reduced intensity resolution, reduced frequency selectivity, reduced time resolution, reduced noise tolerance, and, as the most serious consequence, reduced speech discrimination ability.
  • the invention is now intended to provide a method by means of which the functionality of hearing aids can be significantly improved.
  • the device for carrying out said method which also relates to the invention, is characterized by the features according to the characterizing part of claim 2.
  • the particularly important level of analysis therefore serves to determine a function which, for each sound level at a certain frequency, indicates the amplification with which a signal has to be amplified so that the hearing-impaired person experiences the same loudness as normal hearing people.
  • signals that are not audible for the hearing impaired, in particular voice information are transformed into the audible range in such a way that the perceived loudness is the same for people with normal hearing and for people with hearing impairment.
  • simple signals such as sine tones or narrow-band or white noise
  • the determination is relatively simple and corresponding methods are known (E. Zwicker: “Psychoacoustics", Springer Verlag, Berlin, Heidelberg, New York, 1982).
  • the loudness determination is more difficult and, above all, mathematically complex.
  • the hearing threshold and the limit of the uncomfortable volume are measured at a certain test frequency f t and then the test subject is offered short tones with a randomly changing sound level (dB SPL) within the measured dynamic range.
  • dB SPL randomly changing sound level
  • the test person has to assess the loudness on a continuous scale from "very quiet” to "quiet”, “medium”, “loud” to "very loud”.
  • these attributes of the loudness perception are assigned values between 0 and 100 for mathematical handling.
  • the measurements are carried out at various frequencies from 250 to 5000 Hz.
  • the scales naturally show a scatter in each test subject; 1 each shows the meridian values of 4 scalings. A regression function is determined for these averaged measured values, which results in a good correlation.
  • L denotes the sound level (dB SPL) as a variable
  • SL N (L, f) the scaled loudness of people with normal hearing as a function of sound level and frequency
  • a N (f), B N (f) the parameters of the regress function for people with normal hearing, where A and B are frequency-dependent.
  • Correlating regress function can also be used, the subsequent functions then changing according to the selected function.
  • a P (f) and B P (f) denote the parameters of the regress function for hearing impaired people.
  • the left dashed curve shows the scaled loudness SL N for people with normal hearing and the right, fully drawn curve shows the scaled loudness SL P for a hearing impaired person, namely for a test frequency f t of 3000 Hz.
  • the hearing loss HV can thus be calculated by comparing the measurements of people with normal hearing and hearing impairments for each measurement frequency as a function of the sound level.
  • the hearing loss HV is generally dependent on the sound level, so that compensation for the hearing loss requires a sound level-dependent amplification (compression).
  • FIG. 3 and 4 show the results of the loudness measurement of FIG. 1 in a frequency-sound level representation, FIG. 3 for people with normal hearing and FIG. 4 for a person with hearing impairment.
  • the different curves are curves of the same loudness similar to the so-called isophones, but the labeling of the curves is not phono but corresponds to the scaled loudness.
  • the conversion from scaled loudness to phon was and is not carried out here. Accordingly, the expression isophone is used below for curves of the same scaled loudness.
  • the input signal is low-pass filtered and digitized in an input stage 1 and then fed to a block formation stage 2, in which the signal curve is additionally weighted with a hanning window.
  • This block formation is necessary in order to obtain a spectrum, or in other words in order to be able to transform the signal from the time domain into the frequency domain.
  • the signal is multiplied by a window function, as mentioned.
  • the hanning window is now such a window function, namely a cosine-shaped one, which has the advantage over a rectangular window function that the spectrum is practically not smeared.
  • FIG. 7 shows a block of length T of the signal in the time domain after the multiplication by the Hanning window.
  • the time signal shown in FIG. 7 is now transformed in a transformation stage 3 from the time domain with a discrete Fourier transform (DFT, FFT) into the frequency domain and the resulting short-term spectrum is transformed into one Analysis block 4 calculates an estimate of the loudness.
  • the real and imaginary parts of the spectrum obtained by the Fourier transformation are denoted by Re 1 ... n and Im 1 ... n , respectively.
  • N indicates the number of frequency lines in the frequency range.
  • the amplitude spectrum of the input signal is replaced by the amplitude spectrum of a pure sine tone.
  • the frequency and amplitude of this sine tone are calculated so that the loudness of the sine tone corresponds to the loudness of the input signal.
  • the frequency is calculated as the "center of gravity" of the energy spectrum.
  • E s energy of the equivalent sine tone at the frequency of the spectral "center of gravity"
  • E tot total energy in the frequency domain
  • This formula is also useful for speech signals. For evenly stimulating noise, a measurement can be found in the book by E. Zwicker already cited.
  • Formula (11) thus establishes the relationship between the measurements on the one hand and the numerical values used in the frequency domain on the other.
  • the information contained in the spectral energy distribution is calculated in parallel with the determination of the isophones.
  • the latter is done by a strong smoothing of the logarithmic amplitude spectrum calculated in a stage 7 in a smoothing stage 8. Only the rough distribution of the energy, ie the Question whether it is a flat, rising or falling spectrum. With this smoothing, the amplitudes A i of the logarithmic amplitude spectrum are replaced by the mean of the neighboring amplitudes A im to A i + m .
  • n 64, a value between 20 and 40 makes sense for m).
  • the smoothed spectrum A ' i is now corrected in a correction stage 9 by a constant ⁇ K, in accordance with FIG. 9 such that the amplitude at the frequency f s of the center of gravity has exactly the same energy as the calculated energy E s of the center of gravity.
  • two functions are available for further processing, namely on the one hand the isopones R 1 ... n. and on the other hand the strongly smoothed spectrum S 1 ... n corrected by ⁇ K.
  • Both functions which according to FIG. 9 have the same value at the frequency f s of the center of gravity, are fed to a stage 10, in which an individual adaptation to the hearing impaired person takes place.
  • Experiments with the hearing impaired person determine a constant with which the influence of R 1 ... n and S 1 ... n on the subsequent gain calculation can be determined.
  • the gain factors in a stage 11 are determined with the aid of function (3).
  • FIGS. 11 and 12 show an original spectrum with isophones of people with normal hearing, and FIG. 12 shows a modified spectrum with isophones of a hearing-impaired person. With ⁇ you can set how much those spectral components that are far from the center of gravity should be amplified.
  • the spectrum modified in the function stage 12 is now transformed back into the time domain in a function block 13 with an inverse Fourier transformation.
  • 13 shows the time signal after processing.
  • the processed blocks according to FIG. 13 are added in an overlapping manner in a reconstruction stage 14.
  • the signal processing is carried out according to Allen's overlap add algorithm (JB Allen: "Short Term Spectral Analysis, Synthesis and Modification by Discrete Fourier Transform", IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-25, 235- 238, 1977), whereby a continuous time signal is again obtained.
  • the latter is converted in an output stage 15 via a D / A converter and low-pass filter into an acoustic signal which is directed to the eardrum of the hearing-impaired person and thus forms the input signal for their ear.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Amplifiers (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Claims (2)

  1. Procédé pour l'amplification de signaux acoustiques pour des malentendants par transformation de signaux inaudibles par les malentendants dans la plage audible où chez la personne malentendante, on détermine la perte d'audition (HV) et cette perte d'audition est utilisée pour la détermination de l'amplification nécessaire, le signal acoustique est mis sous forme numérique et est transformé par bloc, de la plage des temps à la plage des fréquences et il se produit, du spectre instantané qui en résulte une évaluation de l'intensité du son, caractérisé en ce que pour l'évaluation de l'intensité du son, on calcule un spectre équivalent qui se compose d'une ligne de fréquence à une fréquence déterminée (fs) avec une énergie correspondante (Es), et de là, on calcule l'énergie du ton équivalent à l'amplitude présentant ladite fréquence du niveau sonore (Ls), qui correspond au décuple du logarithme ordinaire de ladite énergie, ladite fréquence (fs) étant calculée en tant que le barycentre d'un spectre d'énergie dont la largeur de bande représente quelques pour cent, avantageusement 10 à 25%, de la fréquence moyenne de ce spectre, en ce que de la fréquence (fs) et du niveau sonore (Ls) correspondant, on calcule l'isophone correspondante (Ri), et en ce que l'information est déterminée qui est contenue dans la répartition spectrale d'énergie du spectre d'amplitude du spectre instantané, cela se produisant par un lissage du spectre d'amplitude et en ce que le spectre lissé est corrigé d'une constante (Δk) de manière que l'amplitude à la fréquence (fs) du barycentre ait la même énergie que son énergie calculée (Es) et en ce que le spectre lissé (Si) ainsi corrigé est utilisé en même temps que l'isophone (Ri) pour le contrôle des facteurs d'amplification.
  2. Dispositif pour la mise en oeuvre du procédé selon la revendication 1 avec un étage amplificateur pour l'amplification des signaux acoustiques, avec un étage (4) pour l'analyse desdits signaux et pour la détermination des facteurs d'amplification (Gi) des étages d'amplification, où se produit un calcul de la perte auditive (HV) pour diverses fréquences (f) selon le niveau sonore (L), un étage d'entrée (1) pour les signaux acoustiques où se produit une filtration et une mise sous forme numérique du signal, lequel étage d'entrée (1) est suivi d'un étage de formation de blocs (2) pour la multiplication du signal sous forme numérique avec une fonction de fenêtre, avantageusement avec une fenêtre appelée de Hanning, et l'étage de formation de blocs est suivi d'un étage de transformation (3) pour la transformation du signal à la sortie de l'étage de formation de blocs de la plage des temps à la plage des fréquences, et les signaux à la sortie de l'étage de transformation sont conduits à l'étage d'analyse (4) caractérisé en ce que l'étage d'analyse (4) présente un étage de fonction (5) pour l'évaluation de l'intensité du son, par lequel se produit le calcul d'un spectre équivalent à partir d'une ligne de fréquence à une fréquence prédéterminée (fs) et d'une énergie déterminée (Es), ladite fréquence (fs) étant calculée en tant que le barycentre d'un spectre d'énergie, dont la largeur de bande représente quelques pour cents, avantageusement 10 à 25%, de la fréquence moyenne de ce spectre, de plus par un étage de fonction (7, 8) pour le calcul du spectre d'amplitude (Ai) du spectre instantané du signal d'entrée de l'étage d'analyse (4) et pour son lissage et par des moyens (9) pour la correction du spectre lissé d'amplitude (Ai) avec une constante (Δk), cette correction se produisant de manière que l'amplitude à la fréquence (fs) du barycentre présente la même énergie que son énergie calculée (Es), et à l'étage (5), pour l'évaluation de l'intensité du son, il se produit un calcul du niveau sonore (Ls) à partir de l'amplitude représentant l'énergie (Es) du ton équivalent à ladite fréquence (fs) et en ce qu'un étage de fonction (6) est prévu pour le calcul de l'isophone (Ri) à partir du niveau sonore et de ladite fréquence, laquelle isophone (Ri) et le spectre d'amplitude lissé corrigé (Si) sont conduits à un étage commun (11) pour la détermination des facteurs d'amplification (Gi).
EP92115626A 1991-10-03 1992-09-12 Procédé d'amplification de signaux acoustiques pour les malentendants et dispositif pour la réalisation du procédé Expired - Lifetime EP0535425B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2923/91 1991-10-03
CH292391 1991-10-03

Publications (3)

Publication Number Publication Date
EP0535425A2 EP0535425A2 (fr) 1993-04-07
EP0535425A3 EP0535425A3 (en) 1993-11-10
EP0535425B1 true EP0535425B1 (fr) 1997-03-19

Family

ID=4244663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92115626A Expired - Lifetime EP0535425B1 (fr) 1991-10-03 1992-09-12 Procédé d'amplification de signaux acoustiques pour les malentendants et dispositif pour la réalisation du procédé

Country Status (3)

Country Link
EP (1) EP0535425B1 (fr)
AT (1) ATE150609T1 (fr)
DE (1) DE59208225D1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7715571B2 (en) 2006-03-23 2010-05-11 Phonak Ag Method for individually fitting a hearing instrument
EP2278827A1 (fr) 2006-03-23 2011-01-26 Phonak Ag Procedé pour l'adaptation individuelle d'un appareil auditif

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4427044A1 (de) * 1994-07-29 1996-02-01 Geers Hoergeraete Verfahren zur Optimierung der Anpassung von Hörgeräten
DE59510501D1 (de) * 1995-03-13 2003-01-23 Phonak Ag Staefa Verfahren zur Anpassung eines Hörgerätes, Vorrichtung hierzu und Hörgerät
US6327366B1 (en) 1996-05-01 2001-12-04 Phonak Ag Method for the adjustment of a hearing device, apparatus to do it and a hearing device
JP4147445B2 (ja) * 2001-02-26 2008-09-10 アドフォクス株式会社 音響信号処理装置
CN114615599A (zh) * 2022-03-11 2022-06-10 游密科技(深圳)有限公司 音频处理方法、装置、计算机设备、存储介质和程序产品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2843923C2 (de) * 1978-10-09 1985-09-12 Philips Patentverwaltung Gmbh, 2000 Hamburg Verfahren und Anordnung zum Anpassen eines Hörgerätes
DE3131193A1 (de) * 1981-08-06 1983-02-24 Siemens AG, 1000 Berlin und 8000 München Geraet zur kompensation von gehoerschaeden
GB2184629B (en) * 1985-12-10 1989-11-08 Colin David Rickson Compensation of hearing
AU596633B2 (en) * 1986-01-21 1990-05-10 Antin, Mark Digital hearing enhancement apparatus
WO1990009760A1 (fr) * 1989-03-02 1990-09-07 Ensoniq Corporation Appareil et procede d'adaptation d'une prothese auditive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7715571B2 (en) 2006-03-23 2010-05-11 Phonak Ag Method for individually fitting a hearing instrument
EP2278827A1 (fr) 2006-03-23 2011-01-26 Phonak Ag Procedé pour l'adaptation individuelle d'un appareil auditif

Also Published As

Publication number Publication date
ATE150609T1 (de) 1997-04-15
EP0535425A3 (en) 1993-11-10
EP0535425A2 (fr) 1993-04-07
DE59208225D1 (de) 1997-04-24

Similar Documents

Publication Publication Date Title
DE602004008455T2 (de) Verfahren, vorrichtung und computerprogramm zur berechung und einstellung der wahrgenommenen lautstärke eines audiosignals
DE69531828T2 (de) Hörhilfegerät mit signalverarbeitungstechniken
DE69933141T2 (de) Tonprozessor zur adaptiven dynamikbereichsverbesserung
EP0661905B1 (fr) Procédé d'adaptation de prothèse auditive, dispositif à cet effet et prothèse auditive
EP1453194B1 (fr) Méthode de l'ajustement automatique d'un amplificateur dans une prothèse auditive et prothèse auditive
EP0820212B1 (fr) Traitement d'un signal acoustique basé sur le contrôle de l'intensité sonic
DE60109749T2 (de) Verfahren zur verbesserung des passens von hörgeräten sowie gerät zur implementierung des verfahrens
EP1290914B1 (fr) Procede pour adapter un appareil auditif a un individu
EP1360872A2 (fr) Procede de reglage automatique des parametres de filtrage d'un egaliseur numerique et dispositif de restitution de signaux audio permettant la mise en oeuvre de ce procede
EP2172063B1 (fr) Appareil auditif à module d'initialisation et adaptation à l'utilisateur
DE60308336T2 (de) Verfahren und system zur messung der übertragungsqualität eines systems
EP1088300A1 (fr) Procede d'execution d'une evaluation automatisee de la qualite de transmission de signaux audio
DE60205232T2 (de) Verfahren und vorrichtung zur bestimmung der qualität eines sprachsignals
DE602004010634T2 (de) Verfahren und system zur sprachqualitätsvorhersage eines audioübertragungssystems
EP0535425B1 (fr) Procédé d'amplification de signaux acoustiques pour les malentendants et dispositif pour la réalisation du procédé
DE2843923C2 (de) Verfahren und Anordnung zum Anpassen eines Hörgerätes
EP1369994A2 (fr) Méthode d'augmentation de niveau des basses fréquences conforme a l'ouie et système de reproduction correspondant
EP1048025B1 (fr) Procede de determination instrumentale de la qualite vocale
DE602004006912T2 (de) Verfahren zur Verarbeitung eines akustischen Signals und ein Hörgerät
EP2584795A2 (fr) Procédé de détermination dýune ligne caractéristique de compression
DE4107903A1 (de) Verfahren zur optimierung der anpassung von hoergeraeten
DE2417146A1 (de) Geraet fuer kompensatorische verstaerkung fuer gehoergeschaedigte personen und verfahren zu dessen anpassung an patienten
EP3586526B1 (fr) Procédé pour configurer une prothèse auditive personnalisable et son procédé de génération des signaux de test
DE3923447C2 (fr)
DE2217006C3 (de) Verfahren zur Bestimmung einer Frequenzgangkurve für von gehörbehinderten Personen verwendete Audioverstärker

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE DK FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE DK FR GB IT LI SE

17P Request for examination filed

Effective date: 19931209

17Q First examination report despatched

Effective date: 19940712

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE DK FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19970319

Ref country code: DK

Effective date: 19970319

Ref country code: GB

Effective date: 19970319

REF Corresponds to:

Ref document number: 150609

Country of ref document: AT

Date of ref document: 19970415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REF Corresponds to:

Ref document number: 59208225

Country of ref document: DE

Date of ref document: 19970424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970619

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970912

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19970319

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100927

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110914

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111012

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59208225

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59208225

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120913