EP0521523A1 - Process for running a cupola - Google Patents

Process for running a cupola Download PDF

Info

Publication number
EP0521523A1
EP0521523A1 EP92111337A EP92111337A EP0521523A1 EP 0521523 A1 EP0521523 A1 EP 0521523A1 EP 92111337 A EP92111337 A EP 92111337A EP 92111337 A EP92111337 A EP 92111337A EP 0521523 A1 EP0521523 A1 EP 0521523A1
Authority
EP
European Patent Office
Prior art keywords
zone
cupola
furnace
wind
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92111337A
Other languages
German (de)
French (fr)
Other versions
EP0521523B1 (en
Inventor
Manfred Dr. Dipl.-Ing. Rossmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0521523A1 publication Critical patent/EP0521523A1/en
Application granted granted Critical
Publication of EP0521523B1 publication Critical patent/EP0521523B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/02Making pig-iron other than in blast furnaces in low shaft furnaces or shaft furnaces

Definitions

  • the invention relates to a method for operating a cupola furnace for the production of cast iron, in which the furnace shaft of the cupola furnace is filled with a corresponding insert or is constantly topped up and cast iron melt is removed from the bottom, with wind, e.g. Air, and optionally additional oxygen, and the top gas is discharged in the upper shaft area, and the furnace shaft can be divided into a charging zone, a preheating zone, a melting zone, a wind zone and an oven zone during operation.
  • wind e.g. Air
  • a cupola furnace is loaded with an insert of 500 kg, which is composed of 440 kg of pig iron and scrap, 47 kg of coke and 13 kg of additives, e.g. limestone.
  • This insert gradually sinks in the shaft of the cupola furnace and heats up in the preheating zone due to the gases flowing in countercurrent, which initially causes the thermal dissociation of the aggregates, i.e. that of the limestone according to the equation, at approx CaCO3 ---> CaO + CO2 he follows. Melting of the iron insert then begins in the melting zone adjoining the preheating zone. The temperatures there are of the order of approx. 1400 ° C and the coke in use is already incandescent in this zone.
  • the object of the present invention is therefore to provide a possibility (s) of being able to influence the CO content in cupola furnaces, regardless of The level of the coke in the furnace and the proportion of coke in the oven vary and can be set to a certain desired value.
  • This object is achieved according to the invention in that in order to set a desired CO content in the cupola furnace, in particular in the melting zone, a coal gas (CO2 or CO) in a suitable amount at a suitable point, preferably in the region of the wind or melting zone, in the Cupola is introduced.
  • a coal gas CO2 or CO
  • the CO level is increased precisely in the zone in which CO is formed anyway by reduction.
  • the CO level in the melting zone in the cupola furnace can be effectively increased with just a few cubic meters per hour, in particular to largely compensate for the phases of low CO formation, for example when the filling coke level is low.
  • carbon monoxide is an expensive supply gas and the process will therefore not be used in this form.
  • Another advantageous variant of the method according to the invention is that the coal gas is introduced in the wind zone in a quantity-controlled manner, so that an approximately constant CO level is achieved in the cupola furnace.
  • the regulation of an approximately constant level of CO can be achieved by increasing the addition of carbon gas as the filling coke height decreases.
  • the addition of carbon gas is carried out on a scale that allows a reduction in the amount of coke.
  • These are gas supply quantities in the order of 30 to 500 m3 per hour, depending on the size of the coke reduction and the size of the furnace. In this way, savings on batch coke in the order of 1 to 3% are possible with the further advantage that melting capacity increases are achieved, because according to the Jungblut network diagram, less batch coke means a higher melting capacity.
  • CO2 in most variants of the invention is advantageous for price and technical reasons, but it can also be beneficial to supply CO and CO2 simultaneously. Since CO2 introduced in the wind zone of a cupola furnace acts as a cooling gas, a simultaneous addition of CO to the CO2 supply can be advantageous if the cooling effect is too strong (CO burns in the wind zone, thus provides energy and at the same time increases the CO2 amount, which in turn is available for reduction).
  • the carbon gases are provided in storage containers for the applications according to the invention reliably, with a constant composition and with optimal meterability.
  • a sometimes beneficial option is there in that the coal gases, especially CO2, are obtained from burner exhaust gases, in particular the exhaust gases from the cupola recuperator burner, and thus provide at least part of the required amount of gas.
  • the figure shows a cupola furnace on which an embodiment of the invention is shown.
  • a cupola shaft 11 with a loading opening 12, a top stage 13, a wind ring 14 with wind nozzles 15a and 15b, a bottom flap 16 as well as an iron tapping 17 and a slag tapping 18 is shown.
  • the numerical zone 5 Within the furnace, the numerical zone 5, the preheating zone 4, the melting zone 3, the wind zone 2 and finally the hearth zone 1 are indicated by the numbers 1 to 5 and the associated dashed lines.
  • Lances 20a, b are arranged in the wind nozzles 15a and 15b for the furnace wind and are connected to an oxygen supply and a carbon dioxide supply outside the furnace.
  • a cupola furnace operation is now carried out, in which an application as described in the introduction is used. Only the amount of coke is significantly reduced and is significantly lower at around 37 kg (around 7% of the operating weight). 200 m3 of carbon dioxide per hour are now fed to the cupola furnace on lances 20a and 20b. With around 10 sets of insert that pass through the furnace per hour, this corresponds to a gas volume of 20 m3 per insert. The main part of the coke produced in the oven CO2 is thus replaced by the direct supply of CO2 gas.
  • the gas supply can be carried out constantly with little equipment - installation of a valve and a flow meter in the CO2 supply.
  • a gas supply synchronized with the addition of the inserts is also comparatively simple, whereby starting from a lowest supply value shortly after the furnace has been loaded with a new insert, the gas quantity is increased linearly up to a maximum value for the next loading, although the total the same amount of gas is maintained as with constant supply.
  • oxygen can also be supplied via the lances 20a and b, the amount of wind in correlation can thus be suitably reduced and thus higher furnace temperatures can be maintained in spite of the reduction in coke and CO2 addition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Secondary Cells (AREA)

Abstract

The invention relates to a process for running a cupola furnace for the production of cast iron. When running a cupola furnace, formation of CO, accompanied by advantages, occurs in the cupola furnace, above all in the fusion zone. This formation of CO varies with the coke filling level and, in certain operating cases, reaches undesirably low values. In order to counteract this, it is proposed that a coal gas (CO2 or CO) is introduced at a suitable rate into the cupola furnace at a suitable point, preferably in the region of the air inlet zone or fusion zone. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Kupolofens zur Erzeugung von Gußeisen, bei dem der Ofenschacht des Kupolofens mit einem entsprechenden Einsatz gefüllt ist bzw. ständig nachgefüllt wird und bodenseitig Gußeisenschmelze entnommen wird, wobei dem Ofenschacht im unteren Bereich Wind, z.B. Luft, und gegebenenfalls zusätzlich Sauerstoff zugeführt und im oberen Schachtbereich das Gichtgas abgeführt wird und wobei der Ofenschacht im Betrieb von oben nach unten in eine Beschickungszone, eine Vorwärmzone, eine Schmelzzone, eine Windzone sowie eine Herdzone einteilbar ist.The invention relates to a method for operating a cupola furnace for the production of cast iron, in which the furnace shaft of the cupola furnace is filled with a corresponding insert or is constantly topped up and cast iron melt is removed from the bottom, with wind, e.g. Air, and optionally additional oxygen, and the top gas is discharged in the upper shaft area, and the furnace shaft can be divided into a charging zone, a preheating zone, a melting zone, a wind zone and an oven zone during operation.

Im Standardbetrieb wird ein Kupolofen beispielsweise mit einem Einsatz von 500 kg beschickt, der sich aus 440 kg Roheisen und Schrott, 47 kg Koks und 13 kg Zuschlagstoffen, z.B. Kalksteinen, zusammensetzt. Dieser Einsatz sinkt nach und nach im Schacht des Kupolofens ab, erwärmt sich dabei in der Vorwärmzone durch die im Gegenstrom zum Einsatz fließenden Gase, wodurch bei ca. 900 bis 1000°C zunächst die thermische Dissoziation der Zuschlagstoffe, also die des Kalksteins gemäß der Gleichung



        CaCO₃ ---> CaO + CO₂



erfolgt. In der sich an die Vorwärmzone anschließenden Schmelzzone beginnt dann das Schmelzen des Eiseneinsatzes. Die Temperaturen dort sind in der Größenordnung von ca. 1400°C und der im Einsatz befindliche Koks ist in dieser Ofenzone bereits weißglühend. Dessen Verbrennung erfolgt jedoch erst in der noch tiefer liegenden Windzone des Kupolofens, da erst dort der zur Verbrennung notwendige Sauerstoff vorhanden ist. Aus der Verbrennung des Kokses gemäß der Gleichung



        C + O₂ ---> CO₂



geht Kohlendioxid hervor, das mit dem von der Windzufuhr herrührenden Gasstrom im Ofen weitertransportiert wird. Dieses CO₂ durchläuft beim Aufsteigen im Kupolofen die höher liegende Schmelzzone und wird in dieser von dem glühenden, dort noch nicht verbrannten Koks gemäß Boudouard Reaktion reduziert, wodurch Kohlenmonoxid (CO) entsteht:



        CO₂ + C <---> CO.



Dieses Kohlenmonoxid wiederum ist für die Funktion und Produktqualität des Kupolofens wichtig, da es dem Abbrand des Einsatzeisens, also der FeO-Bildung, entgegenwirkt und auch eine vorteilhafte Wirkung bezüglich der Schlackebasizität besitzt.
In standard operation, for example, a cupola furnace is loaded with an insert of 500 kg, which is composed of 440 kg of pig iron and scrap, 47 kg of coke and 13 kg of additives, e.g. limestone. This insert gradually sinks in the shaft of the cupola furnace and heats up in the preheating zone due to the gases flowing in countercurrent, which initially causes the thermal dissociation of the aggregates, i.e. that of the limestone according to the equation, at approx



CaCO₃ ---> CaO + CO₂



he follows. Melting of the iron insert then begins in the melting zone adjoining the preheating zone. The temperatures there are of the order of approx. 1400 ° C and the coke in use is already incandescent in this zone. However, its combustion only takes place in the wind zone of the cupola furnace, which is even lower, since the oxygen necessary for combustion is only available there. From the combustion of the coke according to the equation



C + O₂ ---> CO₂



carbon dioxide is produced, which is transported further in the furnace with the gas stream resulting from the wind supply. This CO₂ passes through the higher melting zone when it rises in the cupola furnace and is reduced in it by the red-hot, not yet burned coke according to the Boudouard reaction, whereby carbon monoxide (CO) is formed:



CO₂ + C <---> CO.



This carbon monoxide in turn is important for the function and product quality of the cupola furnace, since it counteracts the burn-off of the insert iron, i.e. the formation of FeO, and also has an advantageous effect with regard to the slag basicity.

Hierbei ist zu berücksichtigen, daß die CO-Bildung in der Schmelzzone stark vom Füllstand des Füllkokses in der Kupolofensäule abhängt und diese im Gleichgewicht mit dem Satzkoksanteil steht. D.h. niedriger Füllkoksstand und ggfs. niedriger Satzkoksanteil bedingen einen sehr niedrigen CO-Gehalt im oberen Kupolofenbereich. In der Folge sind auch die oben ausgeführten, vorteilhaften Effekte nicht mehr gewährleistet. Dies gilt heute umso mehr, als durch die ökonomisch immer weiter verbesserten Kupolofenanlagen ohnehin vergleichsweise niedrige Satzkoksanteile möglich sind.It must be taken into account here that the CO formation in the melting zone is strongly dependent on the filling level of the filling coke in the cupola furnace column and that this is in equilibrium with the batch coke portion. I.e. low filling coke level and possibly low batch coke content result in a very low CO content in the upper cupola area. As a result, the advantageous effects set out above are no longer guaranteed. This is all the more true today, since the economically continuously improved cupola furnace systems make comparatively low coke levels possible.

Die Aufgabenstellung vorliegender Erfindung besteht daher darin, eine Möglichkeit(en) anzugeben, den CO-Gehalt in Kupolöfen beeinflussen zu können, diesen unabhängig vom Füllstand des Kokses im Ofen und vom Anteil des Satzkokses variieren und auf einen bestimmten gewünschten Wert einstellen zu können.The object of the present invention is therefore to provide a possibility (s) of being able to influence the CO content in cupola furnaces, regardless of The level of the coke in the furnace and the proportion of coke in the oven vary and can be set to a certain desired value.

Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß zur Einstellung eines gewünschten CO-Gehalts im Kupolofen, insbesondere in der Schmelzzone, ein Kohlengas (CO₂ oder CO) in geeigneter Menge an geeigneter Stelle, vorzugsweise im Bereich von Wind- oder Schmelzzone, in den Kupolofen eingebracht wird.This object is achieved according to the invention in that in order to set a desired CO content in the cupola furnace, in particular in the melting zone, a coal gas (CO₂ or CO) in a suitable amount at a suitable point, preferably in the region of the wind or melting zone, in the Cupola is introduced.

Beispielsweise durch die Zufuhr von Kohlenmonoxid in die Schmelzzone 3 des Kupolofens wird erreicht, daß gerade in der Zone, in der ohnehin CO durch Reduktion gebildet wird, das CO-Niveau erhöht wird. Auf diese Weise läßt sich mit bereits wenigen Kubikmetern pro Stunde das CO-Niveau in der Schmelzzone im Kupolofen effektiv erhöhen, um insbesondere die Phasen niedriger CO-Bildung,beispielsweise bei niedrigem Füllkoksstand, in weitreichendem Ausmaß auszugleichen. Kohlenmonoxid stellt prinzipiell allerdings ein teures Liefergas dar und das Verfahren wird demzufolge in dieser Form nicht bevorzugt zur Anwendung kommen.For example, by supplying carbon monoxide to the melting zone 3 of the cupola furnace, the CO level is increased precisely in the zone in which CO is formed anyway by reduction. In this way, the CO level in the melting zone in the cupola furnace can be effectively increased with just a few cubic meters per hour, in particular to largely compensate for the phases of low CO formation, for example when the filling coke level is low. In principle, however, carbon monoxide is an expensive supply gas and the process will therefore not be used in this form.

Im wesentlichen die gleichen Effekte werden mit einer Kohlendioxidzugabe in der Windzone des Kupolofens erreicht, denn durch die CO₂-Zugabe wird dem durch die Verbrennung des Kokses entstehenden CO₂-Gas ein weiterer Anteil CO₂ hinzugefügt und aus dem so vergrößerten CO₂-Angebot in der Schmelzzone, in der ja eine CO₂-Reduktion gemäß der Boudouard Reaktion erfolgt, eine größere Menge Kohlenmonoxid erzeugt. In der Folge steigt wiederum das CO-Niveau mit den positiven Wirkungen wie Abbrandvermeidung und vorteilhafter Schlackenbildung. Beispielsweise die konstante Zufuhr von CO₂-Gas, aber auch die von CO, in die Windzone des Kupolofens ist deshalb eine günstige Variante des erfindunsgemäßen Verfahrens.Essentially the same effects are achieved with an addition of carbon dioxide in the wind zone of the cupola furnace, because the addition of CO₂ adds a further portion of CO₂ to the CO₂ gas resulting from the combustion of the coke and from the increased CO₂ supply in the melting zone, in which a CO₂ reduction takes place according to the Boudouard reaction, produces a larger amount of carbon monoxide. As a result, the CO level in turn increases with the positive effects such as prevention of burn-up and advantageous slag formation. For example, the constant supply of CO₂ gas, but also that of CO, in the wind zone of the cupola furnace is therefore an inexpensive variant of the process according to the invention.

Eine andere vorteilhafte Variante des erfindungsgemäßen Verfahrens besteht darin, daß das Kohlengas in der Windzone in mengengeregelter Weise eingebracht wird, so daß ein etwa gleichbleibendes CO-Niveau im Kupolofen erzielt wird. Die Einregelung eines etwa gleichbleibenden Niveaus an CO kann dadurch erreicht werden, daß mit abnehmender Füllkokshöhe die Kohlengaszugabe entsprechend erhöht wird.Another advantageous variant of the method according to the invention is that the coal gas is introduced in the wind zone in a quantity-controlled manner, so that an approximately constant CO level is achieved in the cupola furnace. The regulation of an approximately constant level of CO can be achieved by increasing the addition of carbon gas as the filling coke height decreases.

In einer weiteren und weitergehenden Erfindungsvariante wird eine Kohlengas-Zugabe in einer Größenordnung durchgeführt wird, die eine Absenkung der Satzkoksmenge zuläßt. Dabei handelt es sich um Gaszufuhrmengen in der Größenordnung von 30 bis 500 m³ pro Stunde, abhängig von der Größe der Satzkoksreduzierung und der Ofengröße. Auf diese Weise werden Einsparungen an Satzkoks in einer Größenordnung von 1 bis 3 % mit dem weiteren Vorteil möglich, daß Schmelzleistungserhöhungen erzielt werden, denn nach dem Netzdiagramm von Jungblut bedeutet weniger Satzkoks eine höhere Schmelzleistung.In a further and further variant of the invention, the addition of carbon gas is carried out on a scale that allows a reduction in the amount of coke. These are gas supply quantities in the order of 30 to 500 m³ per hour, depending on the size of the coke reduction and the size of the furnace. In this way, savings on batch coke in the order of 1 to 3% are possible with the further advantage that melting capacity increases are achieved, because according to the Jungblut network diagram, less batch coke means a higher melting capacity.

Im allgemeinen ist die Anwendung von CO₂ in den meisten Varianten der Erfindung aus preislichen und technischen Gründen vorteilhaft, es kann jedoch auch die gleichzeitige Zufuhr von CO und CO₂ günstig sein. Da in der Windzone eines Kupolofens eingebrachtes CO₂ als Kühlgas wirkt, kann, bei zu starker Kühlwirkung, eine gleichzeitige CO-Zugabe zur CO₂-Zufuhr vorteilhaft sein (CO verbrennt in der Windzone, liefert also Energie und erhöht gleichzeitig so auch die CO₂-Menge, die wiederum zur Reduktion zur Verfügung steht).In general, the use of CO₂ in most variants of the invention is advantageous for price and technical reasons, but it can also be beneficial to supply CO and CO₂ simultaneously. Since CO₂ introduced in the wind zone of a cupola furnace acts as a cooling gas, a simultaneous addition of CO to the CO₂ supply can be advantageous if the cooling effect is too strong (CO burns in the wind zone, thus provides energy and at the same time increases the CO₂ amount, which in turn is available for reduction).

Zuverlässig, mit gleichbleibender Zusammensetzung und mit optimaler Dosierbarkeit werden die Kohlengase in Speicherbehältern für die erfindungsgemäßen Anwendungen bereitgestellt. Eine manchmal vorteilhafte Möglichkeit besteht darin, die Kohlengase, vor allem CO₂, aus Brennerabgasen, insbesondere den Abgasen des Kupolofen-Rekuperator-Brenners, zu gewinnen und so zumindest ein Teil der benötigten Gasmenge bereitzustellen.The carbon gases are provided in storage containers for the applications according to the invention reliably, with a constant composition and with optimal meterability. A sometimes beneficial option is there in that the coal gases, especially CO₂, are obtained from burner exhaust gases, in particular the exhaust gases from the cupola recuperator burner, and thus provide at least part of the required amount of gas.

Anhand der Figur soll beispielhaft die Erfindung näher erläutert werden.The invention will be explained in more detail by way of example with reference to the figure.

Die Figur zeigt einen Kupolofen, an dem eine Ausführung der Erfindung gezeigt ist. Zunächst ist ein Kupolofenschacht 11 mit einer Beschickungsöffnung 12, einer Gichtbühne 13, einem Windring 14 mit Winddüsen 15a und 15b, einer Bodenklappe 16 sowie einem Eisenabstich 17 und einem Schlackenabstich 18 gezeigt.The figure shows a cupola furnace on which an embodiment of the invention is shown. First of all, a cupola shaft 11 with a loading opening 12, a top stage 13, a wind ring 14 with wind nozzles 15a and 15b, a bottom flap 16 as well as an iron tapping 17 and a slag tapping 18 is shown.

Innerhalb des Ofens sind mit den Ziffern 1 bis 5 sowie zugehörigen gestrichelten Linien die Gattierungszone 5, die Vorwärmzone 4, die Schmelzzone 3, die Windzone 2 und letztlich die Herdzone 1 angedeutet.Within the furnace, the numerical zone 5, the preheating zone 4, the melting zone 3, the wind zone 2 and finally the hearth zone 1 are indicated by the numbers 1 to 5 and the associated dashed lines.

In den Winddüsen 15a und 15b für den Ofenwind sind Lanzen 20a,b angeordnet, die außerhalb des Ofens mit einer Sauerstoffversorgung und einer Kohlendioxidversorgung verbunden sind.Lances 20a, b are arranged in the wind nozzles 15a and 15b for the furnace wind and are connected to an oxygen supply and a carbon dioxide supply outside the furnace.

Erfindungsgemäß wird nun ein Kupolofenbetrieb durchgeführt, bei dem ein Einsatz, wie er in der Einleitung beschrieben ist, eingesetzt wird. Lediglich die Satzkoksmenge ist wesentlich reduziert und liegt mit ca 37 kg (ca. 7% vom Einsatzgewicht) deutlich niedriger. In der Windüsenebene werden dem Kupolofen über die Lanzen 20a und 20b jetzt 200 m³ Kohlendioxid pro Stunde zugeführt. Das entspricht bei ca 10 Sätzen Einsatz, die den Ofen pro Stunde durchlaufen, einer Gasmenge von 20 m³ pro Einsatz. Der Hauptteil des aus dem Satzkoks im Ofen entstehenden CO₂ wird so durch unmittelbare Zufuhr von CO₂-Gas ersetzt.Die Gaszufuhr kann mit geringem apparativem Aufwand - Installation eines Ventils und eines Durchflussmessers in die CO₂-Zufuhr - konstant ausgeführt werden. Auch eine mit der Zugabe der Einsätze synchronisierte Gaszufuhr etwa vom Sägezahntyp ist vergleichsweise einfach, wobei ausgehend von einem niedrigsten Zufuhrwert kurz nach der Beschickung des Ofens mit einem neuen Einsatz die Gasmenge linear bis zu einem Höchstwert bei der nächsten Beschickung gesteigert wird, wobei jedoch insgesamt die gleiche Gasmenge wie bei konstanter Zufuhr eingehalten wird. Zudem kann beim gezeigten Kupolofen Sauerstoff ebenfalls über die Lanzen 20a und b zugeführt werden, die Windemenge in Korrelation damit geeignet reduziert werden und so höhere Ofentemperaturen trotz Satzkoksreduzierung und CO₂-Zugabe aufrechterhalten werden.According to the invention, a cupola furnace operation is now carried out, in which an application as described in the introduction is used. Only the amount of coke is significantly reduced and is significantly lower at around 37 kg (around 7% of the operating weight). 200 m³ of carbon dioxide per hour are now fed to the cupola furnace on lances 20a and 20b. With around 10 sets of insert that pass through the furnace per hour, this corresponds to a gas volume of 20 m³ per insert. The main part of the coke produced in the oven CO₂ is thus replaced by the direct supply of CO₂ gas. The gas supply can be carried out constantly with little equipment - installation of a valve and a flow meter in the CO₂ supply. A gas supply synchronized with the addition of the inserts, for example of the sawtooth type, is also comparatively simple, whereby starting from a lowest supply value shortly after the furnace has been loaded with a new insert, the gas quantity is increased linearly up to a maximum value for the next loading, although the total the same amount of gas is maintained as with constant supply. In addition, in the cupola furnace shown, oxygen can also be supplied via the lances 20a and b, the amount of wind in correlation can thus be suitably reduced and thus higher furnace temperatures can be maintained in spite of the reduction in coke and CO₂ addition.

Ingesamt ergibt sich mit der erfindungsgemäß vorgeschlagenen Kohlengaszugabe ein weitere Parameter im Kupolofenbetrieb, mit dem auf vielfache Weise vorteilhaft auf die in einem Kupolofen ablaufenden Prozesse eingewirkt werden kann.Overall, the addition of carbon gas proposed according to the invention results in a further parameter in cupola furnace operation, with which the processes taking place in a cupola furnace can be advantageously influenced in many ways.

Claims (8)

Verfahren zum Betreiben eines Kupolofens zur Erzeugung von Gußeisen, bei dem der Ofenschacht des Kupolofens mit einem entsprechenden Einsatz gefüllt ist bzw. ständig nachgefüllt wird und bodenseitig Gußeisenschmelze entnommen wird,
wobei dem Ofenschacht im unteren Bereich Wind, z.B. Luft, und ggfs. Zusatzsauerstoff zugeführt und im oberen Schachtbereich das Gichtgas abgeführt wird
und wobei der Ofenschacht im Betrieb von oben nach unten in eine Beschickungszone, eine Vorwärmzone, eine Schmelzzone (3), eine Windzone (4) sowie eine Herdzone einteilbar ist,
dadurch gekennzeichnet,
daß zur Einstellung eines gewünschten CO-Gehalts im Kupolofen und insbesondere in der Schmelzzone ein Kohlengas (CO₂ oder CO) in geeigneter Menge an geeigneter Stelle, vorzugsweise im Bereich von Wind- oder Schmelzzone, in den Kupolofen eingebracht wird.
Method for operating a cupola furnace for producing cast iron, in which the furnace shaft of the cupola furnace is filled with a corresponding insert or is constantly refilled and cast iron melt is removed from the bottom,
whereby wind, for example air, and possibly additional oxygen are fed into the furnace shaft and the top gas is removed in the upper shaft region
and the furnace shaft can be divided from top to bottom into a loading zone, a preheating zone, a melting zone (3), a wind zone (4) and an oven zone,
characterized,
that in order to set a desired CO content in the cupola and in particular in the melting zone, a carbon gas (CO₂ or CO) is introduced in a suitable amount into a suitable place, preferably in the area of the wind or melting zone, into the cupola.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Kohlengas in der Windzone des Kupolofens in konstanter Menge eingebracht wird.A method according to claim 1, characterized in that the coal gas is introduced in a constant amount in the wind zone of the cupola furnace. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Kohlengas in der Windzone in mengengeregelter Weise eingebracht wird, so daß ein etwa gleichbleibendes CO-Niveau im Kupolofen erzielt wird.A method according to claim 1, characterized in that the coal gas is introduced in the wind zone in a quantity-controlled manner so that an approximately constant CO level is achieved in the cupola furnace. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß eine Kohlengas-Zugabe in einer Größenordnung durchgeführt wird, die eine Absenkung des Satzkoksmenge zuläßt.Method according to one of claims 1 to 3, characterized in that a coal gas addition is carried out in an order of magnitude which allows a reduction in the amount of coke. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Kohlengas Kohlendioxid ist.Method according to one of claims 1 to 4, characterized in that the carbon gas is carbon dioxide. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß gleichzeitig zum Kohlendioxid auch Kohlenmonoxid eingeführt wird.Process according to Claim 5, characterized in that carbon monoxide is also introduced at the same time as the carbon dioxide. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet,daß das/die Kohlengas(e) in Speicherbehältern bereitgestellt wird/werden.Method according to one of claims 1 to 6, characterized in that the carbon gas (s) are / are provided in storage containers. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das/die Kohlengase zumindest teilweise aus Brennerabgasen, insbesondere den Abgasen des Kupolofen-Rekuperator-Brenners, gewonnen wird.Method according to one of claims 1 to 7, characterized in that the coal gas (s) is obtained at least partially from burner exhaust gases, in particular the exhaust gases from the cupola recuperator burner.
EP92111337A 1991-07-05 1992-07-03 Process for running a cupola Expired - Lifetime EP0521523B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4122381 1991-07-05
DE4122381A DE4122381A1 (en) 1991-07-05 1991-07-05 METHOD FOR OPERATING A COUPLING OVEN

Publications (2)

Publication Number Publication Date
EP0521523A1 true EP0521523A1 (en) 1993-01-07
EP0521523B1 EP0521523B1 (en) 1995-09-06

Family

ID=6435565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92111337A Expired - Lifetime EP0521523B1 (en) 1991-07-05 1992-07-03 Process for running a cupola

Country Status (4)

Country Link
EP (1) EP0521523B1 (en)
AT (1) ATE127580T1 (en)
DE (2) DE4122381A1 (en)
ES (1) ES2079744T3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762068A1 (en) * 1995-08-28 1997-03-12 Linde Aktiengesellschaft Process for operating an oxygen-consuming metallurgical shaft furnace and shaft furnace for performing said process
EP1997915A1 (en) * 2007-06-01 2008-12-03 Linde Aktiengesellschaft Method for controlled coke burning in cupola furnaces
CN101428342B (en) * 2008-12-18 2013-02-13 高尔荣 Ironmaking casting system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19509366A1 (en) * 1995-03-15 1996-09-19 Linde Ag Iron recovery from dust, esp. fettling dust
DE10117962B4 (en) 2001-04-10 2006-12-07 At.Pro Tec Technologie-Team Gmbh Process for the thermal treatment of raw materials and for carrying out the process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE930930C (en) * 1950-06-10 1955-07-28 Heinrich Dr Ing E H Koppenberg Process for operating a shaft furnace with highly concentrated oxygen
FR1144895A (en) * 1955-03-28 1957-10-18 Ruhrstahl Ag Process for saving fuel during operation of blast furnaces, especially low-height shaft furnaces
DE2015580A1 (en) * 1969-04-01 1970-10-15
DE2315748A1 (en) * 1973-03-29 1974-12-19 Wests Manchester Ltd Gas fired vertical furnace - with exhaust partly recycled to burners to produce even combustion
US4309024A (en) * 1977-07-18 1982-01-05 Modern Equipment Company Cupola with auxiliary gas generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE930930C (en) * 1950-06-10 1955-07-28 Heinrich Dr Ing E H Koppenberg Process for operating a shaft furnace with highly concentrated oxygen
FR1144895A (en) * 1955-03-28 1957-10-18 Ruhrstahl Ag Process for saving fuel during operation of blast furnaces, especially low-height shaft furnaces
DE2015580A1 (en) * 1969-04-01 1970-10-15
DE2315748A1 (en) * 1973-03-29 1974-12-19 Wests Manchester Ltd Gas fired vertical furnace - with exhaust partly recycled to burners to produce even combustion
US4309024A (en) * 1977-07-18 1982-01-05 Modern Equipment Company Cupola with auxiliary gas generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GIESSEREI. Bd. 77, Nr. 5, 5. März 1990, DUSSELDORF DE Seiten 142 - 148 F.NEUMANN. 'OPTIMIERUNG DES KUPOLOFENSCHMELZPROZESSES DURCH SAUERSTOFFZUSATZ.' *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762068A1 (en) * 1995-08-28 1997-03-12 Linde Aktiengesellschaft Process for operating an oxygen-consuming metallurgical shaft furnace and shaft furnace for performing said process
EP1997915A1 (en) * 2007-06-01 2008-12-03 Linde Aktiengesellschaft Method for controlled coke burning in cupola furnaces
CN101428342B (en) * 2008-12-18 2013-02-13 高尔荣 Ironmaking casting system

Also Published As

Publication number Publication date
ES2079744T3 (en) 1996-01-16
DE59203547D1 (en) 1995-10-12
DE4122381A1 (en) 1993-01-07
ATE127580T1 (en) 1995-09-15
EP0521523B1 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
DE3216019C2 (en)
EP0126391B1 (en) Iron production method
DE2401909C3 (en) Process for the production of steel
EP0269609B1 (en) A process and an arrangement for gaining electric energy in addition to producing molten pig iron
DE3042222C2 (en) Process for the reduction of fine-grained metal oxides containing, inter alia, iron oxides, with the recovery of metals that are volatile at the temperature of the iron melt
DE2428891C3 (en) Shaft furnace for melting mineral substances for the production of mineral wool
DD243716A5 (en) METHOD AND DEVICE FOR PRODUCING LIQUID RAW STEEL OR STEEL PREPARED PRODUCTS
DE2413580B2 (en) Method for reducing coke consumption when reducing iron oxide in a shaft furnace
DE3423247C2 (en) Method and device for producing steel from scrap
DE3219984C2 (en)
EP0521523B1 (en) Process for running a cupola
EP0596095B1 (en) Process and device for heating and melting lumps of sponge iron
DE2737441A1 (en) METHOD AND DEVICE FOR CONTINUOUS HEATING OF A MELT OF IRON
EP0030344B2 (en) Process for increasing the heat utilisation in the production of steel from solid iron matter
DE3324064C2 (en)
DE625038C (en) Process for the simultaneous production of pig iron or steel and a slag that can be used as cement
DE19917128C1 (en) Production of crude iron in a blast furnace comprises injecting oxygen at the injection sites through burners, sucking the required partial streams of the contaminated blast furnace gas using a partial vacuum, and burning the gas
DE4328164C2 (en) Process for the thermal-metallurgical disposal of residues in the production of pig iron in a coke-heated shaft furnace
DE3921807A1 (en) METHOD AND DEVICE FOR HEATING A METALURGIC OVEN
DE3441985A1 (en) Process for smelting iron in a fusion gasifier, and equipment for carrying out the process
DE2552392A1 (en) Supply of heat energy to iron melts - by burning fuel with oxygen in intimate contact with the melt in conventional refining vessels
DE2944343A1 (en) Iron alloys made by direct redn. of mineral - adding molten metal to furnace with bottom tuyeres through which iron ore, flux, carbonaceous material and oxygen are injected
EP0470067A2 (en) Process and installation for melting steel
DE225688C (en)
DE3526291C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19930326

17Q First examination report despatched

Effective date: 19930507

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 127580

Country of ref document: AT

Date of ref document: 19950915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59203547

Country of ref document: DE

Date of ref document: 19951012

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2079744

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960729

Year of fee payment: 5

Ref country code: ES

Payment date: 19960729

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990630

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990713

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000703

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000711

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000810

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001204

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000703

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050703