EP0518003B1 - Spun-bonded, non-woven fabric continuous thermoplastic filaments and method of manufacturing the same - Google Patents

Spun-bonded, non-woven fabric continuous thermoplastic filaments and method of manufacturing the same Download PDF

Info

Publication number
EP0518003B1
EP0518003B1 EP92104068A EP92104068A EP0518003B1 EP 0518003 B1 EP0518003 B1 EP 0518003B1 EP 92104068 A EP92104068 A EP 92104068A EP 92104068 A EP92104068 A EP 92104068A EP 0518003 B1 EP0518003 B1 EP 0518003B1
Authority
EP
European Patent Office
Prior art keywords
filaments
polycaprolactone
spunbonded nonwoven
biodegradable
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92104068A
Other languages
German (de)
French (fr)
Other versions
EP0518003A1 (en
Inventor
Helmut Dr. Eschwey
Monika Dr. Giesen-Wiese
Maria Grill
Ararad Dr. Emirze
Hans-Peter Dr. Seidler
Bernhard Dr. Klein
Michael Kauschke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Publication of EP0518003A1 publication Critical patent/EP0518003A1/en
Application granted granted Critical
Publication of EP0518003B1 publication Critical patent/EP0518003B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/625Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/681Spun-bonded nonwoven fabric

Definitions

  • the present invention relates to a spunbonded nonwoven fabric made from continuous thermoplastic filaments and to a method for its production according to the preamble of claims 1 and 5, known for example from DE-A-3 932 877.
  • Biodegradable nonwovens made from staple fibers are known: the use of viscose fibers is described in I. MARINI, General. Nonwovens Report (1986) Vol. 14, No. 4, 214 f.
  • biodegradable fibers are natural fibers and natural fiber derivatives. Areas of application are disposable consumer goods such as Children's and incontinence diapers, bed pads, surgical gowns and surgical drapes and plasters.
  • Biodegradable is to be understood here and in the following to mean that the fiber or nonwoven material is completely destroyed by microorganisms. These microorganisms are bacteria and fungi that are present in the soil, among other things.
  • a disadvantage of the known biodegradable nonwoven fabrics is the anisotropy inherent in all staple fiber products, which is particularly evident in the mechanical properties, e.g. the strength, makes it disadvantageously noticeable: this is different in the longitudinal and transverse directions, and it is easy to see that this limits and makes the properties of use more difficult.
  • Another criterion is the consolidation of the biodegradable short fibers, which usually has to be done with additional binders, since natural fibers are known to have no thermoplastic properties. Such binders are critical because of possible skin irritation or problems with wound tolerance; moreover, they are usually not biodegradable.
  • spunbond nonwovens made from continuous polymer filaments which have the same strength properties in all directions, are often more hygienic in use because of the smooth surface of the polymers and because of the thermoplastic properties, they can be easily connected to one another by heat, ie welded together.
  • the production is described for example in DE-PS 31 51 322, the filament polymer being polypropylene.
  • Biodegradable polymers for example thermoplastic cellulose derivatives, previously used for melt spinning to form continuous filaments present difficulties in this process: Just above the melting temperature, these polymers remain so viscous that they cannot be spun into filaments; if the temperature is increased further, decomposition usually occurs immediately. There is therefore only a very narrow temperature band within which spinning can be carried out.
  • DE-A-3 932 877 discloses an erosion protection and / or substrate stabilization mat made of at least predominantly degradable synthetic polymer threads.
  • the mat can be made of nonwoven.
  • the state of the art states that the polymer threads can be connected, welded or glued together at their crossing points.
  • the polymer forming the filaments consists of at least 50% by weight polycaprolactone with an average molecular weight of 35,000 to 70,000 and that the welding of the filaments at their crossing point is autogenous, i.e. solely through their thermoplastic, sticky properties during the placement on each other.
  • the type of polycaprolactone mentioned is surprisingly processable on conventional melt spinning devices to form endless polymer threads, the process steps of melting, pumping to the nozzles, drawing and cooling by means of tempered air and laying down the finished filaments within the scope of manual skill on the thermal properties of the polymer can be matched.
  • a conventional melt spinning plant can be used in any case. It is essential that a finished, consolidated spunbonded nonwoven fabric is already present in the manufacturing process, after deposition, ie no subsequent consolidation step is required, for example by embossing rollers or the like.
  • thermoplastic welding occurs automatically at the filament crossing points.
  • thermoplastic fibers e.g. Polypropylene, polyethylene, polyamide or polyester
  • polycaprolactone specified above in a proportion of at least 50% by weight in the filament-forming polymer allows subsequent thermal consolidation to be dispensed with.
  • the filament material consists of the polycaprolactone mentioned. It is easily spinnable to form a continuous filament at 150 to 220 ° C, with no decomposition; furthermore, this material is stretchable after spinning out of the nozzles, a property that other biodegradable polymers do not have.
  • the limits of the molecular weight are given by the fact that at smaller values the mass is too wax-like to be still spinnable and at molecular weights over 70,000 the material becomes brittle.
  • thermoplastic polymers instead of the pure polycaprolactone.
  • Biodegradable two-component systems in the above sense are those which contain polyhydroxybutyrate, polyhydroxybutyrate hydroxyvalerate copolymer, a polylactide or polyester urethane as the second polymer component. Although the materials of these second components are biodegradable, they cannot be spun as a pure substance or only with great technical effort. Only the combination with polycaprolactone makes the mass suitable for conventional melt spinning processes and solves the requirements mentioned in the task.
  • All of the polymer mixtures mentioned and the pure polycaprolactone are easy to dye, have an extensibility of at least 50% and impart a textile character to the spunbonded nonwoven.
  • covering fleeces for horticulture and agriculture covering fleeces for horticulture and agriculture; adhesion-promoting adhesive fleece and adhesive between polar and non-polar polymers, for example between polyethylene and polypropylene or polyester and polyamide; iron-on interlining nonwovens in the outer clothing area because of the anisotropic stretching property; technical applications in which permanent hydrophilic properties or antistatic properties are required, e.g. filter materials.
  • Polycaprolactone with a melting point of around 60 ° C and an MFI (melt flow index) of 10 g / 10 min at 130 ° C / 2.16 kg is melted at an extruder temperature of 185 ° C.
  • the melt temperature of the polymer melt is 203 ° C.
  • the air required to stretch the polymer melt emerging from the spinnerets has a temperature of 50 ° C.
  • the drawn continuous filaments are caught on a screen belt and wound up without further consolidation.
  • the basis weight of the polycaprolactone spunbonded nonwoven is 22 g / m.
  • a polymer mixture of 90% polycaprolactone and 10% polyhydroxybutyrate-hydroxyvalerate copolymer with an MFI value of 34 g / 10 min at 190 ° C / 2.16 kg is melted at 182 ° C.
  • the polymer melt emerging from the spinnerets is stretched with air at a temperature of around 40 ° C.
  • the drawn continuous filaments are caught on a conveyor belt and the nonwoven is wound up without further consolidation.
  • the basis weight of the nonwoven is 23 g / m.
  • a polymer mixture of 75% polycaprolactone and 25% polyethylene is processed to a spunbonded nonwoven under the same conditions as described in Example 2.
  • All spunbonded nonwovens of Examples 1 to 3 are suitable for applications in hygiene products, e.g. as a diaper covering fleece, in agriculture as a mulch film, as an adhesive fleece for the production of textile laminates or for technical applications such as Filter materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

A spunbonded fabric comprises continuous thermoplastic filaments, which adhere to one another at their intersecting points without binder, and whose material comprises at least 50 weight % biodegradable polycaprolactone having a mean molecular weight of from 35,000 to 70,000. In the production process of the spunbonded fabric, no additional stabilization step is necessary after the filaments are deposited.

Description

Die vorliegende Erfindung betrifft einen Spinnvliesstoff aus thermoplastischen Endlosfilamenten sowie ein Verfahren zu seiner Herstellung gemäß Oberbegriff der Ansprüche 1 und 5, bekannt beispielsweise aus DE-A-3 932 877.The present invention relates to a spunbonded nonwoven fabric made from continuous thermoplastic filaments and to a method for its production according to the preamble of claims 1 and 5, known for example from DE-A-3 932 877.

Biologisch abbaubare Faservliesstoffe, die aus Stapelfasern aufgebaut sind, sind bekannt: Dabei wird der Einsatz von Viskosefasern beschrieben in I. MARINI, Allg. Vliesstoff-Report (1986) Vol. 14, Nr. 4, 214 f.Biodegradable nonwovens made from staple fibers are known: the use of viscose fibers is described in I. MARINI, General. Nonwovens Report (1986) Vol. 14, No. 4, 214 f.

Diese biologisch abbaubaren Fasern sind Naturfasern und Naturfaserderivate. Anwendungsbereiche sind Einwegsgebrauchsgüter wie z.B. Kinder- und Inkontinenzwindeln, Bettenunterlagen, OP-Kittel und OP-Abdecktücher und Pflasterträger.These biodegradable fibers are natural fibers and natural fiber derivatives. Areas of application are disposable consumer goods such as Children's and incontinence diapers, bed pads, surgical gowns and surgical drapes and plasters.

Unter biologisch abbaubar soll hier und im folgenden verstanden werden, daß eine vollständige Zerstörung des Faser- bzw. Vliesstoff-Materials durch Mikroorganismen erfolgt. Diese Mikroorganismen sind Bakterien und Pilze, die u.a. im Erdreich vorhanden sind.Biodegradable is to be understood here and in the following to mean that the fiber or nonwoven material is completely destroyed by microorganisms. These microorganisms are bacteria and fungi that are present in the soil, among other things.

Nachteilig bei den bekannten biologisch abbaubaren Faservliesstoffen ist die allen Stapelfaserprodukten eigene Anisotropie, was sich insbesondere in den mechanischen Eigenschaften, wie z.B. der Festigkeit, nachteilig bemerkbar macht: Diese ist in Längs- und Querrichtung unterschiedlich, und es ist leicht einzusehen, daß dadurch die Gebrauchseigenschaften eingeschränkt und erschwert werden. Ein weiteres Kriterium ist die Verfestigung der biologisch abbaubaren Kurzfasern, welche meist durch zusätzliche Bindemittel erfolgen muß, da Naturfasern bekanntermaßen keine thermoplastischen Eigenschaften besitzen. Solche Bindemittel sind kritisch wegen möglicherweise auftretender Irritationen auf der Haut oder Problemen der Wundverträglichkeit; zudem sind sie meistens biologisch nicht abbaubar.A disadvantage of the known biodegradable nonwoven fabrics is the anisotropy inherent in all staple fiber products, which is particularly evident in the mechanical properties, e.g. the strength, makes it disadvantageously noticeable: this is different in the longitudinal and transverse directions, and it is easy to see that this limits and makes the properties of use more difficult. Another criterion is the consolidation of the biodegradable short fibers, which usually has to be done with additional binders, since natural fibers are known to have no thermoplastic properties. Such binders are critical because of possible skin irritation or problems with wound tolerance; moreover, they are usually not biodegradable.

Oft wird man daher Spinnvliesstoffen aus Endlos-Polymerfilamenten den Vorzug geben, welche in allen Richtungen gleiche Festigkeitseigenschaften aufweisen, oftmals hygienischer im Gebrauch sind wegen der glatten Oberfläche der Polymeren und wegen der thermoplastischen Eigenschaften in einfacher Weise durch Hitze miteinander verbunden, d.h. verschweißt werden können. Die Herstellung ist z.B. beschrieben in DE-PS 31 51 322, wobei das Filament-Polymer Polypropylen ist.Often, therefore, preference will be given to spunbond nonwovens made from continuous polymer filaments, which have the same strength properties in all directions, are often more hygienic in use because of the smooth surface of the polymers and because of the thermoplastic properties, they can be easily connected to one another by heat, ie welded together. The production is described for example in DE-PS 31 51 322, the filament polymer being polypropylene.

Bisher für das Schmelzspinnen zu Endlosfilamenten eingesetzte, biologisch abbaubare Polymere, zum Beispiel thermoplastische Zellulosederivate, bereiten bei diesem Verfahren Schwierigkeiten: Knapp oberhalb der Schmelztemperatur bleiben diese Polymeren so viskos, daß sie nicht zu Filamenten spinnbar sind; erhöht man die Temperatur weiter, tritt meist sofort Zersetzung ein. Es verbleibt also ein nur sehr schmales Temperaturband, innerhalb dessen das Verspinnen durchgeführt werden kann.Biodegradable polymers, for example thermoplastic cellulose derivatives, previously used for melt spinning to form continuous filaments present difficulties in this process: Just above the melting temperature, these polymers remain so viscous that they cannot be spun into filaments; if the temperature is increased further, decomposition usually occurs immediately. There is therefore only a very narrow temperature band within which spinning can be carried out.

DE-A-3 932 877 offenbart eine Erosionsschutz- und/oder Untergrundstabilisationsmatte aus zumindest überwiegend abbaubaren synthetischen Polymerfäden. Die Matte kann aus Vliesstoff bestehen. Als Stand der Technik wird angegeben, daß die Polymerfäden an ihren Kreuzungsstellen miteinander verbunden, verschweißt oder verklebt sein können.DE-A-3 932 877 discloses an erosion protection and / or substrate stabilization mat made of at least predominantly degradable synthetic polymer threads. The mat can be made of nonwoven. The state of the art states that the polymer threads can be connected, welded or glued together at their crossing points.

Ausgehend vom letztgenannten Stand der Technik sowie von der unzureichenden Hitzestabilität biologisch abbaubarer Polymerer beim Verspinnen war es die Aufgabe der vorliegenden Erfindung, einen verbesserten gattungsgemäßen Spinnvliesstoff anzugeben, dessen biologisch abbaubare Filamente ohne die Problematik des genannten Temperatureinflusses in konventioneller Weise verspinnbar sind. Auf ein Bindemittel soll bei der Verfestigung des Vliesstoffs verzichtet werden können, ferner sollen die Filamente einfärbbar und hydrophil sein.Starting from the latter prior art and from the inadequate heat stability of biodegradable polymers during spinning, it was the object of the present invention to provide an improved generic spunbonded nonwoven whose biodegradable filaments can be spun in a conventional manner without the problem of the temperature influence mentioned. It should be possible to dispense with a binder when the nonwoven is consolidated, and the filaments should also be able to be colored and hydrophilic.

Die Lösung dieser Aufgabe besteht in einem Spinnvliesstoff aus thermoplastischen Endlosfilamenten gemäß dem Oberbegriff des ersten Patentanspruchs, ergänzt durch dessen kennzeichnende Merkmale. Bevorzugte Ausführungsformen und das Herstellungsverfahren sind in den Unteransprüchen angegeben.The solution to this problem consists in a spunbonded nonwoven made of thermoplastic filaments according to the preamble of the first claim, supplemented by its characteristic features. Preferred embodiments and the manufacturing method are specified in the subclaims.

Allen Lösungsvarianten ist gemeinsam, daß das die Filamente bildende Polymer zu mindestens 50 Gew.-% aus Polycaprolacton mit einem mittleren Molekulargewicht von 35000 bis 70000 besteht und daß die Verschweißung der Filamente an ihrem Kreuzungspunkt autogen, d.h. allein durch deren thermoplastische, klebrige Eigenschaften während der Ablage aufeinander, realisiert ist.All solution variants have in common that the polymer forming the filaments consists of at least 50% by weight polycaprolactone with an average molecular weight of 35,000 to 70,000 and that the welding of the filaments at their crossing point is autogenous, i.e. solely through their thermoplastic, sticky properties during the placement on each other.

Die biologische Abbaubarkeit von Polycaprolacton ist seit langem bekannt, jedoch wurde dieser Werkstoff bisher nur zur Herstellung von chirurgischem Nahtmaterial, also relativ groben Garnen, verwendet, wobei ein erschmolzener Faden in Wasser abgeschreckt wurde. Dieses Verfahren hat mit der Technologie des Schmelzspinnens nichts gemein.The biodegradability of polycaprolactone has been known for a long time, but so far this material has only been used for the production of surgical sutures, i.e. relatively coarse yarns, with a melted thread being quenched in water. This process has nothing in common with melt spinning technology.

Die genannte Polycaprolacton-Type ist überraschenderweise an konventionellen Schmelzspinn-Vorrichtungen verarbeitbar zu endlosen Polymerfäden, wobei die Verfahrensschritte des Aufschmelzens, des Pumpens zu den Düsen, des Verstreckens und Abkühlens durch temperierte Luft sowie des Ablegens der fertigen Filamente im Rahmen handwerklichen Könnens auf die thermischen Eigenschaften des Polymers abgestimmt werden. Es kann jedoch in jedem Falle eine konventionelle Schmelzspinnanlage verwendet werden. Wesentlich ist, daß beim Herstellungsverfahren, nach dem Ablegen, bereits ein fertiger, verfestigter Spinnvliesstoff vorliegt, d.h., es braucht kein nachträglicher Verfestigungsschritt, zum Beispiel durch Prägewalzen oder dergleichen, zu erfolgen. Durch einfache Optimierung der Schmelztemperatur und der Verstreckungsluft-Temperatur kann erreicht werden, daß zum Zeitpunkt des Ablegens der frischgesponnenen Filamente das Polymer sich noch im Zustand nicht abgeschlossener Kristallisation befindet, was zusammen mit der noch genügend hohen Oberflächentemperatur der Filamente zu einer solchen Klebrigkeit führt, daß eine thermoplastische Verschweißung an den Filament-Kreuzungspunkten von selbst auftritt.The type of polycaprolactone mentioned is surprisingly processable on conventional melt spinning devices to form endless polymer threads, the process steps of melting, pumping to the nozzles, drawing and cooling by means of tempered air and laying down the finished filaments within the scope of manual skill on the thermal properties of the polymer can be matched. However, a conventional melt spinning plant can be used in any case. It is essential that a finished, consolidated spunbonded nonwoven fabric is already present in the manufacturing process, after deposition, ie no subsequent consolidation step is required, for example by embossing rollers or the like. By simply optimizing the melting temperature and the drawing air temperature, it can be achieved that at the time of depositing the freshly spun filaments, the polymer is still in the state of incomplete crystallization, which together with the sufficiently high surface temperature of the filaments leads to such a stickiness that thermoplastic welding occurs automatically at the filament crossing points.

Dies ist deshalb überraschend, weil bei üblichen thermoplastischen Fasern, wie z.B. Polypropylen, Polyethylen, Polyamid oder Polyester, stets ein Verfestigen durch nachträgliches Erhitzen und Prägen notwendig ist; nur das oben spezifizierte Polycaprolacton in einem Mengenanteil von mindestens 50 Gew.-% im filamentbildenden Polymeren erlaubt den Verzicht auf eine nachträgliche thermische Verfestigung.This is surprising because with conventional thermoplastic fibers, e.g. Polypropylene, polyethylene, polyamide or polyester, always solidification by subsequent heating and embossing is necessary; only the polycaprolactone specified above in a proportion of at least 50% by weight in the filament-forming polymer allows subsequent thermal consolidation to be dispensed with.

Die Lösung der gestellten Aufgabe sowie den ebengenannten Vorteil erreicht man in einfacher Weise dadurch, daß das Filamentmaterial aus dem genannten Polycaprolacton besteht. Es ist leicht verspinnbar zu einem Endlosfilament bei 150 bis 220 °c, wobei keine Zersetzung eintritt; ferner ist dieser Werkstoff nach dem Ausspinnen aus den Düsen verstreckbar, eine Eigenschaft, die andere biologisch abbaubare Polymere nicht besitzen.The solution to the problem as well as the advantage just mentioned can be achieved in a simple manner in that the filament material consists of the polycaprolactone mentioned. It is easily spinnable to form a continuous filament at 150 to 220 ° C, with no decomposition; furthermore, this material is stretchable after spinning out of the nozzles, a property that other biodegradable polymers do not have.

Die Grenzen des Molekulargewichts sind dadurch gegeben, daß bei kleineren Werten die Masse zu wachsartig ist, um noch verspinnbar zu sein, und bei Molekulargewichten über 70 000 der Werkstoff spröde wird.The limits of the molecular weight are given by the fact that at smaller values the mass is too wax-like to be still spinnable and at molecular weights over 70,000 the material becomes brittle.

Eine weitere Verbesserung des Spinnverhaltens und des sich Selbstverfestigens während der Ablage wird erreicht, in dem man anstelle des reinen Polycaprolactons dieses in Abmischung mit anderen thermoplastischen Polymeren verarbeitet. Man wird dabei zweikomponentigen Polymermischungen den Vorzug geben, wobei das Polycaprolacton zu mindestens 50 %, auf das Gesamtgewicht bezogen, vorhanden sein muß. Biologisch vollständig abbaubare Zweikomponenten-Systeme im obigen Sinne sind solche, die als zweite Polymerkomponente Polyhydroxybutyrat, Polyhydroxybutyrathydroxyvalerat-Copolymer, ein Polylactid oder Polyesterurethan enthalten. Die Werkstoffe dieser zweiten Komponenten sind zwar biologisch abbaubar, jedoch nicht oder nur mit großem technischen Aufwand als reiner Stoff verspinnbar. Erst die Kombination mit Polycaprolacton macht die Masse für konventionelle Schmelzspinnverfahren geeignet und löst die in der Aufgabenstellung genannten Anforderungen.A further improvement in the spinning behavior and the self-solidification during deposition is achieved by processing it in admixture with other thermoplastic polymers instead of the pure polycaprolactone. Preference will be given to two-component polymer mixtures, the polycaprolactone being present at least 50%, based on the total weight. Biodegradable two-component systems in the above sense are those which contain polyhydroxybutyrate, polyhydroxybutyrate hydroxyvalerate copolymer, a polylactide or polyester urethane as the second polymer component. Although the materials of these second components are biodegradable, they cannot be spun as a pure substance or only with great technical effort. Only the combination with polycaprolactone makes the mass suitable for conventional melt spinning processes and solves the requirements mentioned in the task.

Weiterhin wurde überraschend gefunden, daß konventionelle, spinnbare Polymere, wie Polyethylen, Polypropylen, Polyamid oder Polyester, in Mischung mit Polycaprolacton nach dem Verspinnen selbstverfestigend sind.Furthermore, it has surprisingly been found that conventional, spinnable polymers, such as polyethylene, polypropylene, polyamide or polyester, are self-setting after spinning in a mixture with polycaprolactone.

Auch diese Werkstoffkombination löst damit die gestellte Aufgabe vollständig, insbesondere auch im Hinblick auf die Abbaubarkeit, da das entstehende Polymerengemisch sich überraschenderweise als zum größten Teil biologisch abbaubar erweist, im Gegensatz zu den reinen Polyolefinen, Polyamiden oder Polyestern, die in dieser Hinsicht ein inertes Verhalten zeigen.This combination of materials also completely solves the task, particularly with regard to degradability, since the resulting polymer mixture surprisingly proves to be largely biodegradable, in contrast to the pure polyolefins, polyamides or polyesters, which are inert in this regard demonstrate.

Alle genannten Polymermischungen sowie das reine Polycaprolacton sind leicht anfärbbar, besitzen eine Dehnbarkeit von mindestens 50 % und vermitteln dem Spinnvliesstoff einen textilen Charakter.All of the polymer mixtures mentioned and the pure polycaprolactone are easy to dye, have an extensibility of at least 50% and impart a textile character to the spunbonded nonwoven.

Es ist möglich, die Flächengewichte des fertigen Spinnvliesstoffs nach Wunsch von 10 bis 120 g/m zu variieren.It is possible to vary the basis weights of the finished spunbonded nonwoven from 10 to 120 g / m.

Weitere Vorteile sind eine permanente Hydrophilie und dadurch ein antistatisches Verhalten.Further advantages are permanent hydrophilicity and thus an antistatic behavior.

Als Anwendungsgebiete sind neben Hygiene und Medizin möglich: Abdeckvliese für Gartenbau und Landwirtschaft; haftvermittelndes Klebevlies und Adhäsiv zwischen polaren und unpolaren Polymeren, z.B. zwischen Polyethylen und Polypropylen oder Polyester und Polyamid; aufbügelbare Einlagevliesstoffe im Oberbekleidungsbereich wegen der anisotropen Dehnungseigenschaft; technische Anwendungen, in denen permanent hydrophile Eigenschaften oder antistatische Eigenschaften gefordert sind, z.B. Filtermaterialien.In addition to hygiene and medicine, the following areas of application are possible: covering fleeces for horticulture and agriculture; adhesion-promoting adhesive fleece and adhesive between polar and non-polar polymers, for example between polyethylene and polypropylene or polyester and polyamide; iron-on interlining nonwovens in the outer clothing area because of the anisotropic stretching property; technical applications in which permanent hydrophilic properties or antistatic properties are required, e.g. filter materials.

Beispiel 1:Example 1: Herstellung eines Polycaprolacton-VliesstoffsManufacture of a polycaprolactone nonwoven

Polycaprolacton mit einem Schmelzpunkt um 60°C sowie einem MFI-Wert (melt flow index) von 10 g/10 min bei 130°C/2,16 kg wird bei einer Extrudertemperatur von 185°C aufgeschmolzen. Die Massetemperatur der Polymerschmelze beträgt 203°C. Die zur Verstreckung der aus den Spinndüsen austretenden Polymerschmelze benötigte Luft hat eine Temperatur von 50°C.Polycaprolactone with a melting point of around 60 ° C and an MFI (melt flow index) of 10 g / 10 min at 130 ° C / 2.16 kg is melted at an extruder temperature of 185 ° C. The melt temperature of the polymer melt is 203 ° C. The air required to stretch the polymer melt emerging from the spinnerets has a temperature of 50 ° C.

Die verstreckten Endlosfilamente werden auf einem Siebband aufgefangen und ohne weitere Verfestigung aufgewickelt. Das Flächengewicht des Polycaprolacton-Spinnvliesstoffs beträgt 22 g/m.The drawn continuous filaments are caught on a screen belt and wound up without further consolidation. The basis weight of the polycaprolactone spunbonded nonwoven is 22 g / m.

Beispiel 2:Example 2: Herstellung eines Polycaprolacton-Polyhydroxybutyrat-Hydroxyvalerat-SpinnvliesstoffsPreparation of a polycaprolactone-polyhydroxybutyrate-hydroxyvalerate spunbonded nonwoven

Eine Polymermischung aus 90 % Polycaprolacton und 10 % Polyhydroxybutyrat-Hydroxyvalerat-Copolymer mit einem MFI-Wert von 34 g/10 min bei 190°C/2,16 kg wird bei 182°C aufgeschmolzen. Die aus den Spinndüsen austretende Polymerschmelze wird mit Luft vertreckt, deren Temperatur um 40°C liegt. Die verstreckten Endlosfilamente werden auf einem Transportband aufgefangen und der Vliesstoff ohne weitere Verfestigung aufgewickelt. Das Flächengewicht des Vliesstoffs beträgt 23 g/m.A polymer mixture of 90% polycaprolactone and 10% polyhydroxybutyrate-hydroxyvalerate copolymer with an MFI value of 34 g / 10 min at 190 ° C / 2.16 kg is melted at 182 ° C. The polymer melt emerging from the spinnerets is stretched with air at a temperature of around 40 ° C. The drawn continuous filaments are caught on a conveyor belt and the nonwoven is wound up without further consolidation. The basis weight of the nonwoven is 23 g / m.

Beispiel 3:Example 3: Herstellung eines Polycaprolacton-Polyethylen-SpinnvliesstoffsProduction of a polycaprolactone-polyethylene spunbonded nonwoven

Eine Polymermischung aus 75 % Polycaprolacton und 25 % Polyethylen wird unter den gleichen Bedingungen, wie in Beispiel 2 beschrieben, zu einem Spinnvliesstoff verarbeitet.A polymer mixture of 75% polycaprolactone and 25% polyethylene is processed to a spunbonded nonwoven under the same conditions as described in Example 2.

Alle Spinnvliesstoffe der Beispiele 1 bis 3 eignen sich für Anwendungen in Hygieneprodukten, z.B. als Windelabdeckvliese, in der Landwirtschaft als Mulchfolie, als Klebevlies für die Herstellung von textilen Laminaten oder für technische Anwendungen, wie z.B. Filtermaterialien.All spunbonded nonwovens of Examples 1 to 3 are suitable for applications in hygiene products, e.g. as a diaper covering fleece, in agriculture as a mulch film, as an adhesive fleece for the production of textile laminates or for technical applications such as Filter materials.

Claims (5)

  1. A spunbonded nonwoven fabric formed of continuous thermoplastic filaments which is composed to the extent of at least 50% by weight of biodegradable polymer and the filaments of which are fused to one another at their points of intersection, characterized in that the biodegradable polymer is composed of polycaprolactone of an average molecular weight of 35,000 to 70,000 and in that the fusing of the filaments at their points of intersection is brought about solely by the thermoplasticity of the filament polymer, without the presence of an additional binder.
  2. A spunbonded nonwoven fabric according to claim 1, characterized in that the continuous filaments are entirely composed of polycaprolactone.
  3. A spunbonded nonwoven fabric according to claim 1, characterized in that the continuous filaments are composed of a two-component polymer mixture, the one component being the polycaprolactone, the other being biodegradable polyhydroxybutyrate, polyhydroxybutyrate-hydroxyvalerate copolymer, a polylactide or a polyester-urethane.
  4. A spunbonded nonwoven fabric according to claim 1, characterized in that the continuous filaments are composed of a two-component polymer mixture, of which one component is the polycaprolactone, of which other component is polyethylene, polypropylene, polyamide or a polyester.
  5. A method of manufacturing a spunbonded nonwoven fabric according to any of claims 1 to 4, the polymeric material used or the material mixture being melted, fed by means of pumps to the spinnerets, spun by means of the spinnerets, stretched and cooled by temperature-controlled air and laid down as filaments to form a spunbonded nonwoven, characterized in that a polymeric material or a material mixture which contains at least 50% by weight of biodegradable polycaprolactone of an average molecular weight of 35,000 to 70,000 is melted, and in that the melting temperature and the stretching-air temperature are set such that the filaments still have at the time of laying down such a high surface temperature, and hence tackiness, that a thermoplastic fusing at the points of filament intersection occurs of its own accord, without an additional bonding step taking place after the laying down.
EP92104068A 1991-06-13 1992-03-10 Spun-bonded, non-woven fabric continuous thermoplastic filaments and method of manufacturing the same Expired - Lifetime EP0518003B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4119455A DE4119455C1 (en) 1991-06-13 1991-06-13
DE4119455 1991-06-13

Publications (2)

Publication Number Publication Date
EP0518003A1 EP0518003A1 (en) 1992-12-16
EP0518003B1 true EP0518003B1 (en) 1996-05-08

Family

ID=6433825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92104068A Expired - Lifetime EP0518003B1 (en) 1991-06-13 1992-03-10 Spun-bonded, non-woven fabric continuous thermoplastic filaments and method of manufacturing the same

Country Status (9)

Country Link
US (1) US5466517A (en)
EP (1) EP0518003B1 (en)
JP (1) JP2579716B2 (en)
AT (1) ATE137816T1 (en)
BR (1) BR9202227A (en)
CA (1) CA2071133C (en)
DE (2) DE4119455C1 (en)
DK (1) DK0518003T3 (en)
ES (1) ES2088513T3 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ288293A3 (en) * 1991-06-26 1994-07-13 Procter & Gamble Biologically degradable liquid-impermeable films
EP0595859B1 (en) * 1991-06-26 1997-01-22 The Procter & Gamble Company Disposable absorbent articles with biodegradable backsheets
EP0569145B1 (en) * 1992-05-08 1999-03-24 Showa Highpolymer Co., Ltd. Polyester fibers
US5939467A (en) * 1992-06-26 1999-08-17 The Procter & Gamble Company Biodegradable polymeric compositions and products thereof
US5646077A (en) * 1993-01-07 1997-07-08 Unitika Ltd Binder fiber and nonwoven fabrics using the fiber
DE69331578T2 (en) * 1993-01-07 2002-11-21 Unitika Ltd., Amagasaki BINDER FIBERS AND THEIR FABRIC FABRIC
US5814404A (en) * 1994-06-03 1998-09-29 Minnesota Mining And Manufacturing Company Degradable multilayer melt blown microfibers
AU741001B2 (en) * 1994-09-16 2001-11-22 Procter & Gamble Company, The Biodegradable polymeric compositions and products thereof
US6579814B1 (en) 1994-12-30 2003-06-17 3M Innovative Properties Company Dispersible compositions and articles of sheath-core microfibers and method of disposal for such compositions and articles
US5472518A (en) * 1994-12-30 1995-12-05 Minnesota Mining And Manufacturing Company Method of disposal for dispersible compositions and articles
TW293049B (en) * 1995-03-08 1996-12-11 Unitika Ltd
CA2222461A1 (en) * 1995-06-30 1997-01-23 Kimberly-Clark Worldwide, Inc. Water-dispersible fibrous nonwoven coform composites
WO1997034953A1 (en) * 1996-03-19 1997-09-25 The Procter & Gamble Company Biodegradable polymeric compositions and products thereof
US6165217A (en) 1997-10-02 2000-12-26 Gore Enterprise Holdings, Inc. Self-cohering, continuous filament non-woven webs
DE19809264C2 (en) * 1998-03-04 2003-06-26 Eldra Kunststofftechnik Gmbh Fiber lay-up and method for making a preform
DE19815115C2 (en) * 1998-04-03 2002-02-14 Eldra Kunststofftechnik Gmbh Leather-clad interior and method for gluing a real leather layer to a substrate
US7994078B2 (en) * 2002-12-23 2011-08-09 Kimberly-Clark Worldwide, Inc. High strength nonwoven web from a biodegradable aliphatic polyester
US8048503B2 (en) * 2005-07-29 2011-11-01 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials
US20070026040A1 (en) * 2005-07-29 2007-02-01 Crawley Jerald M Composite self-cohered web materials
US7655288B2 (en) * 2005-07-29 2010-02-02 Gore Enterprise Holdings, Inc. Composite self-cohered web materials
US7604668B2 (en) * 2005-07-29 2009-10-20 Gore Enterprise Holdings, Inc. Composite self-cohered web materials
AU2006276044B2 (en) * 2005-07-29 2010-02-11 W. L. Gore & Associates, Inc. Highly porous self-cohered web materials having haemostatic properties
US20070027551A1 (en) * 2005-07-29 2007-02-01 Farnsworth Ted R Composite self-cohered web materials
US20070026039A1 (en) * 2005-07-29 2007-02-01 Drumheller Paul D Composite self-cohered web materials
US7655584B2 (en) * 2005-07-29 2010-02-02 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials
US20070155010A1 (en) * 2005-07-29 2007-07-05 Farnsworth Ted R Highly porous self-cohered fibrous tissue engineering scaffold
US7850810B2 (en) * 2005-07-29 2010-12-14 Gore Enterprise Holdings, Inc. Method of making porous self-cohered web materials
DE602005023671D1 (en) * 2005-12-15 2010-10-28 Kimberly Clark Co BIODEGRADABLE MULTICOMPONENT FIBERS
US8927443B2 (en) 2006-04-07 2015-01-06 Kimberly-Clark Worldwide, Inc. Biodegradable nonwoven laminate
US8710172B2 (en) 2006-07-14 2014-04-29 Kimberly-Clark Worldwide, Inc. Biodegradable aliphatic-aromatic copolyester for use in nonwoven webs
EP2044251B1 (en) 2006-07-14 2019-10-02 NatureWorks LLC Biodegradable aliphatic polyester for use in nonwoven webs
KR101297865B1 (en) 2006-07-14 2013-08-19 킴벌리-클라크 월드와이드, 인크. Biodegradable polylactic acid for use in nonwoven webs
US20100048081A1 (en) * 2006-12-15 2010-02-25 Topolkaraev Vasily A Biodegradable polyesters for use in forming fibers
MX2009006136A (en) * 2006-12-15 2009-08-07 Kimberly Clark Co Biodegradable polylactic acids for use in forming fibers.
BRPI0721925B1 (en) * 2007-08-22 2018-10-16 Kimberly Clark Co method for forming biodegradable filaments and method for forming a nonwoven web
CN101896649B (en) * 2007-12-13 2012-07-18 金伯利-克拉克环球有限公司 Biodegradable fibers formed from a thermoplastic composition containing polylactic acid and a polyether copolymer
MX2010013139A (en) * 2008-05-30 2011-03-04 Kimberly Clark Worldwide Incorporated Polylactic acid fibers.
US8470222B2 (en) 2008-06-06 2013-06-25 Kimberly-Clark Worldwide, Inc. Fibers formed from a blend of a modified aliphatic-aromatic copolyester and thermoplastic starch
US8841386B2 (en) 2008-06-10 2014-09-23 Kimberly-Clark Worldwide, Inc. Fibers formed from aromatic polyester and polyether copolymer
US20100173507A1 (en) * 2009-01-07 2010-07-08 Samtec, Inc. Electrical connector having multiple ground planes
US7837522B1 (en) 2009-11-12 2010-11-23 Samtec, Inc. Electrical contacts with solder members and methods of attaching solder members to electrical contacts
US8461262B2 (en) 2010-12-07 2013-06-11 Kimberly-Clark Worldwide, Inc. Polylactic acid fibers
CN104233628B (en) * 2014-09-01 2017-02-15 浙江金三发非织造布有限公司 Production process of special non-woven fabric for facial mask
FR3109162B1 (en) * 2020-04-14 2022-06-24 Les Laboratoires Osteal Medical Process for manufacturing a non-woven textile structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3151322C2 (en) * 1981-12-24 1983-11-10 Fa. Carl Freudenberg, 6940 Weinheim "Process for the production of spunbonded polypropylene nonwovens with a low coefficient of fall"
US4582052A (en) * 1982-03-23 1986-04-15 Repromed, Inc. Povidone-iodine dispensing fiber
CA1255837A (en) * 1982-04-06 1989-06-13 P.F.F. Limited Melt dyeing polyolefins
DE3932877A1 (en) * 1989-10-02 1991-04-11 Akzo Gmbh Geo:textile mats for erosion protection and soil stabilisation - made from degradable polymers
JP2795487B2 (en) * 1989-10-26 1998-09-10 ユニチカ株式会社 Fiber laminate
US5053482A (en) * 1990-05-11 1991-10-01 E. I. Du Pont De Nemours And Company Novel polyesters and their use in compostable products such as disposable diapers
JPH07107217B2 (en) * 1990-06-08 1995-11-15 東レ株式会社 Melt blown nonwoven
DE4220795C2 (en) * 1992-06-25 1997-12-11 Freudenberg Carl Fa Flat, biodegradable carrier material for denitrifiers in biologically operated clarification stages

Also Published As

Publication number Publication date
DE59206211D1 (en) 1996-06-13
US5466517A (en) 1995-11-14
ATE137816T1 (en) 1996-05-15
CA2071133C (en) 1996-11-05
ES2088513T3 (en) 1996-08-16
CA2071133A1 (en) 1992-12-14
BR9202227A (en) 1993-02-02
DE4119455C1 (en) 1992-09-17
EP0518003A1 (en) 1992-12-16
JPH05195407A (en) 1993-08-03
DK0518003T3 (en) 1996-09-09
JP2579716B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
EP0518003B1 (en) Spun-bonded, non-woven fabric continuous thermoplastic filaments and method of manufacturing the same
DE2652789C2 (en) Spunbonded fabric made from polypropylene filaments
DE69128429T2 (en) TEXTILE COMPOSITE WITH ENDLESS THREADS FIXED BY MIXED, MOLDED, BLOWN FIBERS AND METHOD FOR THE PRODUCTION THEREOF
DE69508771T2 (en) SOFT AND STRONG THERMOPLASTIC POLYMER FIBERS AND FABRICS MADE FROM THEM
DE69610856T2 (en) BLOWED POLYETHYLENE FABRIC AND METHOD FOR THE PRODUCTION THEREOF
DE69723249T2 (en) HIGH-STRENGTH FABRIC FABRIC MADE OF POLYMER WITH A HIGH MELT FLOW
DE69206811T2 (en) MULTILAYER MICROFIBERS AND ELASTIC FABRICS MADE THEREOF
DE3887857T2 (en) Oriented, melted, blown fibers, process for producing the same and nonwovens made from these fibers.
DE68919436T2 (en) Stabilized nonwoven made of threads.
DE69621070T2 (en) Non-woven fabrics made from biodegradable filament threads and process for their manufacture
DE69227498T2 (en) Microfiber nonwoven and composite material made of nonwoven
DE19630523C1 (en) Spunbonded nonwoven and device for its production
DE69608199T2 (en) Hydrophilic nonwoven based on polylactides
EP0885321B1 (en) Melt-blown non woven fabric, process for producing same and the uses thereof
DE69129636T2 (en) ELASTIC FABRIC WITH CONTINUOUS THREADS AND METHOD FOR PRODUCING IT
DE3417517A1 (en) TEXTILE INLAY FABRIC WITH ANISOTROPICAL PROPERTIES AND METHOD FOR THE PRODUCTION THEREOF
DE69925140T2 (en) FIBER TRAY AS UNDERLAY AND TUFTING CARPET
DE3586931T2 (en) NON-WOVEN BRAIDED FABRIC WITH SURFACE-CONTAINING THERMOPLASTIC FIBERS AND METHOD FOR THE PRODUCTION THEREOF.
DE3734963A1 (en) EXTRUDABLE COMPOSITION FOR PRODUCING NON-WOVEN SURFACES
DE3688791T2 (en) WATER ABSORBING MATERIAL AND THEIR PRODUCTION.
DE69416024T2 (en) Multi-component fibers with statistically distributed macro areas, their production and nonwovens made from them
WO2001007698A1 (en) Bonded-fibre fabric for producing clean-room protective clothing
DE2834438B2 (en) Spunbond made of polyester filaments for use as a carrier material for a deep-drawable tufted carpet and process for its production
DE3544523A1 (en) Process for the production of bicomponent fibres, fibres produced therefrom, and their use
DE19923344A1 (en) Modification of surface properties of melt blown fiber batts or films e.g. for sanitary wear, involves spraying additive on freshly extruded material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FIRMA CARL FREUDENBERG

17Q First examination report despatched

Effective date: 19940927

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 137816

Country of ref document: AT

Date of ref document: 19960515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP, WENGER & RYFFEL AG

REF Corresponds to:

Ref document number: 59206211

Country of ref document: DE

Date of ref document: 19960613

REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2088513

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960607

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2088513

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: CARL FREUDENBERG KG

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: CARL FREUDENBERG KG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110324

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110330

Year of fee payment: 20

Ref country code: AT

Payment date: 20110328

Year of fee payment: 20

Ref country code: SE

Payment date: 20110325

Year of fee payment: 20

Ref country code: LU

Payment date: 20110324

Year of fee payment: 20

Ref country code: FR

Payment date: 20110401

Year of fee payment: 20

Ref country code: IT

Payment date: 20110323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110405

Year of fee payment: 20

Ref country code: DE

Payment date: 20110411

Year of fee payment: 20

Ref country code: ES

Payment date: 20110323

Year of fee payment: 20

Ref country code: BE

Payment date: 20110328

Year of fee payment: 20

Ref country code: GB

Payment date: 20110324

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59206211

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59206211

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20120310

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

BE20 Be: patent expired

Owner name: FIRMA CARL *FREUDENBERG

Effective date: 20120310

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120309

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 137816

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120310

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120311