EP0531492B1 - Ionically conducting polymer materials - Google Patents

Ionically conducting polymer materials Download PDF

Info

Publication number
EP0531492B1
EP0531492B1 EP92907207A EP92907207A EP0531492B1 EP 0531492 B1 EP0531492 B1 EP 0531492B1 EP 92907207 A EP92907207 A EP 92907207A EP 92907207 A EP92907207 A EP 92907207A EP 0531492 B1 EP0531492 B1 EP 0531492B1
Authority
EP
European Patent Office
Prior art keywords
polymer
material according
chosen
anion
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92907207A
Other languages
German (de)
French (fr)
Other versions
EP0531492A1 (en
Inventor
Michel Armand
Jean-Yves Sanchez
Daniel Deroo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Centre National de la Recherche Scientifique CNRS
Original Assignee
Hydro Quebec
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Quebec, Centre National de la Recherche Scientifique CNRS filed Critical Hydro Quebec
Publication of EP0531492A1 publication Critical patent/EP0531492A1/en
Application granted granted Critical
Publication of EP0531492B1 publication Critical patent/EP0531492B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/32Polythiazoles; Polythiadiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/02Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing phosphorus
    • C08G79/025Polyphosphazenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes

Definitions

  • the present invention relates to ionically conductive polymeric materials, their preparation and their use as a solid electrolyte.
  • the metal salts MX n in which M represents a metal cation and X represents a monovalent anion form complexes with certain solvating polymers, in particular those incorporating polyether type sequences (for example poly (ethylene oxide) PEO, poly ( propylene oxide) PPO, poly (bis ⁇ -methoxy-oligooxyethylene-phosphazene) ME n P) or polyamines (PEI).
  • polyether type sequences for example poly (ethylene oxide) PEO, poly ( propylene oxide) PPO, poly (bis ⁇ -methoxy-oligooxyethylene-phosphazene) ME n P
  • PEI polyamines
  • the ionic conductivity of these complexes depends on the degree of dissociation of the salt MX n and the highest values for a given species M are obtained with anions X ⁇ for which the negative charge is delocalized and which have no complexing character.
  • the mobility of the M n + cations in this macromolecular medium depends on the rate of exchange of the ligands incorporated into the macromolecular frame, in the form of solvation units, around these cations. For n> 1 and / or for the transition elements, these kinetics are slow and generally result in low or zero values of the number of cation transport in these materials. In particular, it is therefore difficult to carry out electrochemical reactions involving a reversible contribution to the electrode of the species M n + (metal deposition-dissolution, insertion, etc.).
  • the present invention aims to remedy these drawbacks by providing materials of the polymer-salt type in which the transport of the species M is independent of the dissociation of the salt MX n into anions and cations M n + .
  • the ionically conductive materials of the present invention comprising a solid solution of one or more salts in a polymer, are characterized in that the transport and the mobility of a metal cation M n + having the valence n, 1 ⁇ n ⁇ 5, are provided by at least one complex anion, corresponding to the general formula [MZ n Y p ] p- formed between an anionic ligand Z ⁇ , an anionic ligand Y ⁇ and the cation M n + , with 1 ⁇ p ⁇ 3.
  • the transport of the species M n + is therefore ensured by diffusion of the anionic complex [MZ n Y p ] p- to the electrode.
  • the complex loses metal M which is deposited on the electrode.
  • the complex anion is reformed from MZ n or its charge is increased, or else the ligand Y ⁇ and / or the ligand Z ⁇ are released by desolvation of the complex anions.
  • the complex anion having an increased charge or Y ⁇ or Z ⁇ migrate to the opposite electrode. The phenomenon is reversed if the direction of the current is reversed.
  • the relatively high mobility of the anionic species in the solvating polymers makes it possible to ensure rapid kinetics for the above-mentioned mechanism.
  • the cation A capable of being easily solvated by the polymer can be chosen from alkali metals, alkaline earth metals, lanthanum, quaternary ammonium radicals, amidinium radicals, guanidinium radicals.
  • quaternary ammonium groups mention may be made of those which correspond to the formula NH (4-j) R j +.
  • amidinium groups mention may be made of those which correspond to the formula RC (NH 2-j R j ) 2+.
  • the guanidinium groups there may be mentioned those which correspond to the formula C (NH 2-j R j ) 3+.
  • R can be hydrogen, an alkyl, oxaalkyl or aryl group, and j can take the integer values 0,1 or 2.
  • the preferred cations A of the invention are those which, because of their high ionic radius, ensure the best ionic dissociation of the complexes and for which the ligand Z ⁇ has no complexing power.
  • the K+, Cs+, Sr+, Ba++ and NH4+ ions are particularly preferred.
  • M can be chosen from metals whose valence n is from 1 to 5.
  • alkali metals and alkaline earth metals having an ionic radius sufficiently small to be able to be easily complexed, transition metals and rare earth Particularly preferred are Li, Mg, Ca, Sr, Mn, Fe, Ni, Co, Cu (I, II) Ag, Zn, Cd, Al, Sn (II, IV), Bi, Hg, Pb, Y, La .
  • Z and Y can also represent, simultaneously or not, a biradical or more generally a multiradical, for example - (R F SO2) NQ′N (SO2R F ) -, Q ′ representing a divalent radical having functionalities similar to those of Q and R F having the meaning given above.
  • the polymers which can be used for the material of the present invention are those which comprise, on the polymer screen, solvation units which contain at least one heteroatom such as O, N, F, S.
  • solvation units which contain at least one heteroatom such as O, N, F, S.
  • the solvation unit of the polymer frame is an ether group or an amine group.
  • the polymeric frame can consist of a homopolymer, a block copolymer, a random copolymer, an alternating copolymer or a comb copolymer of ethylene oxide structure.
  • the polymer frame advantageously consists of poly (ethylene oxide).
  • copolymers Among the copolymers, mention may be made of a copolymer of ethylene oxide with a cyclic ether chosen from propylene oxide, methylglycidylether, allylglycidylether, dioxolane.
  • Another family of interesting polymers is constituted by those whose polymeric framework is constituted by a poly [alkoxy (oligoethyleneoxy) phosphazene], by a poly [alkoxyoligoethyleneoxy) siloxane] or by a poly [alkoxy (oligoethyleneoxy) vinyl ether].
  • the dissolution of the salt in the polymer can be carried out by dissolving the salts and the polymer in a common liquid solvent, then by evaporating the said solvent. Depending on the constituents used, either a film-forming plastic material or a viscous material is obtained.
  • the polymer can be crosslinked. If a pre-crosslinked polymer is used, the ionic compound is dissolved in a solvent, the pre-crosslinked polymer is impregnated with the solution obtained, then the solvent is removed.
  • the polymer can also be crosslinked in situ.
  • the crosslinking of the polymer frame can be carried out, for example by the action of a source of free radicals, ionizing radiation or an acid in the sense of Lewis.
  • the polymer frame can also be crosslinked by polycondensation of a di- or tri-functional oligo (ethylene oxide), the ends of which are alcohol or amine functions, on an isocyanate of functionality at least equal to 2.
  • the dissolution of the salts can also be carried out by dry mixing the polymer and the salts in the form of powder, for example in a roller mill. Pressing the ground mixture allows the material to be obtained in the form of a film.
  • additives conventionally used for ionically conductive materials can be added to the mixture, to modify the properties of the final material.
  • a plasticizing agent such as ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, dimethylformamide, N-methylpyrrolidone, tetraalkylsulfonamides, polyethylene glycols of mass between 200 and 2000 or their methyl ethers and, in general, derivatives of polar molecules of low volatility.
  • the proportion of these additives can range from 1 to 90% of the total mass.
  • salts of an anion which cannot constitute a ligand of the cation M for example to increase the conductivity of the material or to increase its amorphous nature.
  • salts AX, A having the meaning given above X being a delocalized anion such as perchlorate, trifluoromethanesulfonate, bis trifluoromethanesulfonylimide.
  • the materials of the present invention can be used for electrochemical generators.
  • Such generators include a negative electrode "source” of the metal M at a high chemical potential, a positive electrode or "well” establishing a low chemical potential of M, the two electrodes being in contact via a polymer electrolyte consisting of a material according to the invention.
  • at least one of the electrodes has a composite structure including the electrochemically active material, an electronic conductive material and the material according to the present invention.
  • the electronic conductive material can be graphite or a carbon black, particularly acetylene black.
  • the negative electrode preferably consists of metallic zinc, metallic magnesium, metallic lithium or one of its alloys, calcium or aluminum.
  • the materials of the present invention can also be used for an electrochemical system making it possible to act on the transmission of light.
  • a system comprises a counter electrode, an electrolyte constituted by a material according to the invention and a transparent electrode.
  • This electrode can serve as a substrate for the electrochemical deposition of M or as a support for an electrochromic layer.
  • the counter electrode is formed by a grid of metal M, possibly deposited on a transparent support. It can also be constituted by an electroactive material deposited on a transparent support, the electroactive material being chosen from those which do not undergo a color variation during the electrochemical reaction, or from those which have a color variation concomitant with that of the 'transparent electrode.
  • the metal M is advantageously chosen from copper, zinc, nickel, tin, lead.
  • the polymer network obtained by the polycondensation reaction is removed from the mold and the acetonitrile is evaporated in a stream of dry nitrogen.
  • An elastic membrane is obtained which has very good mechanical properties and whose conductivity is, at 50 ° C, 3.10 ⁇ 5 ( ⁇ cm) ⁇ 1, in which the CoCl3 ⁇ and CoCl42 ⁇ ions coexist.
  • the cesium salt of bis (trifluoroacetyl) imide is prepared by reaction of (CF3CO) 2NH with an excess of cesium carbonate in acetonitrile. After evaporation, the salt is extracted with methyl formate and crystallized. To 5.11 g of the cesium salt dissolved in 20 ml of tetrahydrofuran, 423 mg of anhydrous lithium chloride are added; a precipitate of CsCl is formed which is separated by centrifugation.
  • the conductivity measured at 22 ° C, is greater than 5.10 ⁇ 5 ( ⁇ cm) ⁇ 1.
  • the compound CH3OCH2CH2NH (SO2CF3) is prepared by reaction of trifluoromethane-sulfonyl imidazole on methoxyethylamine.
  • the compound is distilled under reduced pressure after acidification with hydrochloric acid.
  • To 1.2 g of this compound are added 2 ml of a 0.5M solution of magnesium methyl carbonate in methanol and 277 mg of potassium carbonate.
  • the resulting solution is filtered and evaporated. 342 mg complex and 396 mg poly (ethylene oxide) mass M w ⁇ 5.106 are dissolved in 20 ml of acetonitrile.
  • the homogeneous mixture is poured into a glass ring placed on a polished PTFE plate. After evaporation, a 55 ⁇ m thick film is obtained, the conductivity of which at 60 ° C is 4.10 ⁇ 4 ( ⁇ cm) ⁇ 1.
  • 2-methoxytetrafluoropropionic acid is prepared according to the method described in J. Org. Chem 31 2312, (1966) from hexafluoropropene oxide. 5.25 g of this acid are treated with 3.5 g of potassium hydrogen carbonate in 10 ml of water. After reaction, the water is evaporated under reduced pressure and the solid residue is extracted with 20 ml of methyl formate. After evaporation of the organic solution, the salt K [CH3OCF (CF3) CO2] is obtained. 4.26 g of this salt is dissolved in 15 nl of acetonitrile and 300 mg of anhydrous magnesium chloride are added.
  • the KCl precipitate is removed by centrifugation and the supernatant solution is mixed with 15 g of poly (oxide ethylene) with a mass of 9.10 m g / mole in 200 ml of acetonitrile.
  • the solution is degassed and poured onto a glass plate. After evaporation and drying, a 70 ⁇ m thick film is obtained, the conductivity of which at 80 ° C. is 2.10 ⁇ 3 ( ⁇ cm) ⁇ 1.
  • Tetronic trifluoroacetyl acid is prepared by condensing trifluoroacetyl chloride on the potassium salt of tetronic acid in the presence of pyridine. To 2.24 g of the potassium salt of trifluoroacetyl tetrolic acid in 20 ml of acetonitrile are added 105 mg of anhydrous lithium chloride. The potassium chloride precipitate is separated, then the supernatant solution is mixed with 3.3 g of polyethylene glycol 400-co-oxymethylene with mass ⁇ 105 g / mole in 30 ml of tetrahydrofuran. The polymer was prepared according to the method described in: CV Nicholas, DJ Wilson, C. Booth & RJM Giles Brit. Polym.
  • Example 14 The procedure of Example 14 was reproduced, replacing the trifluoroacetyl tetronic acid successively with each of the following acids:
  • the conductivity of the films obtained was greater than 10 ⁇ 4 ( ⁇ cm) ⁇ 1 at 70 ° C.
  • a secondary electrochemical generator comprises a negative electrode constituted by a zinc sheet 20 ⁇ m thick, cut in the form of a disc 3 cm in diameter; an electrolyte consisting of the polymer material according to Example 2; a positive electrode having a composite structure obtained by evaporation of a suspension containing 580 mg of the material of the electrolyte, 965 mg of poly dimercaptothiadiazole of formula: and 150 mg of acetylene black.
  • the assembly forms a film of 125 ⁇ m thickness on a polypropylene collector (12 ⁇ m) metallized by a layer of molybdenum of approximately 200 nm. The whole is cut to the same diameter.
  • the three elements are pressed together at 90 ° C at 2.105Pa. At 70 ° C, the fem of the battery thus formed is 1.15 Volts and its capacity under 50 ⁇ A / cm2 until the cut-off voltage of 0.8 V is 8 C / cm2.
  • This generator is rechargeable.
  • a secondary generator is manufactured with the following electrochemical chain:
  • the electrolyte is that described in Example 11.
  • the composition of the positive electrode corresponds to 42% v / v of electrolyte, 8% v / v of acetylene black and 50% v / v of graphite fluoride CF x (x ⁇ 1).
  • the composite material diluted in acetonitrile is spread on an 8 ⁇ m copper foil so as to form a layer about 80 ⁇ m thick.
  • the negative electrode is a 20 ⁇ m sheet.
  • the battery voltage after assembly by rolling the cells at 80 ° C is 2.5 V and the capacity for a flow rate of 300 ⁇ A / cm2 is 7 mAh / cm2.
  • An electrochemical generator comprises a negative electrode consisting of a 25 ⁇ m thick lithium sheet, an electrolyte prepared according to example 7 and a composite electrode whose active material is vanadium oxide V2O5 (55 % v / v), acetylene black (6% v / v) and the same electrolyte.
  • the thickness of the positive electrode is 45 ⁇ m.
  • the capacity is 8 Coulombs / cm2 for a cut-off voltage of 2.2 Volts.
  • a variable transmission glazing device is constructed as follows: on a glass plate covered with a layer of doped indium oxide (ITO) so as to obtain a resistance of 10 ⁇ square, a layer of the polymer electrolyte described in Example 1.
  • the counter electrode is formed by a deposit of 1 ⁇ m of metallic copper on another glass plate of similar size.
  • the continuous layer is transformed by photogravure into a grid with square meshes of 15 ⁇ m side and thickness 2 ⁇ m.
  • the assembly takes place under vacuum at 80 ° C with the application of a mechanical force of 4.9.105 Pa (5 kg / cm2).
  • a voltage of 1 Volt between the metal grid and the ITO layer (pole) we observe the appearance of a reflective deposit of copper.
  • the transparency of the system is restored in a few seconds.
  • a flexible device with electrically controlled optical transmission is constructed in the following manner: on a film of poly (ethylene terephthalate) (PET) covered by cathodic sputtering with a layer of tin oxide doped with fluorine (SnO2 / F) of so as to obtain a resistance of 50 ⁇ square, a layer of the polymer electrolyte described in example 9 is deposited.
  • the counter electrode is formed by a deposit of 1 ⁇ m of metallic tin on a film of PET.
  • the continuous layer is transformed by photogravure into a grid with square meshes of 15 ⁇ m side and thickness 2 ⁇ m.
  • the assembly takes place under vacuum at 80 ° C by rolling the elements.
  • a voltage of 0.8 Volt between the metal grid and the ITO layer (pole-) the appearance of a reflective tin deposit is observed.
  • the transparency of the system is restored in ⁇ 1 minute.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Secondary Cells (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Primary Cells (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Steroid Compounds (AREA)

Abstract

PCT No. PCT/FR92/00198 Sec. 371 Date Nov. 6, 1992 Sec. 102(e) Date Nov. 6, 1992 PCT Filed Mar. 4, 1992 PCT Pub. No. WO92/16028 PCT Pub. Date Sep. 17, 1992.The present invention relates to ionically conductive polymeric materials, to their preparation and to their use as a solid electrolyte. The materials comprise a solid solution of one or more salts in a polymer and are characterized in that the transport and the mobility of a metal cation Mn+ which has the valency n, 1</=n</=5, are provided by at least one complex anion, corresponding to the general formula [MZnYp]p- formed between an anionic ligand Z-, an anionic ligand Y- and the cation Mn+, with 1</=p</=3. Application to the formation of electrochemical generators and of electrochemical systems which make it possible to affect the transmission of light.

Description

La présente invention concerne des matériaux polymériques à conduction ionique, leur préparation et leur utilisation comme électrolyte solide.The present invention relates to ionically conductive polymeric materials, their preparation and their use as a solid electrolyte.

Les sels métalliques MXn dans lesquels M représente un cation métallique et X représente un anion monovalent, forment des complexes avec certains polymères solvatants, en particulier ceux incorporant des séquences de type polyéther (par exemple le poly(éthylène oxyde) PEO, le poly(propylène oxyde) PPO, le poly(bis ω-méthoxy-oligooxyéthylène-phosphazène) MEnP) ou les polyamines (PEI). Ces matériaux possèdent, dans une plage de température et de concentration en sel déterminée, une conduction ionique qui peut être utilisée pour la réalisation de systèmes électrochimiques, en particulier des accumulateurs (Brevet Européen N° 13199).The metal salts MX n in which M represents a metal cation and X represents a monovalent anion, form complexes with certain solvating polymers, in particular those incorporating polyether type sequences (for example poly (ethylene oxide) PEO, poly ( propylene oxide) PPO, poly (bis ω-methoxy-oligooxyethylene-phosphazene) ME n P) or polyamines (PEI). These materials have, in a determined temperature and salt concentration range, an ionic conduction which can be used for the production of electrochemical systems, in particular accumulators (European Patent N ° 13199).

La conductivité ionique de ces complexes dépend du degré de dissociation du sel MXn et les valeurs les plus élevées pour une espèce M donnée sont obtenues avec des anions X⁻ pour lesquels la charge négative est délocalisée et qui ne possèdent aucun caractère complexant. Cependant la mobilité des cations Mn+ dans ce milieu macromoléculaire dépend de la vitesse d'échange des ligands incorporés à la trame macromoléculaire, sous forme d'unités de solvatation, autour de ces cations. Pour n > 1 et/ou pour les éléments de transition, cette cinétique est lente et entraîne en général des valeurs faibles ou nulle du nombre de transport cationique dans ces matériaux. En particulier, il est donc difficile d'effectuer des réactions électrochimiques impliquant un apport réversible à l'électrode de l'espèce Mn+ (dépôt métallique-dissolution, insertion...).The ionic conductivity of these complexes depends on the degree of dissociation of the salt MX n and the highest values for a given species M are obtained with anions X⁻ for which the negative charge is delocalized and which have no complexing character. However, the mobility of the M n + cations in this macromolecular medium depends on the rate of exchange of the ligands incorporated into the macromolecular frame, in the form of solvation units, around these cations. For n> 1 and / or for the transition elements, these kinetics are slow and generally result in low or zero values of the number of cation transport in these materials. In particular, it is therefore difficult to carry out electrochemical reactions involving a reversible contribution to the electrode of the species M n + (metal deposition-dissolution, insertion, etc.).

La présente invention a pour but de remédier à ces inconvénients en fournissant des matériaux du type polymère-sel dans lesquels le transport de l'espèce M est indépendant de la dissociation du sel MXn en anions et cations Mn+.The present invention aims to remedy these drawbacks by providing materials of the polymer-salt type in which the transport of the species M is independent of the dissociation of the salt MX n into anions and cations M n + .

Les matériaux à conduction ionique de la présente invention, comprenant une solution solide d'un ou plusieurs sels dans un polymère, sont caractérisés en ce que le transport et la mobilité d'un cation métallique Mn+ ayant la valence n, 1 ≦ n ≦ 5, sont assurés par au moins un anion complexe, correspondant à la formule générale [MZnYp]p-formé entre un ligand anionique Z⁻, un ligand anionique Y⁻ et le cation Mn+, avec 1 ≦ p ≦ 3.The ionically conductive materials of the present invention, comprising a solid solution of one or more salts in a polymer, are characterized in that the transport and the mobility of a metal cation M n + having the valence n, 1 ≦ n ≦ 5, are provided by at least one complex anion, corresponding to the general formula [MZ n Y p ] p- formed between an anionic ligand Z⁻, an anionic ligand Y⁻ and the cation M n + , with 1 ≦ p ≦ 3.

Parmi les matériaux à conduction ionique de la présente invention, on peut citer les complexes polymères représentés par la formule globale Poly(u.s.) u A(M x Z z Y y )

Figure imgb0001

dans laquelle

  • A est un cation de valence p susceptible d'être facilement solvaté par le polymère, avec p=1, 2 ou 3
  • (u.s.) désigne l'unité de solvatation du polymère
  • u représente le nombre d'unités de solvatation portées par la trame polymère assurant la solvatation d'un cation A.
  • x, y et z sont tels que la relation z + y - nx = p soit satisfaite et qu'ils permettent la coexistence en quantités finies, de l'anion complexe [MZnYp]p- et d'une espèce choisie dans le groupe constitué par l'anion Z⁻, l'anion Y⁻, l'anion complexe [MZnYp+1](p+1)- et l'espèce neutre MZn.
Among the ionically conductive materials of the present invention, mention may be made of the polymer complexes represented by the overall formula Poly (us) u A (M x Z z Y y )
Figure imgb0001

in which
  • A is a cation of valence p capable of being easily solvated by the polymer, with p = 1, 2 or 3
  • (us) denotes the unit of solvation of the polymer
  • u represents the number of solvation units carried by the polymer frame ensuring the solvation of a cation A.
  • x, y and z are such that the relation z + y - nx = p is satisfied and that they allow the coexistence in finite quantities, of the complex anion [MZ n Y p ] p- and of a species chosen in the group consisting of the anion Z⁻, the anion Y⁻, the complex anion [MZ n Y p + 1 ] (p + 1) - and the neutral species MZ n .

Le transport de l'espèce Mn+ est donc assuré par diffusion du complexe anionique [MZnYp]p- jusqu'à l'électrode. A l'électrode, le complexe perd du métal M qui se dépose sur l'électrode. Parallèlement, l'anion complexe est reformé à partir de MZn ou bien sa charge est augmentée, ou bien le ligand Y⁻ et/ou le ligand Z⁻ sont libérés par désolvatation des anions complexes. L'anion complexe ayant une charge augmentée ou Y⁻ ou Z⁻ migrent vers l'électrode opposée. Le phénomène s'inverse si le sens du courant est inversé.The transport of the species M n + is therefore ensured by diffusion of the anionic complex [MZ n Y p ] p- to the electrode. At the electrode, the complex loses metal M which is deposited on the electrode. In parallel, the complex anion is reformed from MZ n or its charge is increased, or else the ligand Y⁻ and / or the ligand Z⁻ are released by desolvation of the complex anions. The complex anion having an increased charge or Y⁻ or Z⁻ migrate to the opposite electrode. The phenomenon is reversed if the direction of the current is reversed.

La mobilité relativement importante des espèces anioniques dans les polymères solvatants permet d'assurer une cinétique rapide pour le mécanisme précité.The relatively high mobility of the anionic species in the solvating polymers makes it possible to ensure rapid kinetics for the above-mentioned mechanism.

Le cation A susceptible d'être facilement solvaté par le polymère peut être choisi parmi les métaux alcalins, les métaux alcalino-terreux, le lanthane, les radicaux ammonium quaternaire, les radicaux amidinium, les radicaux guanidinium. Parmi les groupes ammonium quaternaire, on peut citer ceux qui répondent à la formule NH(4-j)Rj⁺. Parmi les groupes amidinium, on peut citer ceux qui répondent à la formule RC(NH2-jRj)₂⁺. Parmi les groupes guanidinium, on peut citer ceux qui répondent à la formule C(NH2-jRj)₃⁺. Dans tous les cas, R peut être l'hydrogène, un groupement alkyle, oxaalkyle ou aryle, et j peut prendre les valeurs entières 0,1 ou 2.
Les cations A préférés de l'invention sont ceux qui, en raison de leur rayon ionique élevé, assurent la meilleure dissociation ionique des complexes et pour lesquels le ligand Z⁻ ne possède pas de pouvoir complexant. A cet égard, les ions K⁺, Cs⁺, Sr⁺, Ba⁺⁺ et NH₄⁺ sont particulièrement préférés.
The cation A capable of being easily solvated by the polymer can be chosen from alkali metals, alkaline earth metals, lanthanum, quaternary ammonium radicals, amidinium radicals, guanidinium radicals. Among the quaternary ammonium groups, mention may be made of those which correspond to the formula NH (4-j) R j ⁺. Among the amidinium groups, mention may be made of those which correspond to the formula RC (NH 2-j R j ) ₂⁺. Among the guanidinium groups, there may be mentioned those which correspond to the formula C (NH 2-j R j ) ₃⁺. In all cases, R can be hydrogen, an alkyl, oxaalkyl or aryl group, and j can take the integer values 0,1 or 2.
The preferred cations A of the invention are those which, because of their high ionic radius, ensure the best ionic dissociation of the complexes and for which the ligand Z⁻ has no complexing power. In this regard, the K⁺, Cs⁺, Sr⁺, Ba⁺⁺ and NH₄⁺ ions are particularly preferred.

M peut être choisi parmi les métaux dont la valence n est de 1 à 5. Comme exemples, on peut citer les métaux alcalins et les métaux alcalino-terreux ayant un rayon ionique suffisamment petit pour pouvoir être aisément complexés, les métaux de transition et les terres rares. On préfère tout particulièrement Li, Mg, Ca, Sr, Mn, Fe, Ni, Co, Cu(I, II) Ag, Zn, Cd, Al, Sn(II, IV), Bi, Hg, Pb, Y, La.M can be chosen from metals whose valence n is from 1 to 5. As examples, there may be mentioned alkali metals and alkaline earth metals having an ionic radius sufficiently small to be able to be easily complexed, transition metals and rare earth. Particularly preferred are Li, Mg, Ca, Sr, Mn, Fe, Ni, Co, Cu (I, II) Ag, Zn, Cd, Al, Sn (II, IV), Bi, Hg, Pb, Y, La .

Z⁻ et Y⁻, identiques ou différents, peuvent être choisis parmi:
   = les halogènes tels que F⁻, Cl⁻, Br⁻, I⁻;
   = les pseudohalogènes répondant à la formule QS⁻ ;
   = les radicaux RFCO₂⁻, (RFCO)₂N⁻, (RFCO)₂CQ⁻, RFCOCQ₂⁻, QCOC(CN)₂⁻,(RFCO)₂CSO₂RF⁻,(RFCO)₂CSO₂NR₂⁻,R-(OCH₂CH₂)j-CH₂COC(CN)₂⁻;
   = les sulfonamides tels que QN(SO₂RF)⁻ ;
Q représentant CN, R, RCO, R₂NCO, R₂NCS, RF, RFCO ou un hétérocycle, RF représentant un radical perhalogénoalkyle ou perhalogénoaryle, R représentant un groupement alkyle, oxaalkyle ou aryle .
Z⁻ and Y⁻, identical or different, can be chosen from:
= halogens such as F⁻, Cl⁻, Br⁻, I⁻;
= pseudohalogens corresponding to the formula QS⁻;
= the radicals R F CO₂⁻, (R F CO) ₂N⁻, (R F CO) ₂CQ⁻, R F COCQ₂⁻, QCOC (CN) ₂⁻, (R F CO) ₂CSO₂R F ⁻, (R F CO) ₂CSO₂NR₂⁻, R- (OCH₂CH₂) j -CH₂COC (CN) ₂⁻;
= sulfonamides such as QN (SO₂R F ) ⁻;
Q representing CN, R, RCO, R₂NCO, R₂NCS, R F , R F CO or a heterocycle, R F representing a perhaloalkyl or perhaloaryl radical, R representing an alkyl, oxaalkyl or aryl group.

Z et Y peuvent aussi représenter, simultanément ou non, un biradical ou plus généralement un multiradical, par exemple -(RFSO₂)NQ′N(SO₂RF)-, Q′ représentant un radical divalent possédant des fonctionalités similaires à celles de Q et RF ayant la signification donnée ci-dessus.Z and Y can also represent, simultaneously or not, a biradical or more generally a multiradical, for example - (R F SO₂) NQ′N (SO₂R F ) -, Q ′ representing a divalent radical having functionalities similar to those of Q and R F having the meaning given above.

Les polymères utilisables pour le matériau de la présente invention sont ceux qui comportent sur la trame polymère, des unités de solvatation qui contiennent au moins un hétéroatome tel que O, N, F, S.
Parmi ces polymères, on peut citer ceux pour lesquels l'unité de solvatation de la trame polymère est un groupement éther ou un groupement amine.
Lorsque les unités de solvatation sont des groupements éther, la trame polymère peut être constituée par un homo-polymère, un copolymère bloc, un copolymère statistique, un copolymère alterné ou un copolymère de structure peigne de l'oxyde d'éthylène. Lorsqu'il s'agit d'un homopolymère, la trame polymère est avantageusement constituée par du poly(oxyde d'éthylène). Parmi les copolymères, on peut citer un copolymère de l'oxyde d'éthylène avec un éther cyclique choisi parmi l'oxyde de propylène, le méthylglycidyléther, l'allylglycidyléther, le dioxolane.
Une autre famille de polymères intéressants est constituée par ceux dont la trame polymère est constituée par un poly-[alcoxy(oligoéthylèneoxy)phosphazène], par un poly[alcoxyoligoéthylèneoxy)siloxane] ou par un poly[alcoxy(oligoéthylèneoxy) vinyl éther].
The polymers which can be used for the material of the present invention are those which comprise, on the polymer screen, solvation units which contain at least one heteroatom such as O, N, F, S.
Among these polymers, mention may be made of those for which the solvation unit of the polymer frame is an ether group or an amine group.
When the solvation units are ether groups, the polymeric frame can consist of a homopolymer, a block copolymer, a random copolymer, an alternating copolymer or a comb copolymer of ethylene oxide structure. When it is a homopolymer, the polymer frame advantageously consists of poly (ethylene oxide). Among the copolymers, mention may be made of a copolymer of ethylene oxide with a cyclic ether chosen from propylene oxide, methylglycidylether, allylglycidylether, dioxolane.
Another family of interesting polymers is constituted by those whose polymeric framework is constituted by a poly [alkoxy (oligoethyleneoxy) phosphazene], by a poly [alkoxyoligoethyleneoxy) siloxane] or by a poly [alkoxy (oligoethyleneoxy) vinyl ether].

Les matériaux selon l'invention sont préparés en dissolvant dans un polymère solvatant, un sel AYp et un sel MZn, les proportions respectives des constituants du mélange étant telles que la relation z + y - nx = p soit satisfaite et qu'elles permettent la coexistence en quantités finies, de l'anion complexe [MZnYp]p- et d'une espèce choisie dans le groupe constitué par l'anion Z⁻, l'anion Y⁻, l'anion complexe [MZnYp+1](p+1)- et l'espèce neutre MZn.The materials according to the invention are prepared by dissolving in a solvating polymer, a salt AY p and a salt MZ n , the respective proportions of the constituents of the mixture being such that the relation z + y - nx = p is satisfied and that they allow the coexistence in finite quantities of the complex anion [MZ n Y p ] p- and of a species chosen from the group consisting of the anion Z⁻, the anion Y⁻, the complex anion [MZ n Y p + 1 ] (p + 1) - and the neutral species MZ n .

La dissolution du sel dans le polymère peut être effectuée en dissolvant les sels et le polymère dans un solvant liquide commun, puis en évaporant le dit solvant. Suivant les constituants utilisés, on obtient soit une matière plastique filmogène, soit une matière visqueuse.
Le polymère peut être réticulé. Si on utilise un polymère pré-réticulé, le composé ionique est dissous dans un solvant, le polymère pré-réticulé est imprégné par la solution obtenue, puis le solvant est éliminé. Le polymère peut également être réticulé in situ. La réticulation de la trame polymère peut être effectuée, par exemple par action d'une source de radicaux libres, de rayonnements ionisants ou d'un acide au sens de Lewis. La trame polymère peut également être réticulée par polycondensation d'un oligo(oxyde d'éthylène) di- ou tri-fonctionnel, dont les extrémités sont des fonctions alcool ou amine, sur un isocyanate de fonctionnalité au moins égale à 2.
The dissolution of the salt in the polymer can be carried out by dissolving the salts and the polymer in a common liquid solvent, then by evaporating the said solvent. Depending on the constituents used, either a film-forming plastic material or a viscous material is obtained.
The polymer can be crosslinked. If a pre-crosslinked polymer is used, the ionic compound is dissolved in a solvent, the pre-crosslinked polymer is impregnated with the solution obtained, then the solvent is removed. The polymer can also be crosslinked in situ. The crosslinking of the polymer frame can be carried out, for example by the action of a source of free radicals, ionizing radiation or an acid in the sense of Lewis. The polymer frame can also be crosslinked by polycondensation of a di- or tri-functional oligo (ethylene oxide), the ends of which are alcohol or amine functions, on an isocyanate of functionality at least equal to 2.

La dissolution des sels peut également être effectuée en mélangeant à sec le polymère et les sels sous forme de poudre, par exemple dans un broyeur à galets. Le pressage du mélange broyé permet d'obtenir le matériau sous forme de film.The dissolution of the salts can also be carried out by dry mixing the polymer and the salts in the form of powder, for example in a roller mill. Pressing the ground mixture allows the material to be obtained in the form of a film.

Divers additifs utilisés classiquement pour les matériaux à conduction ionique peuvent être ajoutés au mélange, pour modifier les propriétés du matériau final. Ainsi, on peut incorporer à la trame polymère un agent plastifiant tel que le carbonate d'éthylène, le carbonate de propylène, la γ-butyrolactone, la diméthylformamide, la N-méthylpyrrolidone, les tétraalkylsulfamides, les polyéthylènes glycols de masse comprise entre 200 et 2000 ou leurs éthers méthyliques et, d'une manière générale, les dérivés de molécules polaires de faible volatilité. La proportion de ces additifs peut aller de 1 à 90% de la masse totale.Various additives conventionally used for ionically conductive materials can be added to the mixture, to modify the properties of the final material. Thus, a plasticizing agent such as ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethylformamide, N-methylpyrrolidone, tetraalkylsulfonamides, polyethylene glycols of mass between 200 and 2000 or their methyl ethers and, in general, derivatives of polar molecules of low volatility. The proportion of these additives can range from 1 to 90% of the total mass.

On peut également ajouter un ou plusieurs sels d'un anion qui ne peut constituer un ligand du cation M, par exemple pour augmenter la conductivité du matériau ou pour augmenter son caractère amorphe. Parmi ces sels, on peut citer les sels AX, A ayant la signification donnée ci-dessus, X étant un anion délocalisé tel que le perchlorate, le trifluorométhanesulfonate, le bis trifluorométhanesulfonylimidure.It is also possible to add one or more salts of an anion which cannot constitute a ligand of the cation M, for example to increase the conductivity of the material or to increase its amorphous nature. Among these salts, mention may be made of the salts AX, A having the meaning given above, X being a delocalized anion such as perchlorate, trifluoromethanesulfonate, bis trifluoromethanesulfonylimide.

L'obtention du matériau selon l'invention sous forme de film est particulièrement avantageuse pour certaines applications.Obtaining the material according to the invention in the form of a film is particularly advantageous for certain applications.

Les matériaux de la présente invention peuvent être utilisés pour des générateurs électrochimiques. De tels générateurs comportent une électrode négative "source" du métal M à un haut potentiel chimique, une électrode positive ou "puits" établissant un bas potentiel chimique de M, les deux électrodes étant en contact par l'intermédiaire d'un électrolyte polymère constitué par un matériau selon l'invention. Avantageusement, l'une au moins des électrodes a une structure composite incluant le matériau électrochimiquement actif, un matériau conducteur électronique et le matériau selon la présente invention.
Le matériau conducteur électronique peut être le graphite ou un noir de carbone, particulièrement le noir d'acétylène.
L'électrode négative est constituée de préférence par du zinc métallique, du magnésium métallique, du lithium métallique ou l'un de ses alliages, du calcium ou de l'aluminium.
The materials of the present invention can be used for electrochemical generators. Such generators include a negative electrode "source" of the metal M at a high chemical potential, a positive electrode or "well" establishing a low chemical potential of M, the two electrodes being in contact via a polymer electrolyte consisting of a material according to the invention. Advantageously, at least one of the electrodes has a composite structure including the electrochemically active material, an electronic conductive material and the material according to the present invention.
The electronic conductive material can be graphite or a carbon black, particularly acetylene black.
The negative electrode preferably consists of metallic zinc, metallic magnesium, metallic lithium or one of its alloys, calcium or aluminum.

Les matériaux de la présente invention peuvent également être utilisés pour un système électrochimique permettant d'agir sur la transmission de la lumière. Un tel système comprend une contre-électrode, un électrolyte constitué par un matériau selon l'invention et une électrode transparente. Cette électrode peut servir de substrat pour le dépôt électrochimique de M ou de support à une couche électrochrome. Dans un tel système, la contre-électrode est formée par une grille du métal M, éventuellement déposé sur un support transparent. Elle peut aussi être constituée par un matériau électroactif déposé sur un support transparent, le matériau électroactif étant choisi parmi ceux qui ne subissent pas de variation de couleur lors de la réaction électrochimique, ou parmi ceux qui présentent une variation de couleurs concomitante à celle de l'électrode transparente. Le métal M est avantageusement choisi parmi le cuivre, le zinc, le nickel, l'étain, le plomb.The materials of the present invention can also be used for an electrochemical system making it possible to act on the transmission of light. Such a system comprises a counter electrode, an electrolyte constituted by a material according to the invention and a transparent electrode. This electrode can serve as a substrate for the electrochemical deposition of M or as a support for an electrochromic layer. In such a system, the counter electrode is formed by a grid of metal M, possibly deposited on a transparent support. It can also be constituted by an electroactive material deposited on a transparent support, the electroactive material being chosen from those which do not undergo a color variation during the electrochemical reaction, or from those which have a color variation concomitant with that of the 'transparent electrode. The metal M is advantageously chosen from copper, zinc, nickel, tin, lead.

Les matériaux de la présente invention sont décrits plus en détails dans les exemples suivants, donnés à titre illustratif, non limitatif.The materials of the present invention are described in more detail in the following examples, given by way of illustration, without limitation.

Exemple 1Example 1

792 mg de poly(oxyde d'éthylène) PEO de masse 5.10⁶ g/mole, 166 mg d'iodure de potassium et 19 mg d'iodure de cuivre sont dissous sous agitation dans 30 ml d'acétonitrile. La solution homogène obtenue est versée dans un anneau de verre de 5 cm de diamètre, posé sur une plaque de PTFE. Après évaporation du solvant, on obtient un film élastique de couleur jaune d'environ 25 µm d'épaisseur. La variation de la conductivité ionique de ce matériau en fonction de la température est représentée sur la figure 1, lors d'une montée en température (courbe a) et lors d'un refroidissement (courbe b).792 mg of poly (ethylene oxide) PEO of mass 5.10⁶ g / mole, 166 mg of potassium iodide and 19 mg of copper iodide are dissolved with stirring in 30 ml of acetonitrile. The homogeneous solution obtained is poured into a glass ring 5 cm in diameter, placed on a PTFE plate. After evaporation of the solvent, an elastic yellow film about 25 μm thick is obtained. The variation of ionic conductivity of this material as a function of temperature is shown in Figure 1, during a rise in temperature (curve a) and during cooling (curve b).

Exemple 2Example 2

3,96 g de poly(oxyde d'éthylène) PEO de masse 9.10⁵g/mole, 745 mg de chlorure de potassium et 1,09 g de chlorure de zinc sont dissous sous agitation dans 25 ml de formiate de méthyle. La solution homogène obtenue, qui contient les anions complexes ZnCl₃⁻ et ZnCl₄²⁻, est épandue à l'aide d'un gabarit sur une plaque de polypropylène. Après évaporation du solvant, on obtient un film élastique transparent d'environ 100 µm d'épaisseur. La variation de la conductivité ionique de ce matériau en fonction de la température est représentée sur la figure 2 lors d'un refroidissement (courbe a) et lors d'une montée en température (courbe b).3.96 g of poly (ethylene oxide) PEO with a mass of 9.10⁵g / mole, 745 mg of potassium chloride and 1.09 g of zinc chloride are dissolved with stirring in 25 ml of methyl formate. The homogeneous solution obtained, which contains the complex anions ZnCl₃⁻ and ZnCl₄²⁻, is spread using a template on a polypropylene plate. After evaporation of the solvent, a transparent elastic film approximately 100 μm thick is obtained. The variation of the ionic conductivity of this material as a function of the temperature is shown in FIG. 2 during cooling (curve a) and during a rise in temperature (curve b).

Exemple 3Example 3

2,83 g de poly(méthoxy-éthoxy-éthoxyphosphazène préparé selon la méthode décrite par : H.R. Allcock, P.E. Austin, T.X. Neenan, J.T. Sisko, P.M. Blonsky & D.F. Shriver, Macromolecules 19, 1508 (1986), 382 mg de chlorure de guanidinium et 272 mg de chlorure de zinc sont dissous sous agitation dans 20 ml d'acétone. La solution homogène obtenue est évaporée. On obtient un matériau très visqueux transparent. La conductivité, mesurée à 22°C, est supérieure à 5.10⁻⁵ (Ωcm)⁻¹.2.83 g of poly (methoxy-ethoxy-ethoxyphosphazene prepared according to the method described by: HR Allcock, PE Austin, TX Neenan, JT Sisko, PM Blonsky & DF Shriver, Macromolecules 19 , 1508 (1986), 382 mg of chloride of guanidinium and 272 mg of zinc chloride are dissolved with stirring in 20 ml of acetone. The homogeneous solution obtained is evaporated. A very viscous transparent material is obtained. The conductivity, measured at 22 ° C., is greater than 5.10⁻⁵ ( Ωcm) ⁻¹.

Exemple 4Example 4

2,1 g de polyéthylène glycol 400-co-oxyméthylène de masse ≅ 10⁵ g/mole ont été préparés selon la méthode décrite dans : C.V. Nicholas, D.J. Wilson, C. Booth & R.J.M. Giles Brit. Polym. J. 20 289 (1988). 760 mg de trifluoroacétate de potassium et 1,16 g de trifluoroacétate de zinc sont dissous sous agitation dans 20 ml d'acétonitrile. La solution homogène obtenue, qui contient les ions CF₃CO₂⁻ et [(CF₃CO₂)₃Zn]⁻, est évaporée dans les conditions de l'exemple 1. On obtient un film transparent très collant. La conductivité mesurée à 22°C est supérieure à 7.10⁻⁵ (Ωcm)⁻¹.2.1 g of polyethylene glycol 400-co-oxymethylene with mass ≅ 10⁵ g / mole were prepared according to the method described in: CV Nicholas, DJ Wilson, C. Booth & RJM Giles Brit. Polym. J. 20 289 (1988). 760 mg of potassium trifluoroacetate and 1.16 g of zinc trifluoroacetate are dissolved with stirring in 20 ml of acetonitrile. The homogeneous solution obtained, which contains the CF₃CO₂⁻ and [(CF₃CO₂) ₃Zn] ⁻ ions, is evaporated under the conditions of Example 1. A very sticky transparent film is obtained. The conductivity measured at 22 ° C is greater than 7.10⁻⁵ (Ωcm) ⁻¹.

Exemple 5Example 5

5,28 g de poly(oxyde d'éthylène) PEO de masse 5.10⁶g/mole, 1,03 g de bromure de sodium et 1,33 g de bromure d'aluminium anhydre sont mélangés à sec dans un broyeur à boulets de zircone. La poudre obtenue est pressée à 80°C sous 400 bars dans un moule étanche. On obtient un film blanc semi-cristallin d'environ 50 µm d'épaisseur qui est conservé dans une boîte à gants sous atmosphère sèche (<1vpm).5.28 g of poly (ethylene oxide) PEO with mass 5.10⁶g / mole, 1.03 g of sodium bromide and 1.33 g of anhydrous aluminum bromide are dry mixed in a zirconia ball mill . The powder obtained is pressed at 80 ° C under 400 bars in a sealed mold. A semi-crystalline white film of approximately 50 μm in thickness is obtained which is stored in a glove box under dry atmosphere (<1vpm).

Exemple 6Example 6

4 g de poly(oxyde d'éthylène) PEO-triol de masse 3080 g/mole de la firme Daiichi Kogyo Seiyaku Co, 372 mg de chlorure de potassium et 552 mg de chlorure de cobalt anhydre sont mélangés avec 4 ml d'acétonitrile. Après dissolution, on ajoute 327 mg d'hexaméthylène di-isocyanate et une goutte de dilaurate de dibutylétain (catalyseur). La solution bleue obtenue est coulée dans un moule formé par deux plaques de polypropylène séparées de 0,8 mm et d'un joint sur 3 cotés. Après 72 heures, le réseau polymère obtenu par la réaction de polycondensation est démoulé et l'acétonitrile est évaporé dans un courant d'azote sec. On obtient une membrane élastique qui a de très bonnes propriétés mécaniques et dont la conductivité est, à 50°C, de 3.10⁻⁵ (Ωcm)⁻¹, dans laquelle coexistent les ions CoCl₃⁻ et CoCl₄²⁻.4 g of poly (ethylene oxide) PEO-triol with a mass of 3080 g / mole from the firm Daiichi Kogyo Seiyaku Co, 372 mg of potassium chloride and 552 mg of anhydrous cobalt chloride are mixed with 4 ml of acetonitrile. After dissolution, 327 mg of hexamethylene diisocyanate and a drop of dibutyltin dilaurate (catalyst) are added. The blue solution obtained is poured into a mold formed by two polypropylene plates separated by 0.8 mm and with a seal on 3 sides. After 72 hours, the polymer network obtained by the polycondensation reaction is removed from the mold and the acetonitrile is evaporated in a stream of dry nitrogen. An elastic membrane is obtained which has very good mechanical properties and whose conductivity is, at 50 ° C, 3.10⁻⁵ (Ωcm) ⁻¹, in which the CoCl₃⁻ and CoCl₄²⁻ ions coexist.

Exemple 7Example 7

Le sel de césium de la bis(trifluoroacétyl)imide est préparé par réaction de (CF₃CO)₂NH sur un excès de carbonate de césium dans l'acétonitrile. Après évaporation, le sel est extrait par le formiate de méthyle et cristallisé. A 5,11 g du sel de césium en solution dans 20 ml de tétrahydrofurane, on ajoute 423 mg de chlorure de lithium anhydre ; il se forme un précipité de CsCl qui est séparé par centrifugation. 10 ml de la solution surnageante sont ajoutés à 6,6 g d'un terpolymère d'oxyde d'éthylène (80%), de méthyl-glycidyl éther (15%) et d'allyl-glycidyl éther (5%) de masse Mw ≅ 2,5.10⁵ en solution dans l'acétonitrile. A la solution est ajouté 1% en poids par rapport au polymère de peroxyde de benzoyle. Un film de complexe polymère-sel, qui contient un mélange de (CF₃CO)₂N⁻ et de [(CF₃CO)₂N₂Li]⁻, est épandu à l'aide d'un gabarit pour correspondre à une épaisseur de 40 µm après évaporation du solvant. Le film sec est chauffé sous atmosphère d'argon sec à 80°C pendant 3h. Il se produit une réticulation des chaînes du polymère par les doubles liaisons du groupement allyle, amorcée par le peroxyde. Le film obtenu a d'excellentes propriétés mécaniques et sa conductivité est de 7.10⁻⁵ (Ωcm)⁻¹ à 26°C.The cesium salt of bis (trifluoroacetyl) imide is prepared by reaction of (CF₃CO) ₂NH with an excess of cesium carbonate in acetonitrile. After evaporation, the salt is extracted with methyl formate and crystallized. To 5.11 g of the cesium salt dissolved in 20 ml of tetrahydrofuran, 423 mg of anhydrous lithium chloride are added; a precipitate of CsCl is formed which is separated by centrifugation. 10 ml of the supernatant solution are added to 6.6 g of a terpolymer of ethylene oxide (80%), methyl-glycidyl ether (15%) and allyl-glycidyl ether (5%) by mass M w ≅ 2.5.10⁵ in solution in acetonitrile. To the solution is added 1% by weight relative to the benzoyl peroxide polymer. A film of polymer-salt complex, which contains a mixture of (CF₃CO) ₂N⁻ and of [(CF₃CO) ₂N₂Li] ⁻, is spread using a template to correspond to a thickness of 40 µm after evaporation of the solvent. The dry film is heated under a dry argon atmosphere at 80 ° C for 3 h. Cross-linking of the polymer chains takes place by the double bonds of the allyl group, initiated by the peroxide. The film obtained has excellent mechanical properties and its conductivity is 7.10⁻⁵ (Ωcm) ⁻¹ at 26 ° C.

Exemple 8Example 8

484 mg de poly(oxyde d'éthylène) PEO de masse 5.10⁶ g/mole, 246 mg de trifluoroacétate de césium et 71 mg de trifluoroacétate de nickel sont dissous sous agitation dans 15 ml d'acétonitrile. La formation du complexe Ni(CF₃CO₂)₃⁻ est mise en évidence par sa coloration verte intense. La solution homogène obtenue est versée dans un anneau de verre de 4 cm de diamètre posé sur une plaque de PTFE. Après évaporation du solvant, on obtient un film élastique d'environ 25 µm d'épaisseur.484 mg of poly (ethylene oxide) PEO mass 5.10⁶ g / mole, 246 mg of cesium trifluoroacetate and 71 mg of nickel trifluoroacetate are dissolved with stirring in 15 ml of acetonitrile. The formation of the Ni complex (CF₃CO₂) ₃⁻ is highlighted by its intense green coloring. The homogeneous solution obtained is poured into a glass ring 4 cm in diameter placed on a PTFE plate. After evaporation of the solvent, an elastic film approximately 25 μm thick is obtained.

Exemple 9Example 9

1,4 g de poly(méthoxy-éthoxy-éthoxy)phosphazène préparé selon la méthode décrite par : H.R. Allcock, P.E. Austin, T.X. Neenan, J.T. Sisko,, P.M. Blonsky & D.F. Shriver, Macromolecules 19, 1508 (1986), 378 mg de chlorure d'étain anhydre et 168 mg de bromure de césium sont dissous sous agitation dans 20 ml de formiate de méthyle. La solution homogène obtenue est évaporée. On obtient un matériau très visqueux transparent qui contient l'anion SnCl₂Br⁻ et le sel neutre SnCl₂ solvaté par le polymère.1.4 g of poly (methoxy-ethoxy-ethoxy) phosphazene prepared according to the method described by: HR Allcock, PE Austin, TX Neenan, JT Sisko ,, PM Blonsky & DF Shriver, Macromolecules 19 , 1508 (1986), 378 mg anhydrous tin chloride and 168 mg of cesium bromide are dissolved with stirring in 20 ml of methyl formate. The homogeneous solution obtained is evaporated. A very viscous transparent material is obtained which contains the anion SnCl₂Br⁻ and the neutral salt SnCl₂ solvated by the polymer.

La conductivité, mesurée à 22°C, est supérieure à 5.10⁻⁵ (Ωcm)⁻¹.The conductivity, measured at 22 ° C, is greater than 5.10⁻⁵ (Ωcm) ⁻¹.

Exemple 10Example 10

900 mg de copolymère de l'exemple 7, 152 mg de trifluoroacétate de potassium, 125 mg de trifluoroacétate de magnésium et 20 mg d'acide azobis(cyanovalérique) sont dissous dans 10 ml d'acétonitrile. L'évaporation de la solution dans un anneau de verre sur PTFE et un chauffage sous argon à 80°C produisent un film élastique dont la conductivité est de 5.10⁻⁴ (Ωcm)⁻¹ à 55°C. Dans ce matériau coexistent les sels K⁺CF₃CO₂⁻ et K⁺[(CF₃CO₂)₃Mg]⁻.900 mg of copolymer of Example 7, 152 mg of potassium trifluoroacetate, 125 mg of magnesium trifluoroacetate and 20 mg of azobis (cyanovaleric acid) are dissolved in 10 ml of acetonitrile. Evaporation of the solution in a glass ring on PTFE and heating under argon at 80 ° C produce an elastic film with a conductivity of 5.10⁻⁴ (Ωcm) ⁻¹ at 55 ° C. In this material coexist the salts K⁺CF₃CO₂⁻ and K⁺ [(CF₃CO₂) ₃Mg] ⁻.

Exemple 11Example 11

440 mg de poly(oxyde d'éthylène) PEO de masse 5.10⁶ g/mole, 660 mg de bis(trifluoroacétyl imidure) de magnésium et 152 mg de fluorure de césium sont dissous sous agitation dans 15 ml d'acétonitrile. Cette composition correspond à la coexistence des complexes {Mg[(CF₃CO)₂N]₂}₂F⁻ et Mg[(CF₃CO)₂N]₂F⁻. La solution homogène obtenue est versée dans un anneau de verre de diamètre 4 cm posé sur une plaque de PTFE. Après évaporation du solvant, on obtient un film élastique d'environ 25 µm d'épaisseur.440 mg of poly (ethylene oxide) PEO of mass 5.10⁶ g / mole, 660 mg of bis (trifluoroacetyl imide) of magnesium and 152 mg of cesium fluoride are dissolved with stirring in 15 ml of acetonitrile. This composition corresponds to the coexistence of the complexes {Mg [(CF₃CO) ₂N] ₂} ₂F⁻ and Mg [(CF₃CO) ₂N] ₂F⁻. The homogeneous solution obtained is poured into a glass ring with a diameter of 4 cm placed on a PTFE plate. After evaporation of the solvent, an elastic film approximately 25 μm thick is obtained.

Exemple 12Example 12

Le composé CH₃OCH₂CH₂NH(SO₂CF₃) est préparé par réaction du trifluorométhane-sulfonyl imidazole sur la méthoxyéthylamine. Le composé est distillé sous pression réduite après acidification par l'acide chlorhydrique. A 1,2 g de ce composé sont ajoutés 2 ml d'une solution 0,5M de méthyl carbonate de magnésium dans le méthanol et 277 mg de carbonate de potassium. La solution résultante est filtrée et évaporée. 342 mg de complexe et 396 mg de poly(oxyde d'éthylène) de masse Mw ≅ 5.10⁶ sont dissous dans 20 ml d'acétonitrile. Le mélange homogène est versé dans un anneau de verre posé sur une plaque de PTFE poli. Après évaporation, on obtient un film de 55 µm d'épaisseur dont la conductivité à 60°C est de 4.10⁻⁴ (Ωcm)⁻¹.The compound CH₃OCH₂CH₂NH (SO₂CF₃) is prepared by reaction of trifluoromethane-sulfonyl imidazole on methoxyethylamine. The compound is distilled under reduced pressure after acidification with hydrochloric acid. To 1.2 g of this compound are added 2 ml of a 0.5M solution of magnesium methyl carbonate in methanol and 277 mg of potassium carbonate. The resulting solution is filtered and evaporated. 342 mg complex and 396 mg poly (ethylene oxide) mass M w ≅ 5.10⁶ are dissolved in 20 ml of acetonitrile. The homogeneous mixture is poured into a glass ring placed on a polished PTFE plate. After evaporation, a 55 µm thick film is obtained, the conductivity of which at 60 ° C is 4.10⁻⁴ (Ωcm) ⁻¹.

Exemple 13Example 13

L'acide 2-méthoxytétrafluoropropionique est préparé selon la méthode décrite dans J. Org. Chem 31 2312, (1966) à partir de l'oxyde d'hexafluoropropène. 5,25 g de cet acide sont traités par 3,5 g d'hydrogénocarbonate de potassium dans 10 ml d'eau. Après réaction, l'eau est évaporée sous pression réduite et le résidu solide est extrait par 20 ml de formiate de méthyle. Après évaporation de la solution organique on obtient le sel K[CH₃OCF(CF₃)CO₂]. 4,26 g de ce sel sont dissous dans 15 nl d'acétonitrile et on ajoute 300 mg de chlorure de magnésium anhydre. Le précipité de KCl est éliminé par centrifugation et La solution surnageante est mélangée à 15 g de poly(oxyde d'éthylène) de masse 9.10⁵ g/mole dans 200 ml d'acétonitrile. La solution est dégazée et coulée sur une plaque de verre. Après évaporation et séchage, on obtient un film de 70 µm d'épaisseur dont la conductivité à 80°C est de 2.10⁻³ (Ωcm)⁻¹.2-methoxytetrafluoropropionic acid is prepared according to the method described in J. Org. Chem 31 2312, (1966) from hexafluoropropene oxide. 5.25 g of this acid are treated with 3.5 g of potassium hydrogen carbonate in 10 ml of water. After reaction, the water is evaporated under reduced pressure and the solid residue is extracted with 20 ml of methyl formate. After evaporation of the organic solution, the salt K [CH₃OCF (CF₃) CO₂] is obtained. 4.26 g of this salt is dissolved in 15 nl of acetonitrile and 300 mg of anhydrous magnesium chloride are added. The KCl precipitate is removed by centrifugation and the supernatant solution is mixed with 15 g of poly (oxide ethylene) with a mass of 9.10 m g / mole in 200 ml of acetonitrile. The solution is degassed and poured onto a glass plate. After evaporation and drying, a 70 μm thick film is obtained, the conductivity of which at 80 ° C. is 2.10⁻³ (Ωcm) ⁻¹.

Exemple 14Example 14

L'acide trifluoroacétyle tétronique :

Figure imgb0002

est préparé en condensant le chlorure de trifluoroacétyle sur le sel de potassium de l'acide tétronique en présence de pyridine. A 2,24 g du sel de potassium de l'acide trifluoroacétyle tétrolique dans 20 ml d'acétonitrile sont ajoutés 105 mg de chlorure de lithium anhydre. Le précipité de chlorure de potassium est séparé, puis la solution surnageante est mélangée à 3,3 g de polyéthylène glycol 400-co-oxyméthylène de masse ≅ 10⁵ g/mole dans 30 ml de tétrahydrofurane. Le polymère a été préparé selon la méthode décrite dans : C.V. Nicholas, D.J. Wilson, C. Booth & R.J.M. Giles Brit. Polym. J. 20 289 (1988). La solution est dégazée et coulée sur une plaque de verre. Après évaporation et séchage, on obtient un film de 95 µm d'épaisseur dont la conductivité à 68°C est de 9.10⁻⁴ (Ωcm)⁻¹.Tetronic trifluoroacetyl acid:
Figure imgb0002

is prepared by condensing trifluoroacetyl chloride on the potassium salt of tetronic acid in the presence of pyridine. To 2.24 g of the potassium salt of trifluoroacetyl tetrolic acid in 20 ml of acetonitrile are added 105 mg of anhydrous lithium chloride. The potassium chloride precipitate is separated, then the supernatant solution is mixed with 3.3 g of polyethylene glycol 400-co-oxymethylene with mass ≅ 10⁵ g / mole in 30 ml of tetrahydrofuran. The polymer was prepared according to the method described in: CV Nicholas, DJ Wilson, C. Booth & RJM Giles Brit. Polym. J. 20 289 (1988). The solution is degassed and poured onto a glass plate. After evaporation and drying, a film 95 μm thick is obtained, the conductivity of which at 68 ° C. is 9.10⁻⁴ (Ωcm) ⁻¹.

Exemple 15Example 15

On a reproduit le mode opératoire de l'exemple 14 en remplaçant l'acide trifluoroacétyle tétronique successivement par chacun des acides suivants :

Figure imgb0003
The procedure of Example 14 was reproduced, replacing the trifluoroacetyl tetronic acid successively with each of the following acids:
Figure imgb0003

La conductivité des films obtenus était supérieure à 10⁻⁴ (Ωcm)⁻¹ à 70°C.The conductivity of the films obtained was greater than 10⁻⁴ (Ωcm) ⁻¹ at 70 ° C.

Exemple 16Example 16

Le sel K⁺CH₃-OCH₂COC(CN)₂⁻ est préparé par action du chlorure de méthoxyacétyle sur le dérivé potassique du malononitrile K⁺HC(CN)₂ dans la pyridine, puis traitement par le carbonate de potassium. A 1,76 g de ce sel dans 10 ml d'acétonitrile sont ajoutés 430 mg de chlorure d'europium anhydre. Le précipité de KCl est éliminé par centrifugation et on ajoute 2,2 g de copolymère statistique oxyde d'éthylène (80%) - méthyl-glycidyl éther (20%). Après évaporation, on obtient dans les conditions de l'exemple 1, un film d'électrolyte polymère contenant le métal de terre rare sous forme de complexe anionique EuZ₃⁻ avec Z = CH₃-OCH₂COC(CN)₂.The salt K⁺CH₃-OCH₂COC (CN) ₂⁻ is prepared by the action of methoxyacetyl chloride on the potassium derivative of malononitrile K⁺HC (CN) ₂ in pyridine, then treatment with potassium carbonate. To 1.76 g of this salt in 10 ml of acetonitrile are added 430 mg of anhydrous europium chloride. The KCl precipitate is removed by centrifugation and 2.2 g of ethylene oxide (80%) - methyl glycidyl ether (20%) copolymer are added. After evaporation, under the conditions of Example 1, a polymer electrolyte film containing the rare earth metal is obtained in the form of an anionic complex EuZ₃⁻ with Z = CH₃-OCH₂COC (CN) ₂.

Exemple 17Example 17

Un générateur électrochimique secondaire comporte une électrode négative constituée par une feuille de zinc de 20 µm d'épaisseur, découpée sous forme d'un disque de 3 cm de diamètre; un électrolyte constitué par le matériau polymère selon l'exemple 2 ; une électrode positive ayant une structure de composite obtenu par évaporation d'une suspension contenant 580 mg du matériau de l'électrolyte, 965 mg de poly dimercaptothiadiazole de formule :

Figure imgb0004

et 150 mg de noir d'acétylène. L'ensemble forme un film de 125 µm d'épaisseur sur un collecteur en polypropylène (12 µm) métallisé par une couche de molybdène d'environ 200 nm. L'ensemble est découpé au même diamètre. Les trois éléments sont pressés ensemble à 90°C sous 2.10⁵Pa. A 70°C, la f.e.m. de la batterie ainsi constituée est de 1,15 Volts et sa capacité sous 50 µA/cm² jusqu'à la tension de coupure de 0,8 V est de 8 C/cm². Ce générateur est rechargeable.A secondary electrochemical generator comprises a negative electrode constituted by a zinc sheet 20 μm thick, cut in the form of a disc 3 cm in diameter; an electrolyte consisting of the polymer material according to Example 2; a positive electrode having a composite structure obtained by evaporation of a suspension containing 580 mg of the material of the electrolyte, 965 mg of poly dimercaptothiadiazole of formula:
Figure imgb0004

and 150 mg of acetylene black. The assembly forms a film of 125 μm thickness on a polypropylene collector (12 μm) metallized by a layer of molybdenum of approximately 200 nm. The whole is cut to the same diameter. The three elements are pressed together at 90 ° C at 2.10⁵Pa. At 70 ° C, the fem of the battery thus formed is 1.15 Volts and its capacity under 50 µA / cm² until the cut-off voltage of 0.8 V is 8 C / cm². This generator is rechargeable.

Exemple 18Example 18

Un générateur secondaire est fabriqué avec la chaîne électrochimique suivante :

Figure imgb0005
A secondary generator is manufactured with the following electrochemical chain:
Figure imgb0005

L'électrolyte est celui décrit à l'exemple 11. La composition de l'électrode positive correspond à 42% v/v d'électrolyte, 8% v/v de noir d'acétylène et 50% v/v de fluorure de graphite CFx (x ≅ 1). Le matériau composite dilué dans l'acétonitrile est épandu sur une feuille de cuivre de 8 µm de manière à former une couche d'environ 80 µm d'épaisseur. L'électrode négative est une feuille de 20 µm. La tension de la batterie après assemblage par laminage des éléments à 80°C est de 2,5 V et la capacité pour un débit de 300 µA/cm² est de 7 mAh/cm².The electrolyte is that described in Example 11. The composition of the positive electrode corresponds to 42% v / v of electrolyte, 8% v / v of acetylene black and 50% v / v of graphite fluoride CF x (x ≅ 1). The composite material diluted in acetonitrile is spread on an 8 µm copper foil so as to form a layer about 80 µm thick. The negative electrode is a 20 µm sheet. The battery voltage after assembly by rolling the cells at 80 ° C is 2.5 V and the capacity for a flow rate of 300 µA / cm² is 7 mAh / cm².

Exemple 19Example 19

Un générateur électrochimique comprend une électrode négative constitué d'une feuille de lithium de 25 µm d'épaisseur, d'un électrolyte préparé selon l'exemple 7 et d'une électrode composite dont le matériau actif est l'oxyde de vanadium V₂O₅ (55% v/v), de noir d'acétylène (6% v/v) et du même électrolyte. L'épaisseur de l'électrode positive est de 45 µm. La capacité est de 8 Coulombs/cm² pour une tension de coupure de 2,2 Volts.An electrochemical generator comprises a negative electrode consisting of a 25 μm thick lithium sheet, an electrolyte prepared according to example 7 and a composite electrode whose active material is vanadium oxide V₂O₅ (55 % v / v), acetylene black (6% v / v) and the same electrolyte. The thickness of the positive electrode is 45 µm. The capacity is 8 Coulombs / cm² for a cut-off voltage of 2.2 Volts.

Exemple 20Example 20

Un dispositif de vitrage à transmission variable est construit de la manière suivante: sur une plaque de verre recouverte d'une couche d'oxyde d'indium dopé (ITO) de manière à obtenir une résistance de 10 Ω carré, on dépose une couche de l'électrolyte polymère décrit à l'exemple 1. La contre électrode est formée par un dépôt de 1 µm de cuivre métallique sur une autre plaque de verre de taille semblable. La couche continue est transformée par photogravure en une grille à mailles carrées de 15 µm de coté et d'épaisseur 2 µm. L'assemblage a lieu sous vide à 80°C avec l'application d'une force mécanique de 4,9.10⁵ Pa (5 kg/cm²). Par application d'une tension de 1 Volt entre la grille métallique et la couche d'ITO (pôle-), on observe l'apparition d'un dépôt réfléchissant de cuivre. Par inversion des polarités, la transparence du système est rétablie en quelques secondes.A variable transmission glazing device is constructed as follows: on a glass plate covered with a layer of doped indium oxide (ITO) so as to obtain a resistance of 10 Ω square, a layer of the polymer electrolyte described in Example 1. The counter electrode is formed by a deposit of 1 μm of metallic copper on another glass plate of similar size. The continuous layer is transformed by photogravure into a grid with square meshes of 15 µm side and thickness 2 µm. The assembly takes place under vacuum at 80 ° C with the application of a mechanical force of 4.9.10⁵ Pa (5 kg / cm²). By applying a voltage of 1 Volt between the metal grid and the ITO layer (pole), we observe the appearance of a reflective deposit of copper. By reversal of polarities, the transparency of the system is restored in a few seconds.

Exemple 21Example 21

Un dispositif flexible à transmission optique contrôlée électriquement est construit de la manière suivante : sur un film de poly(éthylène téréphtalate) (PET) recouvert par pulvérisation cathodique d'une couche d'oxyde d'étain dopé au fluor (SnO₂/F) de manière à obtenir une résistance de 50 Ω carré, on dépose une couche de l'électrolyte polymère décrit à l'exemple 9. La contre électrode est formée par un dépôt de 1 µm d'étain métallique sur un film de PET. La couche continue est transformée par photogravure en une grille à mailles carrées de 15 µm de coté et d'épaisseur 2 µm. L'assemblage a lieu sous vide à 80°C par laminage des éléments. Par application d'une tension de 0,8 Volt entre la grille métallique et la couche d'ITO (pôle-), on observe l'apparition d'un dépôt réfléchissant d'étain. Par inversion des polarités, la transparence du système est rétablie en ≅ 1 minute.A flexible device with electrically controlled optical transmission is constructed in the following manner: on a film of poly (ethylene terephthalate) (PET) covered by cathodic sputtering with a layer of tin oxide doped with fluorine (SnO₂ / F) of so as to obtain a resistance of 50 Ω square, a layer of the polymer electrolyte described in example 9 is deposited. The counter electrode is formed by a deposit of 1 μm of metallic tin on a film of PET. The continuous layer is transformed by photogravure into a grid with square meshes of 15 µm side and thickness 2 µm. The assembly takes place under vacuum at 80 ° C by rolling the elements. By applying a voltage of 0.8 Volt between the metal grid and the ITO layer (pole-), the appearance of a reflective tin deposit is observed. By reversing the polarities, the transparency of the system is restored in ≅ 1 minute.

Claims (21)

  1. Ionically conductive material comprising a solid solution of one or more salts in a polymer, characterized in that the transport and the mobility of a metal cation Mn+ which has the valency n are provided by at least one complex anion corresponding to the general formula [MZnYp]p-, formed between an anionic ligand Z⁻, an anionic ligand Y⁻ and the cation Mn+, with 1 ≦ n ≦ 5 and 1 ≦ p ≦ 3.
  2. Material according to claim 1, characterized in that the solid solution is a polymeric complex denoted by the overall formula Poly(s.u.) u A(M x Z z Y y )
    Figure imgb0008
    in which
    - A is a cation of valency p capable of being easily solvated by the polymer, with p = 1 or 2;
    - (s.u.) denotes the solvation unit of the polymer;
    - u denotes the number of solvation units carried by the macromolecular framework which are needed for solvating a cation A;
    - x, y and z are such that the relationship z + y - nx = p is satisfied and that they permit the coexistence, in finite quantities, of the complex anion [MZnYp]p- and of a species chosen from the group consisting of the anion Z⁻, the anion Y⁻, the complex anion [MZnYp+1](p+1)- , the complex anion [MZn+1Yp](p+1)- and the neutral species MZn.
  3. Material according to claim 2, characterized in that the cation A is chosen from alkali metals, alkaline-earth metals, quaternary ammonium radicals corresponding to the formula NH(4-j)Rj⁺, amidinium radicals corresponding to the formula RC(NH2-jRj)₂⁺, guanidinium radicals corresponding to the formula C(NH2-jRj)₃⁺, with j = 0, 1 or 2, R being chosen from hydrogen and an alkyl, oxaalkyl or aryl group.
  4. Material according to any one of claims 1 to 3, characterized in that the cation Mn+ is a cation derived from an element chosen from Li, Mg, Ca, Sr, Mn, Fe, Ni, Co, Cu(I), Cu(II), Ag, Zn, Cd, Al, Sn(II), Sn(IV), Bi, Hg, Pb, Y and the rare earths.
  5. Material according to any one of claims 1 to 4, characterized in that Z⁻ and Y⁻, which are identical or different, are chosen from:
       = halogens such as F⁻, Cl⁻, Br⁻, I⁻;
       = pseudohalogens corresponding to the formula QS⁻;
       = the radicals RFCO₂⁻, (RFCO)₂N⁻, (RFCO)₂CQ⁻, RFCOCQ₂⁻, QCOC(CN)₂⁻, (RFCO)₂CSO₂RF⁻, (RFCO)₂CSO₂NR₂⁻, R-(OCH₂CH₂)j-CH₂COC(CN)₂⁻;
       = sulfonamides QN(SO₂RF)⁻;
    Q denoting CN, R, RCO, R₂NCO, R₂NCS, RF, RFCO or a heterocyclic ring, RF denoting a perhaloalkyl or perhaloaryl radical, R denoting an alkyl, oxaalkyl or aryl radical.
  6. Material according to any one of claims 1 to 4, characterized in that Z and Y denote a multiradical, simultaneously or otherwise.
  7. Material according to claim 6, characterized in that the multiradical is a biradical denoted by the formula -(RFSO₂)NQ′N(SO₂RF)⁻, in which Q′ denotes a bivalent radical carrying at least one functional group chosen from CN, R, RCO, R₂NCO, R₂NCS, RF, RFCO or a heterocyclic ring, RF denoting a perhaloalkyl or perhaloaryl radical, R denoting an alkyl, oxaalkyl or aryl radical.
  8. Material according to any one of claims 1 to 7, characterized in that the solvation unit of the polymeric framework contains at least one heteroatom chosen from 0, N, F and S.
  9. Material according to claim 8, characterized in that the solvation unit of the polymeric framework is an ether group or an amine group.
  10. Material according to claim 9, characterized in that the polymeric framework consists of a homopolymer, a block copolymer, a random copolymer, an alternating copolymer or an ethylene oxide copolymer with a comb structure.
  11. Material according to any one of claims 1 to 10, characterized in that it contains additives chosen from salts of anions which cannot form a ligand for the ion Mn+ and from plasticizing agents.
  12. Process for the preparation of a material according to any one of claims 1 to 11, characterized in that a salt AYp and a salt MZn are dissolved in a solvating polymer, in proportions such that the relationship z + y - nx = p is satisfied and that they permit the coexistence, in finite quantities, of the complex anion [MZnYp]p- and of a species chosen from the group consisting of the anion Z⁻, the anion Y⁻, the complex anion [MZnYp+1](p+1)- and the neutral species MZn.
  13. Process according to claim 12, characterized in that the salts and the polymer are dissolved in a common liquid solvent which is then evaporated.
  14. Process according to claim 13, characterized in that the polymer is crosslinked in situ.
  15. Process according to claim 12, characterized in that the polymer is precrosslinked and impregnated with a solution of salt in an organic solvent, this solvent being removed after the impregnation.
  16. Process according to claim 12, characterized in that the salts are dissolved in the polymer in dry state by grinding.
  17. Electrochemical generator, characterized in that it comprises as electrolyte a material according to any one of claims 1 to 11.
  18. Generator according to claim 17, characterized in that it comprises a negative electrode which is a source of metal M with a high chemical potential, a positive electrode or "well" establishing a low chemical potential of M, the two electrodes being in contact through the intermediacy of the electrolyte.
  19. Electrochemical generator according to either of claims 17 and 18, characterized in that at least one of the electrodes has a composite structure including an electrochemically active material, an electronically conductive material and the material forming the electrolyte.
  20. Electrochemical system which makes it possible to affect the transmission of light, comprising a counterelectrode, an electrolyte, and a transparent electrode used as substrate for the electrochemical deposition of the metal M, characterized in that the electrolyte is a material according to any one of claims 1 to 11.
  21. Electrochemical system according to claim 20, characterized in that the counterelectrode consists of a grid of the metal M, optionally deposited on a transparent support.
EP92907207A 1991-03-07 1992-03-04 Ionically conducting polymer materials Expired - Lifetime EP0531492B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9102715 1991-03-07
FR9102715A FR2673769B1 (en) 1991-03-07 1991-03-07 POLYMERIC MATERIALS WITH ION CONDUCTION.
PCT/FR1992/000198 WO1992016028A1 (en) 1991-03-07 1992-03-04 Ionically conducting polymer materials

Publications (2)

Publication Number Publication Date
EP0531492A1 EP0531492A1 (en) 1993-03-17
EP0531492B1 true EP0531492B1 (en) 1995-10-04

Family

ID=9410433

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92907207A Expired - Lifetime EP0531492B1 (en) 1991-03-07 1992-03-04 Ionically conducting polymer materials

Country Status (8)

Country Link
US (1) US5350646A (en)
EP (1) EP0531492B1 (en)
JP (1) JP3429305B2 (en)
AT (1) ATE128792T1 (en)
CA (1) CA2082520C (en)
DE (1) DE69205248T2 (en)
FR (1) FR2673769B1 (en)
WO (1) WO1992016028A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4343912A1 (en) * 2022-09-21 2024-03-27 Samsung SDI Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883220A (en) * 1992-01-12 1999-03-16 Centre National De La Recherche Scientifique Redox copolymers and their use in preparing mixed conduction materials
US5523180A (en) * 1992-06-16 1996-06-04 Centre National De La Recherche Scientifique Ionically conductive material having a block copolymer as the solvent
FR2694758B1 (en) * 1992-08-14 1994-10-21 Centre Nat Rech Scient Crosslinkable copolymers obtained by polycondensation and ionically conductive material containing them.
EP0907217B1 (en) * 1993-06-18 2006-02-15 Hitachi Maxell Ltd. Organic electrolytic solution cell
FR2713646B1 (en) * 1993-12-09 1996-02-23 Centre Nat Rech Scient Process for the preparation of a poly (oxyalkylene) type terpolymer by hydrogenation.
CA2111047C (en) * 1993-12-09 2002-02-26 Paul-Etienne Harvey Copolymer composed of ethylene oxyde and of at least one substituted oxiranne with a crosslinkable function, process for preparing it, and its use in the making of ionic conductingmaterials
US5538812A (en) * 1994-02-04 1996-07-23 Moltech Corporation Electrolyte materials containing highly dissociated metal ion salts
FR2723098B1 (en) * 1994-07-28 1996-10-04 Centre Nat Rech Scient MACROMOLECULAR MATERIAL COMPRISING IONIC SUBSTITUTES AND ITS USE IN ELECTROCHEMICAL SYSTEMS
DK0795182T3 (en) * 1994-12-01 1999-10-04 Danacell Aps Ion conducting polymers
IL112907A (en) * 1995-03-07 2000-08-31 Univ Ramot Lithium batteries having an anode with solid electrolyte interface
US5569560A (en) * 1995-04-12 1996-10-29 Olsen; Ib I. Complexing agent for improved performance in a lithium based hybrid electrolyte
US5645960A (en) * 1995-05-19 1997-07-08 The United States Of America As Represented By The Secretary Of The Air Force Thin film lithium polymer battery
US5652072A (en) * 1995-09-21 1997-07-29 Minnesota Mining And Manufacturing Company Battery containing bis(perfluoroalkylsulfonyl)imide and cyclic perfluoroalkylene disulfonylimide salts
US5691081A (en) * 1995-09-21 1997-11-25 Minnesota Mining And Manufacturing Company Battery containing bis(perfluoroalkylsulfonyl)imide and cyclic perfluoroalkylene disulfonylimide salts
KR20000049093A (en) * 1996-10-11 2000-07-25 자르밀라 제트. 흐르벡 Polymer electrolyte, intercalation compounds and electrodes for batteries
EP0850933A1 (en) * 1996-12-30 1998-07-01 Centre National De La Recherche Scientifique (Cnrs) Salts of pentacyclic or tetrapentaline derived anions, and their uses as ionic conductive materials
CA2199446A1 (en) * 1997-03-07 1998-09-07 Yves Choquette Polymer electrolyte batteries containing a potassium salt to stabilize performance and operating life
USRE37805E1 (en) * 1997-03-12 2002-07-23 Hydro-Quebec Polymer electrolyte lithium battery containing a potassium salt
US6114069A (en) * 1997-03-12 2000-09-05 Hydro Quebec Polymer electrolyte lithium battery containing a potassium salt
EP1388546B1 (en) * 1997-07-25 2010-09-08 ACEP Inc. Use of ionic compounds having a delocalised anionic charge as catalyst components
CA2283670C (en) * 1998-02-03 2011-06-07 Acep Inc. Materials useful as electrolytic solutes
CN1292005A (en) * 1998-03-03 2001-04-18 纳幕尔杜邦公司 Substantially fluorinated ionomers
US6350545B2 (en) 1998-08-25 2002-02-26 3M Innovative Properties Company Sulfonylimide compounds
IT1307220B1 (en) * 1999-07-29 2001-10-29 Univ Padova PRIMARY (NON RECHARGEABLE) AND SECONDARY (RECHARGEABLE) BATTERIES BASED ON POLYMER ELECTROLYTES BASED ON MAGNESIUM IONS
US20050287441A1 (en) * 2004-06-23 2005-12-29 Stefano Passerini Lithium polymer electrolyte batteries and methods of making
CN100454654C (en) * 2004-10-27 2009-01-21 第一毛织株式会社 Nonaqueous electrolyte for battery
KR101309161B1 (en) * 2009-11-17 2013-09-17 삼성에스디아이 주식회사 Polymer composition for rechargeable lithium battery, method of preparing same and rechargeable lithium battery including same
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
AU2017355663B2 (en) * 2016-11-07 2022-11-24 Acuitive Technologies, Inc. In-situ curing biodegradable anchor with reinforcement
KR102431845B1 (en) * 2017-04-28 2022-08-10 삼성에스디아이 주식회사 Electrolyte of rechargeable lithium battery and rechargeable lithium battery including same
KR102536633B1 (en) * 2018-03-14 2023-05-25 주식회사 엘지에너지솔루션 Method for manufacturing positive electrode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293623A (en) * 1980-07-03 1981-10-06 Exxon Research & Engineering Co. Electrolytes for alkali-metal electrochemical devices
FR2527611A1 (en) * 1982-06-01 1983-12-02 Anvar TETRAKIS TRIALKYL SILOXY ALKALINE METAL ALANATES, THEIR SOLID SOLUTIONS WITH PLASTIC MATERIALS AND THEIR APPLICATION TO THE CONSTITUTION OF CONDUCTIVE ELEMENTS FOR ELECTROCHEMICAL GENERATORS
GB8714239D0 (en) * 1987-06-17 1987-07-22 Dowty Mining Machinery Ltd Solid state batteries
US4925752A (en) * 1989-03-03 1990-05-15 Fauteux Denis G Solid state electrochemical cell having porous cathode current collector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4343912A1 (en) * 2022-09-21 2024-03-27 Samsung SDI Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
ATE128792T1 (en) 1995-10-15
US5350646A (en) 1994-09-27
JP3429305B2 (en) 2003-07-22
CA2082520C (en) 2003-05-06
DE69205248T2 (en) 1996-05-09
FR2673769A1 (en) 1992-09-11
JPH05506540A (en) 1993-09-22
WO1992016028A1 (en) 1992-09-17
EP0531492A1 (en) 1993-03-17
DE69205248D1 (en) 1995-11-09
FR2673769B1 (en) 1993-06-18
CA2082520A1 (en) 1992-09-08

Similar Documents

Publication Publication Date Title
EP0531492B1 (en) Ionically conducting polymer materials
CN1316669C (en) Films for electrochemical components and method for producing same
EP0119912B1 (en) Macromolecular material constituted by a salt in solution in a copolymer
JP3009725B2 (en) ELECTROCHROMIC ELEMENT, MATERIAL USED FOR THIS ELEMENT, METHOD OF MANUFACTURING THIS ELEMENT, AND USE OF THIS ELEMENT IN ELECTROCHROMIC GLASS APPARATUS
US5142406A (en) Electrochromic optical switching device
EP0968181B1 (en) Perfluorynated sulphone salts, and their uses as ionic conduction materials
CA2103956C (en) Crosslinkable copolymers obtained by polycondensation and ionic conducting material containing them
DE68918856T2 (en) ELECTROCHROME ARRANGEMENT AND METHOD FOR THE PRODUCTION.
JPH0237673A (en) Cell using ionizable compound
WO1995016286A1 (en) Improved solid electrolyte obtained by the polymerization of diacrylate monomer having a rigid alkane segment
EP0221793A1 (en) Electronically conductive nitrogen polymers, processes for their manufacture, electrochromic display cell and electrochemical generator using these polymers
EP0378123A1 (en) Ionic conductive polymer electrolyte and cell comprising the same
CA2111047C (en) Copolymer composed of ethylene oxyde and of at least one substituted oxiranne with a crosslinkable function, process for preparing it, and its use in the making of ionic conductingmaterials
FR2684458A1 (en) ELECTROLYTIC MATERIAL IN THE FORM OF SOLID GEL FOR THE MODULATION OF LIGHT AND ELECTRO-OPTICAL DEVICES USING THIS MATERIAL.
EP0213985B1 (en) Macromolecular material with ion conductivity
EP0672291B1 (en) Redox copolymers and their use in preparing mixed conduction materials
Buvaneshwari et al. Preparation and characterization of biopolymer electrolyte based on gellan gum with magnesium perchlorate for magnesium battery
US5330856A (en) Method of making a cathode for use in an electrolytic cell
JP3546085B2 (en) Wet solar cell and method of manufacturing the same
EP0641489B1 (en) Solid electrolyte and method for fabricating a generator in thin layers comprising such solid electrolyte
JP2645966B2 (en) Electrode
JP2528798B2 (en) Laminate containing furan-based polymer complex film and its manufacturing method
JPH0534732A (en) Electrolytic thin film
JPH0547210A (en) High molecular solid electrolyte
JPS62150651A (en) Organic secondary cell

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

17P Request for examination filed

Effective date: 19930310

17Q First examination report despatched

Effective date: 19941110

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19951004

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951004

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19951004

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19951004

Ref country code: DK

Effective date: 19951004

Ref country code: AT

Effective date: 19951004

REF Corresponds to:

Ref document number: 128792

Country of ref document: AT

Date of ref document: 19951015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69205248

Country of ref document: DE

Date of ref document: 19951109

ITF It: translation for a ep patent filed

Owner name: NOTARBARTOLO & GERVASI S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960104

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960105

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960331

Ref country code: LI

Effective date: 19960331

Ref country code: CH

Effective date: 19960331

Ref country code: BE

Effective date: 19960331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: HYDRO-QUEBEC

Effective date: 19960331

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

Effective date: 19960331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100312

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100226

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100419

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100302

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110304

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69205248

Country of ref document: DE

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110304

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110304