EP0531189A1 - Dispositif et bloc d'alimentation haute tension pour tube à rayons X. - Google Patents

Dispositif et bloc d'alimentation haute tension pour tube à rayons X. Download PDF

Info

Publication number
EP0531189A1
EP0531189A1 EP92402350A EP92402350A EP0531189A1 EP 0531189 A1 EP0531189 A1 EP 0531189A1 EP 92402350 A EP92402350 A EP 92402350A EP 92402350 A EP92402350 A EP 92402350A EP 0531189 A1 EP0531189 A1 EP 0531189A1
Authority
EP
European Patent Office
Prior art keywords
coils
secondary windings
circuit
series
diodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92402350A
Other languages
German (de)
English (en)
Other versions
EP0531189B1 (fr
Inventor
Jacques Cabinet Ballot-Schmit Sireul
Hans Cabinet Ballot-Schmit Jedlitschka
Dominique Cabinet Ballot-Schmit Poincloux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric CGR SA
Original Assignee
General Electric CGR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric CGR SA filed Critical General Electric CGR SA
Publication of EP0531189A1 publication Critical patent/EP0531189A1/fr
Application granted granted Critical
Publication of EP0531189B1 publication Critical patent/EP0531189B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube

Definitions

  • the invention relates to electrical devices which are used to power X-ray tubes.
  • An X-ray tube includes a filament type cathode which emits an electron beam towards an anode or anticathode.
  • the anode is made of a material such as tungsten or molybdenum which emits X-rays when it is bombarded by the electron beam from the cathode.
  • the electrons are accelerated by an intense electric field created between the cathode and the anode.
  • the anode is brought to a positive potential of several tens of kilovolts relative to the cathode, this potential being able to exceed one hundred kilovolts and reach one hundred and forty kilovolts.
  • Such voltages are supplied by so-called high voltage supply devices which include, as shown in FIG. 1, a transformer 10 which is connected to voltage rectifier-doubler circuits 11. More specifically, the transformer 10 comprises a single winding primary 12 to which an alternating voltage is applied and a secondary circuit 13 which is connected to the rectifier-doubler voltage circuits 11.
  • Each rectifier-doubler voltage circuit 11 consists, conventionally, in a secondary winding 14, two diodes D1 and D2 and two capacitors C1 and C2 which are connected together according to the diagram in FIG. 1.
  • Each voltage rectifier-doubler circuit is connected to the next so that their voltages output add up, which allows to obtain a very high voltage on the last circuit doubler of assembly.
  • the transformer 10 comprises a primary winding 12 and twelve secondary windings S1, S5, S6 and S12. Similarly, it includes twenty-four identical rectifier diodes D1, D2, D3 ... D12, D13, D14 ... D22, D23, D24. Of course, each diode can be replaced by several diodes in series to take account of the reverse voltage held by the diodes.
  • Each secondary winding S1 to S12 has two output terminals. All the output terminals bear the references B1 to B24, only the terminals B1, B2, B3 ... B5, B6, B7, B8 ... B23, B24 having been shown.
  • the common point of the capacitor C1 and the diode D1 constitutes the high voltage output terminal 46 HT through a resistor R while the common point of the capacitor C24 and the diode D24 constitutes the output terminal mass with which a spark gap is associated 9.
  • the high voltage output terminal 46 is connected to a measuring device (not shown) connected to point M via a resistor R and a variable capacitor C.
  • the point M is connected to ground by a spark gap 8.
  • each rectifier-doubler circuit has an output voltage of six kilovolts so that at the output of the twelfth rectifier-doubler circuit, the voltage is seventy-two kilovolts.
  • X-ray tubes are used more and more in impulse mode according to increasingly higher repetition frequencies.
  • the performance of the circuit of FIG. 1 is limited by the parasitic capacitances and inductors of the conductors and the windings of the transformer, the values of which are difficult to know and to compensate for.
  • the secondary circuit in the form of concentric windings, only the parasitic capacitance between the first secondary winding and the mass has an influence because the other parasitic capacitances between the secondary windings do not intervene because they are at an alternating voltage.
  • the invention described in the aforementioned patent application first provides for making secondary windings whose similar output terminals of odd rank B1, B3 ... B23, are arranged on a first lateral side of the windings while the output terminals of even rank B2, B4 ... B24 are arranged on the other or second lateral side of the secondary windings. It is then planned to group the diodes D1 to D24 on the same support which is arranged on the side of the output terminals B1, B3 ...
  • the high voltage supply device described in the application for The aforementioned patent is placed in an enclosure filled with an insulating cooling fluid and the assembly constitutes what is called a high voltage block.
  • a large volume of coolant from 15 to 20 liters approximately, is necessary, volume which leads to a block quite bulky high voltage.
  • Such a high voltage block in addition to its reduction in volume, has satisfactory electrical characteristics for most current applications and thus makes it possible to reach high voltages greater than one hundred kilovolts.
  • the magnetic circuits which can be used are of the type resulting from the combination of a first circuit in the form of the letter C or in the form of a horseshoe and a second circuit in the form of the letter I which closes the first circuit.
  • the maximum area of the window for passage of such magnetic circuits is limited, which limits the area available for the windings.
  • the secondary circuits are connected so as to apply a positive high voltage on the anode and a negative high voltage on the cathode, of the order of 75 kilovolts each, it is difficult, if not impossible, to obtain symmetry perfect between the two high voltages. Indeed, as the midpoint corresponds to one of the secondary windings, the negative high voltage will correspond, for example to windings close to the magnetic circuit while the positive high voltage will correspond to windings distant from the magnetic circuit. From this arrangement, it follows that the windings of the high positive voltage are subjected to a weaker magnetic flux than those of the high negative voltage.
  • this asymmetry can be corrected by providing for a smaller number of turns for the windings of the high negative voltage (internal layers) than for the windings of the high positive voltage (external layers). Such corrections complicate the production of such a high voltage block with symmetrical high voltages without achieving perfect symmetry.
  • An object of the present invention is therefore to produce a high voltage device and, more particularly a high voltage block, which can provide at least double power compared to the devices and blocks described in the aforementioned patent applications.
  • Another object of the present invention is to provide a high voltage block which can provide perfectly symmetrical high voltages.
  • Figure 1 is the conventional electrical diagram of a high voltage supply device for an X-ray tube will not be described again but is an integral part of the description of the invention. Indeed, according to the purely functional aspect of the invention, it consists in producing two secondary circuits identical each to that of the electrical diagram of FIG. 1 and in magnetically coupling their windings to a primary circuit by means of a magnetic circuit.
  • the elements of a first secondary circuit will be referenced by those of FIG. 1 while the identical elements of the second secondary circuit will be referenced by "premium" references as indicated by the references in parentheses.
  • the different mechanical elements for supporting and maintaining the different components of the two secondary circuits and of the circuit primary as well as their electrical connections between them will be described in relation to FIGS. 2 to 6.
  • the central element consists of two cylinders 20 and 22 which are hollow and concentric and are held integral with one another by a central partition 24.
  • Two primary windings 12 and 12 ′ are placed at the internal periphery of the hollow cylinder 20, the space interior remained free being occupied by the internal branch of a magnetic circuit 26.
  • the magnetic circuit 26 is made by two identical elementary magnetic circuits 28 and 28 ′ in the shape of letter C or horseshoe which are joined by their opening.
  • the two cylinders 20 and 22 define therebetween, on either side of the central partition 24, an annular compartment 30 and 30 ′ which serves as a housing for support elements of each secondary circuit.
  • the secondary windings S1 to S12 (or S′1 to S′12) are wound on an annular mandrel 32 (or 32 ′) closed by a cylindrical cover 34 (or 34 ′). This mandrel 32 (or 32 ′) fits onto the outer periphery of the cylinder 20 in the annular compartment 30 (or 30 ′).
  • the capacitors C1 to C24 are arranged in cells such as those referenced 35 (or 35 ′) which are, for example, produced by the assembly of two annular compartments 36, 38 (or 36 ′, 38 ′) which each have housings in the form of capacitors C1 to C24 (or C′1 to C′24).
  • the annular compartment 38 (or 38 ′), furthest from the central partition 24, is held in assembly by any known means and, in particular, by a cover 40 (or 40 ′) in the form of a ring which fits onto the external periphery of the honeycomb compartments 36, 38 (or 36 ′, 38 ′).
  • annular space 42 (42 ′) is left free between, on the one hand, the bottom of the cover 40 (or 40 ′) and, on the other hand, and the mandrel 32 (or 32 ′) and the honeycomb compartment 38 (or 38 ′), for fitting the rectifying diodes D1 to D24 (or D′1 to D′24).
  • These diodes are fixed to a printed circuit 44 (or 44 ′) in the form of an annular sector (FIG. 4) which is secured, for example, to the honeycomb compartment 38 (or 38 ′).
  • This printed circuit 44 makes the connections of the diodes D1 to D24 (or D′1 to D′24) between them, with one of the terminals of the capacitors C1 to C24 (or C′1 to C′24) and with the odd rank output terminals B1, B3 ... B23 (or B′1, B′3 ... B′23) in accordance with the electrical diagram in Figure 1.
  • the diode D1 (or D′1) has its cathode which is connected to the terminal B1 (or B′1) of the winding S1 (or S ′ 1) and its anode which is connected to one of the terminals of the capacitor C1 (or C′1). Furthermore, the terminal B1 (or B′1) is connected to the diode D2 (or D′2) whose cathode is connected, on the one hand, to the anode of the diode D3 (or D′3) and , on the other hand, to a terminal of capacitors C2 and C3 (or C′2 and C′3), and to the latter by a printed conductor CI1 (or CI′1).
  • connection conductors CC5 to CC10 (or CC′5 to CC′10) have been shown between the terminals B6, B8 and B10 (or B′6, B′8 and B′10) and the associated capacitors C5 and C6 (or C′5 and C′6), C7 and C8 (or C′7 and C′8) and C9, C10 (or C′9, C′10).
  • these conductors CC5 to CC10 can be produced in the form of conductors of a printed circuit analogous to the printed circuit 44 (or 44 ′) carrying the diodes or in the form of bars.
  • the high voltage which is supplied by each secondary circuit is taken from a terminal 461 (or 46′1) of the printed circuit 44 (or 44 ′).
  • each half-shell 58, 58 ′ is shaped in substantially the same way to serve as a mounting support for a certain number of elements.
  • each half-shell 58 (or 58 ′) respectively has a bottom wall 83 (or 83 ′) and side walls 84 or 84 ′), 85 (or 85 ′), 86 (or 86 ′), 87 (or 87 ′).
  • Each bottom wall has a hollow central cylinder (hole 88 (or 88 ′) which passes through each half-shell 58 (or 58 ′) and abuts on one edge of the cylinder 20 during assembly by means of a seal (not shown).
  • Each half-shell 58 (or 58 ′) has an L-shaped notch 90 (or 90 ′) whose vertical arm is located on the bottom wall 83 (or 83 ′) while the horizontal arm is located on the wall lateral 87 (or 87 ′).
  • the vertical arm notch has a depth less than that of the thickness of the half-shell and the notch of the horizontal arm has a depth less than the distance from the hollow cylinder to the side wall 87 (or 87 ′).
  • the intermediate element 50 also has a notch 56 facing the notches 90 and 90 ′.
  • These different notches 90, 90 ′ and 56 serve to house one of the longitudinal branches of the magnetic circuit 26, the other branch being housed in the hollow cylinders 88, 88 ′ and inside the cylinder 20 of the intermediate element 50.
  • each half-shell comprises cells to allow the establishment and maintenance of the elements of the secondary circuit as well as other elements which will be indicated below.
  • a first cell 91 (or 91 ′) is provided around the hollow cylinder 88 (or 88 ′) for the support and the maintenance of the secondary windings SI to S12 (or S′1 to S′12) arranged in the mandrel 32 (or 32 ′) and capacitors C1 to C24 (or C′1 to C′24) arranged in the honeycomb compartments 36, 38 (or 36 ′, 38 ′).
  • the cell 91 (or 91 ′) is sufficiently deep for housing the printed circuit 44 (or 44 ′) on which the diodes D1 to D24 (or D′1 to D′24) are fixed.
  • a second cell 92 (or 92 ′) is produced in the half-shell 58 (or 58 ′) to put in place a high voltage output connector 93 (or 93 ′) one of the terminals of which is connected to the high terminal tension 46 (or 46 ′) ( Figure 1).
  • Each connector 93 (or 93 ′) is conventionally produced by a sleeve, one closed end of which carries the connection pads located in the cell 92 (or 92 ′) near the high voltage output terminal 46 (or 46 ′ ).
  • the other end of the connector sleeve is open and serves as a passage for the output conductors by means of a male connector, not shown, and mounted hermetically in an opening in the side wall 85 (or 85 ′) using 'a gasket and a plate (not shown) screwed to the side wall.
  • a fourth cell 96 arranged for example in the half-shell 58, allows the establishment of a vase 97 filled with air to absorb the expansions of the insulating and cooling medium.
  • the interior of this expansion vessel communicates with the exterior of the vessel through a conduit 98.
  • a fifth cell 96 ′ arranged in the half-shell 58 ′, allows the installation of an electric circuit 99 for measuring voltage.
  • This electrical circuit consists, as indicated in relation to FIG. 1, of a resistor R and of a variable capacitor C in parallel and of a spark gap 9.
  • a sixth cell 100 in the shell 58 is provided to set up and maintain a first transformer 101 to supply a first filament to the cathode of the tube.
  • a seventh cell 100 ′ in the half-shell 58 ′ is provided to set up and maintain a transformer 101 ′ to supply a second filament to the cathode of the tube.
  • the different cells which have just been described are separated by walls, such as that referenced 102 (or 102 ′), whose shapes match those of the elements which they must maintain. These walls are pierced with orifices such as that referenced 103 ′ in the wall 102 ′ to allow the flow of the insulating and cooling liquid.
  • two orifices 104 and 104 ′ are provided, drilled respectively in the side walls 85 and 85 ′ and provided respectively with caps 105 and 105 ′.
  • inlet and outlet orifices can be provided in the case where circulation of the insulating and cooling medium is provided.
  • the latter After mounting and wiring of the various elements of the secondary circuits in the half-shells 58 and 58 ′ and the intermediate element 50, the latter is assembled with the half-shells so as to produce a sealed tank on which are mounted inside the different elements of the primary circuit and the magnetic circuit.
  • the primary winding (s) 12 and 12 ′ are arranged inside the cylinder 20 and the hollow cylinders of the half-shells 58 and 58 ′ while the horizontal internal branches of the magnetic half-circuits 28 and 28 ′ pass through the cylinder 20 and the hollow cylinders 88 and 88 ′ inside the primary winding (s) 12 or 12 ′ so as to abut one against the other along line 43 on their opposite faces.
  • the horizontal external branches of the magnetic circuits are housed in the notches 90, 90 ′ and 56.
  • the vertical branches of the magnetic circuits are housed in the vertical parts of the notches 90 and 90 ′.
  • means are provided for those skilled in the art, such as plates which are applied to the vertical branches of the magnetic circuit and which are fixed on the half-shells 58 and 58 ′. These plates can also serve as a support for a fan (not shown) to cool the primary winding and the magnetic circuit by carrying out a forced and rapid flow of air inside the hollow cylinders 88 and 88 ′ and of the cylinder 20 .
  • the half-shells 58, 58 ′ and the intermediate element 50 are made of an insulating material such as a plastic.
  • the outer wall of the elements 58, 58 ′ and 50 is coated with a metal envelope or with a conductive layer which is produced so as not to short-circuit the secondary windings.
  • the metallic envelope or the conductive layer is connected to ground.
  • These two secondary circuits can be connected in parallel or in series. In a parallel connection, the number of turns of each winding can be distributed over the two coils, which allows the section of the conductive wire to be increased and therefore the power to be increased.
  • one secondary circuit is assigned to produce the positive voltage while the other secondary circuit is assigned to produce the negative voltage, which doubles the current voltage constant.
  • the intrinsic dielectric rigidity of the assembly is equal to that of a single secondary circuit, due to the independence of each of the secondary circuits. Consequently, seen from the outside, the output voltage can be doubled without affecting the margins on the voltage withstand.
  • the device of the invention makes it possible to obtain high voltages perfectly equal at the terminals of each secondary circuit and therefore perfectly symmetrical high voltages in the case of the series connection of the secondary circuits.

Landscapes

  • X-Ray Techniques (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Rectifiers (AREA)

Abstract

L'invention concerne les tubes à rayons X et, plus particulièrement leurs dispositifs d'alimentation haute tension.
L'invention réside dans le fait qu'un seul circuit magnétique 26 permet de coupler un circuit primaire (12, 12′) à deux circuits secondaires séparés qui comprennent chacun une série d'enroulements secondaires (S1, S12, S′1, S′12) connectés chacun à un circuit redresseur-doubleur constitué de diodes, portés par un circuit imprimé (44, 44′) et de condensateurs portés par un compartiment alvéolé (36, 38, 36′, 38′).
Ceci permet, notamment, de doubler la haute tension de sortie ou d'obtenir des hautes tensions parfaitement symétriques sous un encombrement réduit.

Description

  • L'invention concerne les dispositifs électriques qui sont utilisés pour alimenter les tubes à rayons X.
  • Un tube à rayons X comprend une cathode du type à filament qui émet un faisceau d'électrons en direction d'une anode ou anticathode. L'anode est constituée d'un matériau tel que le tungstène ou le molybdène qui émet des rayons X lorsqu'il est bombardé par le faisceau d'électrons provenant de la cathode. Pour obtenir un faisceau d'électrons de grande énergie, les électrons sont accélérés par un champ électrique intense créé entre la cathode et l'anode. A cet effet, l'anode est portée à un potentiel positif de plusieurs dizaines de kilovolts par rapport à la cathode, ce potentiel pouvant dépasser cent kilovolts et atteindre cent quarante kilovolts.
  • De telles tensions sont fournies par des dispositifs d'alimentation dits haute tension qui comprennent, comme le montre la figure 1, un transformateur 10 qui est connecté à des circuits redresseur-doubleur de tension 11. Plus précisément, le transformateur 10 comporte un seul enroulement primaire 12 auquel est appliquée une tension alternative et un circuit secondaire 13 qui est connecté aux circuits redresseur-doubleur de tension 11. Chaque circuit redresseur-doubleur de tension 11 consiste, de manière classique, en un enroulement secondaire 14, deux diodes D1 et D2 et deux condensateurs C1 et C2 qui sont connectés entre eux selon le schéma de la figure 1. Chaque circuit redresseur-doubleur de tension est connecté au suivant de manière que leurs tensions de sortie s'additionnent, ce qui permet d'obtenir une tension très élevée sur le dernier circuit doubleur de montage.
  • De manière plus précise, le transformateur 10 comprend un enroulement primaire 12 et douze enroulements secondaires S1, S5, S6 et S12. De même, il comprend vingt-quatre diodes de redressement identiques D1, D2, D3 ... D12, D13, D14 ... D22,D23,D24. Bien entendu, chaque diode peut être remplacée par plusieurs diodes en série pour tenir compte de la tension inverse tenue par les diodes.
  • Il comprend également vingt-quatre condensateurs de filtrage C1 à C24 dont on n'a représenté que les éléments C1, C2, C3 ... C12, C13, C14 ... C23, C24.
  • Chaque enroulement secondaire S1 à S12 comporte deux bornes de sortie. L'ensemble des bornes de sortie portent les références B1 à B24, seules les bornes B1, B2, B3 ... B5, B6, B7, B8 ... B23, B24 ayant été représentées.
  • Sur la figure 1, le point commun du condensateur C1 et de la diode D1 constitue la borne de sortie haute tension 46 HT au travers d'une résistance R tandis que le point commun du condensateur C24 et de la diode D24 constitue la borne de sortie masse à laquelle est associé un éclateur 9.
  • Pour mesurer l'amplitude de la haute tension, la borne de sortie haute tension 46 est connectée à un dispositif de mesure (non représenté) branché au point M par l'intermédiaire d'une résistance R et d'un condensateur variable C. Le point M est connecté à la masse par un éclateur 8.
  • Dans un exemple de réalisation typique, chaque circuit redresseur-doubleur a une tension de sortie de six kilovolts de sorte qu'à la sortie du douzième circuit redresseur-doubleur, la tension est de soixante-douze kilovolts.
  • On remarquera que, pour obtenir une différence de potentiels de l'ordre de 140 kilovolts entre la cathode et l'anode d'un tube à rayon X, il suffit de connecter la cathode à un potentiel négatif de 70 kilovolts par rapport à la masse et l'anode à un potentiel positif de 70 kilovolts par rapport à la masse. A cet effet, on utilise deux dispositifs d'alimentation identiques à celui de la figure 1.
  • On comprend que la réalisation d'un dispositif d'alimentation haute tension selon le schéma de la figure 1 conduise à des problèmes d'isolation qui sont souvent résolus en écartant les uns des autres les conducteurs à potentiels très différents et en interposant entre eux un milieu isolant tel que de l'huile qui sert en même temps de liquide de refroidissement. On aboutit alors à des dispositifs de grandes dimensions qui sont encombrants.
  • Par ailleurs, les tubes à rayons X sont de plus en plus utilisés en régime impulsionnel suivant des fréquences de répétition de plus en plus grandes. Dans le circuit de la figure 1, cela signifie que l'enroulement primaire est alimenté par une tension alternative de fréquence élevée, de l'ordre de plusieurs dizaines de kilohertz. Dans ces nouvelles conditions de fonctionnement, les performances du circuit de la figure 1 sont limitées par les capacités et selfs parasites des conducteurs et des enroulements du transformateur dont les valeurs sont difficiles à connaître et à compenser.
  • Dans la demande de brevet français publiée N° 2 643 534 déposée le 2 février 1989 et intitulée : "DISPOSITIF D'ALIMENTATION HAUTE TENSION POUR TUBE A RAYONS X", la demanderesse a décrit un dispositif d'alimentation dans lequel les positions relatives des différents éléments tendent à minimiser les capacités et selfs parasites et contribuent à diminuer l'encombrement de l'ensemble tout en présentant une grande facilité de montage.
  • En outre, par la réalisation du circuit secondaire sous la forme d'enroulements concentriques, seule la capacité parasite entre le premier enroulement secondaire et la masse a une influence car les autres capacités parasites entre les enroulements secondaires entre eux n'interviennent pas car elles sont à une tension alternative.
  • Afin de limiter les longueurs des conducteurs de connexion qui relient les bornes de sortie B1 à B24 des enroulements secondaires S1 à S12, d'une part, aux diodes D1 à D24 et, d'autre part, aux condensateurs C1 à C24, l'invention décrite dans la demande de brevet précitée prévoit en premier lieu de réaliser des enroulements secondaires dont les bornes de sortie similaires de rang impair B1, B3 ... B23, sont disposées sur un premier côté latéral des enroulements tandis que les bornes de sortie de rang pair B2, B4 ... B24 sont disposées sur l'autre ou deuxième côté latéral des enroulements secondaires. Il est prévu ensuite de grouper les diodes D1 à D24 sur un même support qui est disposé du côté des bornes de sortie B1, B3 ... B23 des enroulements secondaires et d'effectuer leurs connexions, d'une part, aux diodes D1 à D24 sur le premier côté latéral des enroulements secondaires et, d'autre part, aux bornes de sortie B2, B4 ... B24 sur le deuxième côté latéral des enroulements secondaires.
  • Eu égard aux puissances mises en jeu, le dispositif d'alimentation haute tension décrit dans la demande de brevet précitée est placé dans une enceinte remplie d'un fluide de refroidissement isolant et l'ensemble constitue ce qui est appelé un bloc haute tension.
  • Pour refroidir un tel dispositif d'alimentation comportant un enroulement primaire, des enroulements secondaires et d'autres composants tels que les diodes, un volume important de liquide de refroidissement, de 15 à 20 litres environ, est nécessaire, volume qui conduit à un bloc haute tension assez encombrant.
  • Pour diminuer l'encombrement d'un tel bloc haute tension, il a été proposé de disposer le circuit primaire et le circuit magnétique à l'extérieur de l'enceinte contenant le liquide de refroidissement, ladite enceinte ne contenant alors que les circuits secondaires et composants associés qui sont portés à des tensions élevées de plusieurs kilovolts alors que le circuit primaire est à une tension relativement basse de quelques centaines de volts.
  • Un tel bloc de haute tension a été décrit dans la demande de brevet français publiée N°2 635 231 déposée le 24 novembre 1989 et intitulée : BLOC A HAUTE TENSION POUR TUBE A RAYON X AVEC CUVE DE REFROIDISSEMENT INTEGREE AU CIRCUIT SECONDAIRE.
  • Un tel bloc de haute tension, outre sa réduction en volume, présente des caractéristiques électriques satisfaisantes pour la plupart des applications actuelles et permet ainsi d'atteindre des hautes tensions supérieures à cent kilovolts.
  • Cependant, comme la tendance est d'appliquer au tube à rayons X des hautes tensions encore plus élevées et d'augmenter la puissance délivrée par les tubes à rayons X, un tel bloc haute tension présente certaines limitations dues à l'échauffement des circuits secondaires et des diodes de redressement.
  • En outre, les circuits magnétiques qui peuvent être utilisés sont du type résultant de la combinaison d'un premier circuit en forme de la lettre C ou en forme de fer à cheval et d'un second circuit en forme de la lettre I qui ferme le premier circuit. Or, la surface maximale de la fenêtre de passage de tels circuits magnétiques est limitée, ce qui limite la surface disponible pour les bobinages.
  • Enfin, si les circuits secondaires sont connectés de manière à appliquer une haute tension positive sur l'anode et une haute tension négative sur la cathode, de l'ordre de 75 kilovolts chacune, il est difficile, sinon impossible, d'obtenir une symétrie parfaite entre les deux hautes tensions. En effet, comme le point milieu correspond à l'un des enroulements secondaires, la haute tension négative correspondra, par exemple à des enroulements proches du circuit magnétique tandis que la haute tension positive correspondra à des enroulements éloignés du circuit magnétique. De cette disposition, il résulte que les enroulements de la haute tension positive sont soumis à un flux magnétique plus faible que ceux de la haute tension négative. On peut évidemment corriger cette dissymétrie en prévoyant un nombre de spires plus petit pour les enroulements de la haute tension négative (couches internes) que pour les enroulements de la haute tension positive (couches externes). De telles corrections compliquent la réalisation d'un tel bloc haute tension à hautes tensions symétriques sans pour autant atteindre la symétrie parfaite.
  • Un but de la présente invention est donc de réaliser un dispositif haute tension et, plus particulièrement un bloc haute tension, qui peut fournir au moins une puissance double par rapport aux dispositifs et blocs décrits dans les demandes de brevets précitées.
  • Un autre but de la présente invention est de réaliser un bloc haute tension qui peut fournir des hautes tensions parfaitement symétriques.
  • Ces différents buts sont atteints en utilisant deux circuits secondaires séparés qui sont couplés à au moins un circuit primaire par l'intermédiaire d'un circuit magnétique dont la fenêtre de passage est doublée en surface par la combinaison de deux circuits magnétiques en forme de la lettre C ou en fer à cheval disposés face à face.
  • Le fait d'utiliser deux circuits secondaires séparés permet de doubler le nombre de diodes, ce qui favorise une meilleure tenue en tension lorsque les deux circuits secondaires sont connectés en série ou une augmentation du courant lorsque les deux circuits secondaires sont connectés en parallèle.
  • Dans le cas où les deux circuits secondaires sont identiques, on peut obtenir des hautes tensions parfaitement symétriques par rapport à la masse en connectant en série les circuits secondaires et connectant à la masse le point de connexion.
  • L'invention concerne un dispositif d'alimentation haute tension pour tube à rayons X comprenant un transformateur qui comporte au moins un enroulement primaire, une pluralité d'enroulements secondaires et un circuit magnétique de couplage entre ledit enroulement primaire et lesdits enroulements secondaires, les deux bornes de sortie de chacun des dits enroulements secondaires étant connectés à un circuit redresseur-doubleur de tension qui est constitué de deux diodes et de deux condensateurs de filtrage, lesdits circuits redresseur-doubleur étant connectés entre eux de manière que leurs tensions de sortie s'additionnent, les enroulements primaires et secondaires étant réalisés par des bobines concentriques, les bornes de sortie des dits enroulements secondaires étant réparties sur chaque côté latéral des dites bobines, les condensateurs étant disposés sur la périphérie externe des bobines et les diodes étant disposées sur un côté latéral desdites bobines, caractérisé en ce que :
    • la pluralité desdits enroulement secondaires est scindée en deux séries (S1 à S12 et S′1 à S′12) qui correspondent chacune à un circuit secondaire séparé,
    • les bobines des dits enroulements secondaires (S1 à S12) d'une série étant séparées axialement des bobines des enroulements secondaires (S′1 à S′12) de l'autre série,
    • lesdits condensateurs de filtrage de chaque circuit secondaire séparé sont disposés à la périphérie externe desdites bobines de la série, et
    • lesdites diodes sont disposées sur un côté latéral desdites bobines de la série.
  • D'autres buts, caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description suivante d'un exemple particulier de réalisation, ladite description étant faite en relation avec les dessins joints dans lesquels :
    • la figure 1 est un schéma électrique classique d'un dispositif d'alimentation haute tension pour tube à rayons X,
    • la figure 2 est une vue en coupe éclatée d'une partie du dispositif d'alimentation selon l'invention suivant un axe longitudinal X′X passant par l'axe de symétrie des bobines des enroulements du transformateur,
    • la figure 3 est une vue éclatée en perspective cavalière d'une partie des éléments constituant le dispositif d'alimentation selon l'invention,
    • la figure 4 est une vue de dessus de l'élément sur lequel sont disposées et connectées électriquement les diodes de redressement des tensions secondaires,
    • la figure 5 est une vue de dessus, en partie arrachée, montrant notamment les alvéoles de rangement des condensateurs de filtrage des tensions secondaires redressées par les diodes,
    • la figure 6 est une vue en coupe de l'ensemble du dispositif d'alimentation selon l'invention suivant l'axe longitudinal X′X et passant par le circuit magnétique du transformateur.
  • Dans les différentes figures, les mêmes références désignent des éléments identiques.
  • La figure 1, qui est le schéma électrique classique d'un dispositif d'alimentation haute tension pour tube à rayons X ne sera pas décrite à nouveau mais fait partie intégrante de la description de l'invention. En effet, suivant l'aspect purement fonctionnel de l'invention, celle-ci consiste à réaliser deux circuits secondaires identiques chacun à celui du schéma électrique de la figure 1 et à coupler magnétiquement leurs enroulements à un circuit primaire par l'intermédiaire d'un circuit magnétique. Pour des raisons de clarté, les éléments d'un premier circuit secondaire seront référencés par celles de la figure 1 tandis que les éléments identiques du deuxième circuit secondaire seront référencés par des références "primes" comme cela est indiqué par les références entre parenthèses. Les différents éléments mécaniques de support et de maintien des différents composants des deux circuits secondaires et du circuit primaire ainsi que leurs connexions électriques entre eux seront décrits en relation avec les figures 2 à 6.
  • L'élément central est constitué de deux cylindres 20 et 22 qui sont creux et concentriques et sont maintenus solidaires entre eux par une cloison médiane 24. Deux enroulements primaires 12 et 12′ sont placés à la périphérie interne du cylindre creux 20, l'espace intérieur resté libre étant occupé par la branche interne d'un circuit magnétique 26. Le circuit magnétique 26 est réalisé par deux circuits magnétiques élémentaires identiques 28 et 28′ en forme de lettre C ou de fer à cheval qui sont accolés par leur ouverture.
  • Sur les figures 1, 2, 3 et 6, on a supposé qu'il y avait deux enroulements primaires 12 et 12′ ; cependant, dans la plupart des applications, seul un enroulement primaire sera de préférence utilisé.
  • Les deux cylindres 20 et 22 définissent entre eux, de part et d'autre de la cloison médiane 24, un compartiment annulaire 30 et 30′ qui sert de logement à des éléments de support de chaque circuit secondaire. Les enroulements secondaires S1 à S12 (ou S′1 à S′12) sont bobinés sur un mandrin annulaire 32 (ou 32′) fermé par un couvercle cylindrique 34 (ou 34′). Ce mandrin 32 (ou 32′) vient s'emboîter sur la périphérie externe du cylindre 20 dans le compartiment annulaire 30 (ou 30′).
  • Les condensateurs C1 à C24 (ou C′1 à C′24) sont disposés dans des alvéoles telles que celles référencées 35 (ou 35′) qui sont, par exemple, réalisées par l'assemblage de deux compartiments annulaires 36, 38 (ou 36′, 38′) qui présentent chacun des logements ayant la forme des condensateurs C1 à C24 (ou C′1 à C′24). Le compartiment annulaire 38 (ou 38′), le plus éloigné de la cloison médiane 24, est maintenu en assemblage par tous moyens connus et, notamment, par un couvercle 40 (ou 40′) en forme d'anneau qui vient s'emboîter sur la périphérie externe des compartiments alvéolés 36, 38 (ou 36′, 38′). Notamment, un espace annulaire 42 (42′) est laissé libre entre, d'une part, le fond du couvercle 40 (ou 40′) et, d'autre part, et le mandrin 32 (ou 32′) et le compartiment alvéolé 38 (ou 38′), pour la mise en place des diodes de redressement D1 à D24 (ou D′1 à D′24). Ces diodes sont fixées sur un circuit imprimé 44 (ou 44′) en forme de secteur annulaire (figure 4) qui est solidaire, par exemple, du compartiment alvéolé 38 (ou 38′). Ce circuit imprimé 44 (ou 44′) réalise les connexions des diodes D1 à D24 (ou D′1 à D′24) entre elles, avec une des bornes des condensateurs C1 à C24 (ou C′1 à C′24) et avec les bornes de sortie de rang impair B1, B3 ... B23 (ou B′1, B′3 ... B′23) conformément au schéma électrique de la figure 1.
  • C'est ainsi que, à titre d'exemple, sur la figure 4, la diode D1 (ou D′1) a sa cathode qui est connectée à la borne B1 (ou B′1) de l'enroulement S1 (ou S′1) et son anode qui est connectée à une des bornes du condensateur C1 (ou C′1). Par ailleurs, la borne B1 (ou B′1) est connectée à la diode D2 (ou D′2) dont la cathode est connectée, d'une part, à l'anode de la diode D3 (ou D′3) et, d'autre part, à une borne des condensateurs C2 et C3 (ou C′2 et C′3), et à ce dernier par un conducteur imprimé CI1 (ou CI′1). On remarquera que les autres conducteurs imprimés CI2 à CI11 (ou CI′2 à CI′11) connectent les autres points communs de diodes équivalentes à D2, D3 (ou D′2, D′3) aux condensateurs équivalents à C3 (ou C′3).
  • Du côté de la cloison médiane 24, il est également prévu suffisamment d'espace pour effectuer les connexions électriques entre l'autre borne de rang pair B2 à B24 (ou B′2 à B′24) des enroulements secondaires S1 à S12 (ou S′1 à S′12) avec l'autre borne des condensateurs associés. Dans la figure 5, on n'a représenté que les conducteurs de connexion CC5 à CC10 (ou CC′5 à CC′10) entre les bornes B6, B8 et B10 (ou B′6, B′8 et B′10) et les condensateurs associés C5 et C6 (ou C′5 et C′6), C7 et C8 (ou C′7 et C′8) et C9, C10 (ou C′9 , C′10). Bien entendu ces conducteurs CC5 à CC10 (ou CC′5 à CC′10) peuvent être réalisés sous la forme de conducteurs d'un circuit imprimé analogue au circuit imprimé 44 (ou 44′) portant les diodes ou sous forme de barrettes.
  • La haute tension qui est fournie par chaque circuit secondaire est prise sur une borne 46₁ (ou 46′₁) du circuit imprimé 44 (ou 44′).
  • Afin de permettre le passage de la branche externe du circuit magnétique 26, certains éléments de support des circuits primaire et secondaires, savoir, la cloison 24, le cylindre 22, les demi-coquilles 36,38,36′,38′, les pièces annulaires 44,44′ et les couvercles 40,40′, doivent présenter une encoche 48 (ou 48′).
  • Les différents éléments qui viennent d'être décrits sont assemblés par emboîtement les uns dans les autres et leur assemblage peut être maintenu par deux tirants selon la réalisation décrite dans la demande de brevet français N° 2 643 534 précitée, puis l'ensemble qui résulte de cet assemblage y compris le circuit primaire et le circuit magnétique, peut être disposé dans un circuit rempli d'un liquide isolant et réfrigérant.
  • Cependant, il est préférable d'effectuer cet assemblage selon la réalisation.décrite dans la demande de brevet N° 2 655 231 également précitée, c'est-à-dire en laissant le circuit primaire et le circuit magnétique à l'extérieur de l'enceinte de refroidissement.
  • A cet effet, on utilise les mêmes demi-coquilles 58 et 58′ que celles de la demande citée au paragraphe précédent qui réalisent les supports des couvercles 40 et 40′ et on ajoute un élément intermédiaire 50 pour tenir compte de l'allongement résultant de la présence d'un circuit secondaire supplémentaire. Cet élément intermédiaire 50 supporte l'élément central constitué par les cylindres concentriques 20 et 22 solidarisés par la cloison 24, comme le montrent les figures 3 et 6.
  • Ces deux demi-coquilles 58 et 58′ sont assemblées entre elles par l'intermédiaire de l'élément 50 à l'aide de tirants (non représentés) traversant des trous tels que ceux référencés 52, 52′, 52i percés respectivement dans les demi-coquilles 58, 58′ et l'élément intermédiaire 50. Des joints, tels que celui référencé 53 sur l'élément 50, sont prévus pour assurer l'étanchéité de l'assemblage des demi-coquilles 58 et 58′ et de l'élément 50.
  • Comme indiqué ci-dessus, chaque demi-coquille 58, 58′ est conformée sensiblement de la même manière pour servir de support de montage à un certain nombre d'éléments. Ainsi chaque demi-coquille 58 (ou 58′) comporte respectivement une paroi de fond 83 (ou 83′) et des parois latérales 84 ou 84′), 85 (ou 85′), 86 (ou 86′), 87 (ou 87′). Chaque paroi de fond comporte un cylindre central creux (trou 88 (ou 88′) qui traverse chaque demi-coquille 58 (ou 58′) et vient abuter sur un bord du cylindre 20 lors de l'assemblage par l'intermédiaire d'un joint d'étanchéité (non représenté).
  • Chaque demi-coquille 58 (ou 58′) présente une encoche 90 (ou 90′) en forme de L dont le bras vertical est situé sur la paroi de fond 83 (ou 83′) tandis que le bras horizontal est situé sur la paroi latérale 87 (ou 87′). L'encoche du bras vertical a une profondeur inférieure à celle de l'épaisseur de la demi-coquille et l'encoche du bras horizontal a une profondeur inférieure à la distance du cylindre creux à la paroi latérale 87 (ou 87′).
  • L'élément intermédiaire 50 présente également une encoche 56 en vis-à-vis des encoches 90 et 90′.
  • Ces différentes encoches 90, 90′ et 56 servent à loger l'une des branches longitudinales du circuit magnétique 26, l'autre branche étant logée dans les cylindre creux 88, 88′ et à l'intérieur du cylindre 20 de l'élément intermédiaire 50.
  • Le volume intérieur de chaque demi-coquille comporte des alvéoles pour permettre la mise en place et le maintien des éléments du circuit secondaire ainsi que d'autres éléments qui seront indiqués ci-après.
  • C'est ainsi qu'une première alvéole 91 (ou 91′) est prévue autour du cylindre creux 88 (ou 88′) pour le support et le maintien des enroulements secondaires SI à S12 (ou S′1 à S′12) disposés dans le mandrin 32 (ou 32′) et des condensateurs C1 à C24 (ou C′1 à C′24) disposés dans les compartiments alvéolés 36, 38 (ou 36′, 38′). L'alvéole 91 (ou 91′) est suffisamment profonde pour le logement du circuit imprimé 44 (ou 44′) sur lequel sont fixées les diodes D1 à D24 (ou D′1 à D′24). Une deuxième alvéole 92 (ou 92′) est réalisée dans la demi-coquille 58 (ou 58′) pour mettre en place un connecteur de sortie haute tension 93 (ou 93′) dont l'une des bornes est connectée à la borne haute tension 46 (ou 46′) (Figure 1).
  • Chaque connecteur 93 (ou 93′) est réalisé de manière classique par un manchon dont une extrémité fermée porte les plots de connexion situés dans l'alvéole 92 (ou 92′) à proximité de la borne de sortie haute tension 46 (ou 46′).
  • L'autre extrémité du manchon du connecteur est ouverte et sert de passage des conducteurs de sortie par l'intermédiaire d'une prise mâle non représentée et montée hermétiquement dans un orifice dans la paroi latérale 85 (ou 85′) à l'aide d'un joint et d'une plaque (non représentés) vissée sur la paroi latérale.
  • Une quatrième alvéole 96, disposée par exemple dans la demi-coquille 58, permet la mise en place d'un vase 97 rempli d'air pour absorber les dilatations du milieu isolant et réfrigérant. L'intérieur de ce vase de dilatation communique avec l'extérieur de la cuve par un conduit 98.
  • Une cinquième alvéole 96′, disposée dans la demi-coquille 58′, permet la mise en place d'un circuit électrique 99 de mesure de tension. Ce circuit électrique est constitué, comme on l'a indiqué en relation avec la figure 1, d'une résistance R et d'un condensateur variable C en parallèle et d'un éclateur 9.
  • Une sixième alvéole 100 dans la coquille 58 est prévue pour mettre en place et maintenir un premier transformateur 101 pour alimenter un premier filament de la cathode du tube.
  • Une septième alvéole 100′ dans la demi-coquille 58′ est prévue pour mettre en place et maintenir un transformateur 101′ pour alimenter un deuxième filament de la cathode du tube.
  • Les différentes alvéoles qui viennent d'être décrites sont séparées par des parois, telles que celle référencée 102 (ou 102′), dont les formes épousent celles des éléments qu'ils doivent maintenir. Ces parois sont percées d'orifices tels que celui référencé 103′ dans la paroi 102′ pour permettre l'écoulement du liquide isolant et réfrigérant.
  • Pour le remplissage de la cuve, formée par l'assemblage des deux demi-coquilles 58, 58′ et de l'élément intermédiaire 50, par le liquide isolant et réfrigérant, il est prévu deux orifices 104 et 104′ percés respectivement dans les parois latérale 85 et 85′ et munis respectivement de bouchons 105 et 105′.
  • Il peut être prévu d'autres orifices d'entrée et de sortie dans le cas où l'on prévoit une circulation du milieu isolant et réfrigérant.
  • Après montage et câblage des différents éléments des circuits secondaires dans les demi-coquilles 58 et 58′ et l'élément intermédiaire 50, ce dernier est assemblé avec les demi-coquilles de manière à réaliser une cuve étanche sur laquelle sont montés à l'intérieur les différents éléments du circuit primaire et du circuit magnétique.
  • Ainsi le ou les enroulements primaires 12 et 12′ sont disposés à l'intérieur du cylindre 20 et des cylindres creux des demi-coquilles 58 et 58′ tandis que les branches internes horizontales des demi-circuits magnétiques 28 et 28′ traversent le cylindre 20 et les cylindres creux 88 et 88′ à l'intérieur du ou des enroulements primaires 12 ou 12′ de manière à abuter l'une contre l'autre selon la ligne 43 sur leurs faces en regard.
  • Les branches externes horizontales des circuits magnétiques viennent se loger dans les encoches 90, 90′ et 56. Les branches verticales des circuits magnétiques viennent se loger dans les parties verticales des encoches 90 et 90′.
  • Pour maintenir entre eux les différents éléments du circuit magnétique 26, il est prévu des moyens (non représentés sur les figures) à la portée de l'homme de métier, tels que des plaques qui s'appliquent sur les branches verticales du circuit magnétique et qui sont fixées sur les demi-coquilles 58 et 58′. Ces plaques peuvent également servir de support à un ventilateur (non représenté) pour refroidir l'enroulement primaire et le circuit magnétique en effectuant un écoulement forcé et rapide de l'air à l'intérieur des cylindres creux 88 et 88′ et du cylindre 20.
  • Comme dans la demande de brevet N° 2 655 231, les demi-coquilles 58, 58′ et l'élément intermédiaire 50 sont réalisés en un matériau isolant tel qu'une matière plastique. Afin de réaliser une protection électrique, la paroi extérieure des éléments 58, 58′ et 50 est revêtue d'une enveloppe métallique ou d'une couche conductrice qui est réalisée de manière à ne pas court-circuiter les enroulements secondaires. L'enveloppe métallique ou la couche conductrice est connectée à la masse.
  • Avec le dispositif et le bloc d'alimentation haute tension qui viennent d'être décrits, l'utilisation d'un circuit magnétique 26 réalisé par deux demi-circuits magnétiques 28 et 28′ en forme de fer à cheval (lettre C) permet de doubler la surface de la fenêtre et donc de coupler deux circuits secondaires avec le ou les circuits primaires par l'intermédiaire du même circuit magnétique.
  • Ces deux circuits secondaires peuvent être connectés en parallèle ou en série. Dans une connexion en parallèle, le nombre de tours de chaque enroulement peut être réparti sur les deux bobines, ce qui permet l'augmentation de la section du fil conducteur et donc l'augmentation de la puissance.
  • Dans une connexion en série, un circuit secondaire est affecté à produire la tension positive tandis que l'autre circuit secondaire est affecté à produire la tension négative, ce qui double la tension à courant constant.
  • Dans le cas d'une connexion en série des deux circuits secondaires en un seul point qui constitue leur point milieu relié à la masse, la rigidité diélectrique intrinsèque de l'ensemble est égale à celle d'un seul circuit secondaire, du fait de l'indépendance de chacun des circuits secondaires. En conséquence, vue de l'extérieur, la tension de sortie peut être doublée sans affecter les marges sur la tenue en tension.
  • Comme les circuits secondaires peuvent être construits de manière identique et sont positionnés dans les mêmes conditions de flux et de géométrie par rapport au circuit magnétique, le dispositif de l'invention permet d'obtenir des hautes tensions parfaitement égales aux bornes de chaque circuit secondaire et donc des hautes tensions parfaitement symétriques dans le cas de la connexion en série des circuits secondaires.

Claims (9)

  1. Dispositif d'alimentation haute tension pour tube à rayons X comprenant un transformateur (10) qui comporte au moins un enroulement primaire (12, 12′), une pluralité d'enroulements secondaires (S1 à S12, S′1 à S′12) et un circuit magnétique (26) de couplage, les deux bornes de sortie de chacun des dits enroulements secondaires étant connectés à un circuit redresseur-doubleur de tension qui est constitué de deux diodes et de deux condensateurs de filtrage, lesdits circuits redresseur-doubleur étant connectés entre eux de manière que leur tensions de sortie s'additionnent, les enroulements primaire et secondaires étant réalisés par des bobines concentriques, les bornes de sortie des dits enroulements secondaires étant réparties sur chaque côté latéral des dites bobines, les condensateurs étant disposés sur la périphérie externe des dites bobines et les diodes étant disposées sur un côté latéral des dites bobines, caractérisé en ce que :
    - la pluralité d'enroulements secondaires est scindée en deux séries (S1 à S12 et S′1 à S′12) qui correspondent chacune à un circuit secondaire séparé,
    - les bobines des enroulements secondaires S1 à S12 d'une série étant séparés axialement des bobines des enroulements secondaires (S′1 à S′12) de l'autre série,
    - lesdits condensateurs de filtrage de chaque circuit secondaire séparé sont disposés à la périphérie externe des dites bobines de la série, et
    - lesdites diodes sont disposées sur un côté latéral des dites bobines de la série.
  2. Dispositif selon la revendication 1, caractérisé en ce que les bobines des enroulements secondaires d'une série sont séparées des bobines des enroulements secondaires de l'autre série par une cloison (24) électriquement isolante qui est disposée perpendiculairement à l'axe des dites bobines.
  3. Dispositif selon la revendication 2, caractérisé en ce que ladite cloison isolante est annulaire et sert de support à deux cylindres, l'un (20) disposé à l'intérieur de l'anneau formant cloison (24) et l'autre (22) disposé à l'extérieur du dit anneau, lesdits cylindres définissant de part et d'autre de la cloison (20) un espace annulaire (30, 30′), chaque espace annulaire servant à loger les bobines des enroulements secondaires (S1 à S12, S′1 à S′12) et les condensateurs (C1 à C24, C′1 à C′24).
  4. Dispositif selon la revendication 3, caractérisé en ce que le ou les enroulements primaires ainsi qu'une branche dudit circuit magnétique sont disposés à l'intérieur de cylindre interne (20) de la cloison annulaire (24).
  5. Dispositif selon la revendication 3 ou 4, caractérisé en ce que les enroulements secondaires (S1 à S12, S′1 à S′12) d'une série sont bobinés sur un même mandrin (32, 32′) dont la périphérie est fermée par un couvercle (34).
  6. Dispositif selon la revendication 3, 4 ou 5, caractérisé en ce que lesdits condensateurs de chaque série sont disposés et maintenus dans des alvéoles réalisées dans deux demi-coquilles concentriques (36, 38, 36′, 38′) qui s'emboîtent l'une dans l'autre, l'ensemble des deux demi-coquilles s'emboîtant d'un côté dans ledit espace annulaire (30, 30′) et de l'autre dans un couvercle (40, 40′) creux de forme annulaire.
  7. Dispositif selon la revendication 6, caractérisé en ce que chaque couvercle (40, 40′) présente une surface interne qui est conformée de manière à définir un espace annulaire pour disposer une pièce annulaire (44, 44′) servant de support auxdites diodes (D1 à D24, D′1 à D′24).
  8. Dispositif selon l'une des revendications 2 à 7, caractérisé en ce que la cloison 24, le cylindre 22, les demi-coquilles (36, 38, 36′ 38′), les pièces annulaires (44, 44′) et les couvercles (40, 40′) présentent une encoche pour le passage d'une autre branche du circuit magnétique 26.
  9. Dispositif selon l'une des revendications précédentes 1 à 8, caractérisé en ce que le cylindre creux (22), les couvercles (40 et 40′) sont portés chacun par une structure extérieure (50, 58, 58′), lesdites structures extérieures étant prévues pour s'assembler entre elles de manière étanche.
EP92402350A 1991-09-03 1992-08-27 Dispositif et bloc d'alimentation haute tension pour tube à rayons X. Expired - Lifetime EP0531189B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9110888A FR2680939B1 (fr) 1991-09-03 1991-09-03 Dispositif et bloc d'alimentation haute tension pour tube a rayons x.
FR9110888 1991-09-03

Publications (2)

Publication Number Publication Date
EP0531189A1 true EP0531189A1 (fr) 1993-03-10
EP0531189B1 EP0531189B1 (fr) 1995-03-29

Family

ID=9416585

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92402350A Expired - Lifetime EP0531189B1 (fr) 1991-09-03 1992-08-27 Dispositif et bloc d'alimentation haute tension pour tube à rayons X.

Country Status (5)

Country Link
US (1) US5257304A (fr)
EP (1) EP0531189B1 (fr)
JP (1) JPH05251196A (fr)
DE (1) DE69201842T2 (fr)
FR (1) FR2680939B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056648A1 (fr) * 2001-01-10 2002-07-18 Sociedad Española De Electromedicina Y Calidad, S.A. Transformateur haute tension

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2700657B1 (fr) * 1993-01-15 1995-02-17 Gen Electric Cgr Ensemble radiogène.
EP0847249A4 (fr) * 1995-08-24 2004-09-29 Medtronic Ave Inc Catheter a rayons x
DE19538488C1 (de) * 1995-10-16 1996-11-28 Siemens Ag Transformator für eine Gleichrichterschaltung
DE102007032808A1 (de) * 2007-07-13 2009-01-15 Siemens Ag Potenzialsteuerung bei Hochspannungsvorrichtungen
US7577235B2 (en) * 2008-01-09 2009-08-18 General Electric Company Voltage generator of a radiation generator
AU2014364347B2 (en) * 2014-01-28 2018-04-19 Sociedad Espanola De Electromedicina Y Calidad, S.A. High-voltage, high-frequency and high-power transformer
DE102015213810B4 (de) * 2015-07-22 2021-11-25 Siemens Healthcare Gmbh Hochspannungszuführung für einen Röntgenstrahler
CN111326318B (zh) * 2020-02-26 2021-08-24 广州地铁设计研究院股份有限公司 一种牵引整流干式变压器、变压器系统及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541424A (en) * 1969-05-19 1970-11-17 Sumitomo Electric Industries High voltage generating device
US3611032A (en) * 1969-06-16 1971-10-05 High Voltage Engineering Corp Electromagnetic induction apparatus for high-voltage power generation
US4338657A (en) * 1974-05-21 1982-07-06 Lisin Vladimir N High-voltage transformer-rectifier device
EP0116996A2 (fr) * 1983-02-18 1984-08-29 Koninklijke Philips Electronics N.V. Alimentation en courant électrique à haute tension
WO1986006892A1 (fr) * 1985-05-03 1986-11-20 Budapesti Mu^"Szaki Egyetem Circuit de production de tension continue elevee a partir d'une tension alternative a moyenne frequence
EP0430755A1 (fr) * 1989-11-24 1991-06-05 General Electric Cgr S.A. Bloc haute tension pour tube à rayons X avec cuve de refroidissement intégrée au circuit secondaire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081813A (ja) * 1983-10-12 1985-05-09 Toshiba Corp 高圧トランス
FR2643534B1 (fr) * 1989-02-02 1993-09-17 Gen Electric Cgr Dispositif d'alimentation haute tension pour tube a rayons x
DE3929888A1 (de) * 1989-09-08 1991-03-14 Philips Patentverwaltung Roentgengenerator zum betrieb einer roentgenroehre mit an masse angeschlossenen roehrenteilen
US5166965A (en) * 1991-04-11 1992-11-24 Varian Associates, Inc. High voltage dc source including magnetic flux pole and multiple stacked ac to dc converter stages with planar coils

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541424A (en) * 1969-05-19 1970-11-17 Sumitomo Electric Industries High voltage generating device
US3611032A (en) * 1969-06-16 1971-10-05 High Voltage Engineering Corp Electromagnetic induction apparatus for high-voltage power generation
US4338657A (en) * 1974-05-21 1982-07-06 Lisin Vladimir N High-voltage transformer-rectifier device
EP0116996A2 (fr) * 1983-02-18 1984-08-29 Koninklijke Philips Electronics N.V. Alimentation en courant électrique à haute tension
WO1986006892A1 (fr) * 1985-05-03 1986-11-20 Budapesti Mu^"Szaki Egyetem Circuit de production de tension continue elevee a partir d'une tension alternative a moyenne frequence
EP0430755A1 (fr) * 1989-11-24 1991-06-05 General Electric Cgr S.A. Bloc haute tension pour tube à rayons X avec cuve de refroidissement intégrée au circuit secondaire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056648A1 (fr) * 2001-01-10 2002-07-18 Sociedad Española De Electromedicina Y Calidad, S.A. Transformateur haute tension
ES2172458A1 (es) * 2001-01-10 2002-09-16 Es De Electromedicina Y Calida Transformador de alta tension.
US6836534B2 (en) 2001-01-10 2004-12-28 Sociedad Espanola De Electromedicina Y Calidad, S.A. High voltage transformer

Also Published As

Publication number Publication date
FR2680939A1 (fr) 1993-03-05
EP0531189B1 (fr) 1995-03-29
JPH05251196A (ja) 1993-09-28
FR2680939B1 (fr) 1993-11-26
US5257304A (en) 1993-10-26
DE69201842T2 (de) 1995-07-27
DE69201842D1 (de) 1995-05-04

Similar Documents

Publication Publication Date Title
EP0381580B1 (fr) Dispositif d'alimentation haute tension pour tube à rayons X
EP0430755B1 (fr) Bloc haute tension pour tube à rayons X avec cuve de refroidissement intégrée au circuit secondaire
US8174817B2 (en) Sealed and impregnated wound capacitor assemblies
EP0531189B1 (fr) Dispositif et bloc d'alimentation haute tension pour tube à rayons X.
FR2473804A1 (fr) Stator pour alternateur
EP0430735B1 (fr) Connecteur haute tension pour tube à rayons X
EP0017529B1 (fr) Condensateur céramique de puissance
EP0162766B1 (fr) Dispositif de stockage à haute tension et à haute énergie et générateur d'impulsions en comportant application
FR2680938A1 (fr) Bloc radiogene avec dispositif d'alimentation haute tension integre dans la gaine.
EP0314552B1 (fr) Ensemble radiogène à protection intégrale contre les rayonnements de fuite
EP0313439A1 (fr) Dispositif de stockage d'énergie électrique à très haute tension
FR2628270A1 (fr) Generateur d'impulsions electriques du type a inductance saturable
EP3072173B1 (fr) Module de stockage d'énergie, comprenant une pluralité d'ensembles de stockage d'énergie
FR2462712A1 (fr) Dispositif de mesure de tensions alternatives elevees dans des installations de distribution haute tension
EP0915546B1 (fr) Ligne électrique à isolation gazeuse et à condensateur de puissance incorporée
EP1195871B1 (fr) Ligne polyphasée à isolation gazeuse et module de raccordement pour un passage polyphase/monophase dans une telle ligne
EP0165845A1 (fr) Transformateur à fort couplage primaire-secondaire
FR2813452A1 (fr) Cloison etanche de compartimentage et installation electrique blindee triphasee a isolation gazeuse pourvue d' une telle cloison
FR2673760A1 (fr) Condensateur pour generateur haute energie.
FR3104801A1 (fr) Dispositif électrotechnique pour un aéronef
BE695929A (fr)
BE507511A (fr)
FR3078816A1 (fr) Dispositif d’electronique de puissance comportant un transformateur plan et une structure de refroidissement
CH540556A (fr) Condensateur, notamment pour tensions et fréquences élevées
BE400430A (fr) Appareil a rayons X

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL

17P Request for examination filed

Effective date: 19930326

17Q First examination report despatched

Effective date: 19930805

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950329

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19950329

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950328

REF Corresponds to:

Ref document number: 69201842

Country of ref document: DE

Date of ref document: 19950504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950809

Year of fee payment: 4

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050824

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050930

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060827