EP0515872B1 - Sensor arrangement for firing ammunition - Google Patents

Sensor arrangement for firing ammunition Download PDF

Info

Publication number
EP0515872B1
EP0515872B1 EP92107564A EP92107564A EP0515872B1 EP 0515872 B1 EP0515872 B1 EP 0515872B1 EP 92107564 A EP92107564 A EP 92107564A EP 92107564 A EP92107564 A EP 92107564A EP 0515872 B1 EP0515872 B1 EP 0515872B1
Authority
EP
European Patent Office
Prior art keywords
sensory device
receiver
transmitter
target
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92107564A
Other languages
German (de)
French (fr)
Other versions
EP0515872A2 (en
EP0515872A3 (en
Inventor
Robert Dr. Westphal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Verwaltungs Stiftung
Original Assignee
Diehl GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl GmbH and Co filed Critical Diehl GmbH and Co
Publication of EP0515872A2 publication Critical patent/EP0515872A2/en
Publication of EP0515872A3 publication Critical patent/EP0515872A3/en
Application granted granted Critical
Publication of EP0515872B1 publication Critical patent/EP0515872B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation
    • F42C13/04Proximity fuzes; Fuzes for remote detonation operated by radio waves

Definitions

  • the invention relates to a sensor device according to the preamble of claim 1.
  • Such a sensor device is known from EP 0 058 032 A as an FM-CW radar with a carrier frequency in the range from 1 to 2 GHz. It has an omnidirectional antenna at the upper end of a columnar device that can be manually moved into the area to be monitored, typically about one meter above ground. This radiates electromagnetic energy all around and the Doppler reflection energy from a moving object is taken up again, both in the direct line of sight and via a ground reflex.
  • the reception-side superimposition of these two target echoes which are phase-shifted with respect to one another, leads to distance-dependent interference cancellation in the case of a certain Doppler sideband evaluation and thus opens up the possibility of defining a specific detection radius depending on the installation conditions of the antenna.
  • This Doppler radar sensor is therefore based on the evaluation of two undisturbed radio connections between the antenna and the reflecting target object, one of which is a direct line of sight and the other of which is only an indirect line of sight due to ground reflection; which is why such a radar sensor cannot be used if, due to the terrain surrounding the sensor, the target object cannot be perceived by the antenna in a direct line of sight.
  • this is very often the case when deploying mine sensors in difficult terrain or in a position protected from sight, because for handling reasons and to avoid too high a likelihood of betrayal, the antenna cannot be extended beyond the ridges surrounding the crest line or beyond the terrain to see the deployment area behind it from the cover.
  • the wake-up sensor initiates the lifting of the active body from a stationary starting device, whereupon the active body hangs from the parachute and descends into the target area and searches for it in a spiral-constricting manner with a search detonator sensor.
  • the warhead with the projectile-forming shaped charge insert is triggered by the search detonator in the direction of the target object just detected.
  • lifting from the starting device should only be initiated by a target object if it is sufficiently certain that the detonator active body can actually still detect this target object in its effective range (and as centrally as possible) when it descends.
  • the active body should remain in its operational readiness, that is, it should not yet rise if, due to the target movement, the probability is too low that the target object currently detected by the sensor can actually be combated in a promising manner.
  • the efficiency of a minefield can be increased in that the individual active bodies communicate with one another as soon as they are set to work by alarm sensors, which expediently respond to mechanical vibrations, such as are evaluated in the seismic alarm sensor according to EP 0 375 872 A1.
  • alarm sensors which expediently respond to mechanical vibrations, such as are evaluated in the seismic alarm sensor according to EP 0 375 872 A1.
  • a response threshold as a function of the ambient conditions at the place of use, in particular as a function of the nature of the surface, in order to avoid an excessively high error signal rate on the one hand and to ensure reproducible sensitivity to specific target objects on the other. If, therefore, the approach of a potential target object triggers several wake-up sensors, the defense mechanism is expediently initiated only in the mine which, because of its position relative to the current target movement, has the greatest chance of success for the target acquisition.
  • the invention is based on the object of designing a sensor device of the generic type in such a way that it also covers the most important target information for the effective use of the land mine acting from a distance against an approaching one with simple apparatus
  • the target object can be obtained in order to form an effective basis for the optimized use, in particular, of an active body based on the search fuse submunition.
  • the sensor device has the advantage that with a relatively low overall height, i. Attachment of the at least one antenna above ground, comparatively precise target information relating to target distance and target speed or, if appropriate, also regarding the direction of speed of the target to be combated, can be obtained for the criterion of triggering the active body.
  • FIG. 1 An exemplary embodiment of the sensor device according to the invention for triggering an active body which is illustrated schematically in the drawing in a block diagram.
  • the figure shows in a block the sensor device 10 operating on the principle of a pulse-Doppler radar, which is connected to a wake-up sensor 12, which is indicated by the arrow 14.
  • the alarm sensor 12 is an acoustic and / or a sensor that responds to seismic signals.
  • the sensor device 10 has a transmitter 16 and a receiver 18, the transmitter 16 having a pulse modulator and a coherent oscillator for generating a pulse-modulated transmission signal.
  • the transmitter 16 and the receiver 18 are decoupled via a receiver protection switch 20.
  • the at least one antenna is designated by the reference number 22. It is, for example, a horizontally polarized Yagi antenna or a rod antenna.
  • the antenna 22 serves both as a transmitting antenna and as a receiving antenna. However, it is also possible for the transmitter 16 and to assign a separate antenna to the receiver 18.
  • the receiver 18 has a first receiver mixer 24 with a first input 26, a second input 28 and an intermediate frequency signal output 30 and a second receiver mixer 32 with a first input 34, a second input 36 and an output 38.
  • the receiver protection switch 20 is connected to the first input 26 of the first receiver mixer 24 via a bandpass filter and a low-noise preamplifier 42.
  • the second input 28 of the first receiver mixer 24 is connected to a backmix signal output 44 of the transmitter 16.
  • the intermediate frequency signal output 30 of the first receiver mixer 24 is connected to the first input 34 of the second receiver mixer 32 via a low-pass filter 46 and an amplifier 48.
  • the second input 36 of the second receiver mixer 32 which can be a quadrature detector generating bipolar video signals, is connected to an intermediate frequency signal output 50 of the transmitter 16.
  • the output 38 of the second receiver mixer 32 is connected to a signal processor 56 via a video amplifier 52 and an A / D converter system 54.
  • the sensor device 10 is suitable as a mine sensor against ground and air targets, which functions at a low height to determine the radial target distance and the radial target speed. This can provide line of sight to the target to be fought; however, this is not absolutely necessary.
  • the target direction can be determined in azimuth and elevation will.
  • the sensor device 10 operates on the principle of a pulse Doppler radar with a frequency in the HF, VHF, UHF or microwave range. As has already been mentioned, at least one antenna 22 is required to determine the target distance and the target speed. If the target direction is also to be determined, at least three antennas 22 are required.
  • a pulse-modulated transmission signal with a frequency of 1000 MHz is generated by means of the aforementioned pulse modulator and coherent oscillator of transmitter 16.
  • the transmission pulses are emitted via a directional or omnidirectional antenna 22.
  • the transmitter 16 and the receiver 18 are decoupled via the receiver protection switch 20 during the transmission of the transmission pulses.
  • the echo signal which is reflected by the surrounding ground clutter and possible targets, reaches the receiver 18 via the at least one antenna 22, where the received signal is first bandpass-filtered (at 40) and then passes through a low-noise preamplifier 42 with a center frequency of 1000 MHz.
  • the signal is converted coherently with a backmix signal (at 44 or 28) of 880 MHz to an intermediate frequency of 120 MHz at the output 30.
  • the intermediate frequency signal of 120 MHz at the output 30 of the first receiver mixer 24 is raised to the required signal level in a subsequent amplifier 48 and is low-pass filtered by means of the low-pass filter 46, which has a cut-off frequency of 200 MHz.
  • This intermediate frequency signal of 120 MHz present at the first input 34 is mixed in the second receiver mixer 32 with a signal of 120 MHz which is present at the intermediate frequency signal output 50 of the transmitter 16.
  • a bipolar video signal is generated in the second receiver mixer 32 and is present at the output 38 of the second receiver mixer 32.
  • the signal at the output 38 is either single-channel or two-channel, consisting of the components in-phase signal and quadrature signal.
  • the signal at the output 38 of the second receiver mixer 32 is brought to the required signal level by means of a video amplifier 52 and fed to an A / D converter system 54.
  • This analog-to-digital converter system consists of one or two fast analog-to-digital converters.
  • the sampling frequency is designed for the pulse duration. In the exemplary embodiment described, the sampling frequency corresponding to the pulse duration of 50 ns is a minimum of 20 MHz.
  • the digitized received signal is further processed in the downstream signal processor 56.
  • the sensor device 10 When the sensor device 10 is used in an intelligent mine system, the sensor device 10 is initially passive. It is activated by a simple wake-up sensor 12, which is, for example, an acoustic sensor or a seismic sensor. In this way, the mine is very difficult to detect and locate, since the transmitter 16 only works briefly during a few ms.
  • a simple wake-up sensor 12 which is, for example, an acoustic sensor or a seismic sensor.
  • the sensor device 10 After the mine has been set up at the intended location, the sensor device 10 is first activated so that it can carry out a so-called clutter adaptation. This clutter adaptation consists in measuring the time-invariant signal echo of the environment. These time-invariant echo signals are stored in the signal processor 56. The sensor device 10 is then switched to the passive state. Now a possible target is moving in the air, e.g. a helicopter, or on the ground, e.g. If an armored vehicle to be combated passes within the range of the sensor device 10, the sensor device 10 is activated by means of the upstream wake-up sensor 12.
  • This clutter adaptation consists in measuring the time-invariant signal echo of the environment. These time-invariant echo signals are stored in the signal processor 56.
  • the sensor device 10 is then switched to the passive state. Now a possible target is moving in the air, e.g. a helicopter, or on the ground, e.g. If an armored vehicle to be combated passes within the range of the sensor device 10,
  • the direction of approach in azimuth and elevation is determined according to the interferrometer principle. As has been mentioned, at least three antennas 22 are required for this.
  • the direction can also be determined here using the Doppler radar principle with a plurality of antennas 22 as a partial basis.
  • the sensor device 10 is suitable for threat analysis of Kpz.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

Die Erfindung betrifft eine Sensoreinrichtung gemäß dem Oberbegriff des Anspruches 1.The invention relates to a sensor device according to the preamble of claim 1.

Eine derartige Sensoreinrichtung ist als FM-CW-Radar mit einer Trägerfrequenz im Bereich von 1 bis 2 GHz aus der EP 0 058 032 A bekannt. Sie weist am oberen Ende eines säulenförmigen, manuell ins zu überwachende Geände verbringbaren, Gerätes in typisch etwa einem Meter über Grund eine ungerichtete Antenne auf. Über diese wird elektromagnetische Energie rundum abgestrahlt und die dopplerbehaftete Reflexionsenergie von einem sich bewegenden Objekte sowohl in unmittelbarer Sichtlinie wie auch über einen Bodenreflex wieder aufgenommen. Die empfangsseitige Überlagerung dieser beiden gegeneinander phasenverschobenen Zielechos führt bei einer bestimmten Dopplerseitenband-Auswertung zu entfernungsabhängiger Interferenz-Auslöschung und eröffnet dadurch die Möglichkeit, je nach den Aufstellgegebenheiten der Antenne einen bestimmten Detektionsradius zu definieren. Das Prinzip dieses Dopplerradarsensors beruht also auf der Auswertung zweier ungestörter Funkverbindungen zwischen der Antenne und dem reflektierenden Zielobjekt, von denen die eine eine unmittelbare Sichtverbindung und die andere eine aufgrund der Bodenreflexion nur mittelbare Sichtverbindung ist; weshalb ein solcher Radarsensor dann nicht einsetzbar ist, wenn das Zielobjekt, aufgrund der den Sensor umgebenden Geländegegebenheiten, von der Antenne nicht in direkter Sichtlinie wahrgenommen werden kann. Das aber ist sehr häufig der Fall beim Ausbringen von Minensensoren in unwegsamem Gelände bzw. in sichtgeschützter Position, weil aus handhabungstechnischen Gründen und zur Vermeidung einer zu hohen Verratswahrscheinlichkeit die Antenne nicht bis über die Kammlinie umgebender Hügel oder über den Geländebewuchs hinaus verlängert werden kann, um aus der Deckung heraus das dahinter gelegene Aufmarschgelände einzusehen. Moderne Minen gegen Landfahrzeuge und niedrigfliegende Luftfahrzeuge werden nämlich nicht mehr unmittelbar in der zu erwartenden Ziel-Bewegungsbahn, sondern in der Deckung abseits davon ausgelegt, um über größere Distanz von der Seite oder von oben und dadurch mit größerer Effektivität im Ziel zu wirken, wie insbesondere in der GB 2 174 482 A für eine Landmine mit Submunitions-Wirkmechanismus beschrieben. Bei ihr initiiert der Wecksensor das Abheben des Wirkkörpers aus einem stationär zurückbleibenden Startgerät, woraufhin der Wirkkörper am Fallschirm hängend wieder ins Zielgebiet absteigt und dieses mit einem Suchzünder-Sensor spiralförmig-einengend absucht. Bei Erfassen des zu bekämpfenden Zielobjektes wird vom Suchzünder der Gefechtskopf mit projektilbildender Hohlladungs-Einlage in Richtung auf das gerade erfaßte Zielobjekt ausgelöst. Problematisch kann bei solcher Bekämpfungsstrategie allerdings sein, daß für die Kinematik ab Ansprechen des Sensors, also für den Aufstieg aus dem Startgerät und für den gebremsten rotierenden Abstieg ins Zielgebiet, eine nicht beliebig verkürzbare Zeitspanne verstreicht. Dadurch ist keine Wirkung im Zielobjekt erzielbar, wenn dieses z. B. nur die Peripherie des Erfassungsbereiches des Sensors berührt und sich bereits wieder aus dem vom Wirkkörper auffaßbaren Bereich entfernt hat, wenn dieser Wirkkörper nach Durchgang durch sein Apogäum schließlich mit eingeschaltetem Suchzünder ins Zielgebiet absteigt. Deshalb sollte das Abheben aus dem Startgerät überhaupt nur von einem Zielobjekt initiiert werden, wenn hinreichend sicher ist, daß der Suchzünder-Wirkkörper bei seinem Abstieg dieses Zielobjekt auch tatsächlich noch in seinem Wirkbereich (und in diesem möglichst zentral) erfassen kann. Dagegen soll der Wirkkörper in seiner Funktionsbereitschaft verharren, also noch nicht aufsteigen, wenn aufgrund der Zielbewegung die Wahrscheinlichkeit zu gering ist, daß das vom Sensor aktuell erfaßte Zielobjekt auch tatsächlich erfolgversprechend bekämpft werden kann.Such a sensor device is known from EP 0 058 032 A as an FM-CW radar with a carrier frequency in the range from 1 to 2 GHz. It has an omnidirectional antenna at the upper end of a columnar device that can be manually moved into the area to be monitored, typically about one meter above ground. This radiates electromagnetic energy all around and the Doppler reflection energy from a moving object is taken up again, both in the direct line of sight and via a ground reflex. The reception-side superimposition of these two target echoes, which are phase-shifted with respect to one another, leads to distance-dependent interference cancellation in the case of a certain Doppler sideband evaluation and thus opens up the possibility of defining a specific detection radius depending on the installation conditions of the antenna. The principle of this Doppler radar sensor is therefore based on the evaluation of two undisturbed radio connections between the antenna and the reflecting target object, one of which is a direct line of sight and the other of which is only an indirect line of sight due to ground reflection; which is why such a radar sensor cannot be used if, due to the terrain surrounding the sensor, the target object cannot be perceived by the antenna in a direct line of sight. However, this is very often the case when deploying mine sensors in difficult terrain or in a position protected from sight, because for handling reasons and to avoid too high a likelihood of betrayal, the antenna cannot be extended beyond the ridges surrounding the crest line or beyond the terrain to see the deployment area behind it from the cover. Modern mines against land vehicles and low-flying aircraft are no longer designed directly in the expected target trajectory, but in the cover apart from them to cover larger ones Distance from the side or from above and thus to work with greater effectiveness in the target, as described in particular in GB 2 174 482 A for a land mine with a submunition mechanism of action. With it, the wake-up sensor initiates the lifting of the active body from a stationary starting device, whereupon the active body hangs from the parachute and descends into the target area and searches for it in a spiral-constricting manner with a search detonator sensor. When the target object to be fought is detected, the warhead with the projectile-forming shaped charge insert is triggered by the search detonator in the direction of the target object just detected. It can be problematic with such a control strategy, however, that a time span that cannot be shortened arbitrarily elapses for the kinematics when the sensor responds, that is to say for the ascent from the starting device and for the braked rotating descent into the target area. As a result, no effect can be achieved in the target object if this z. B. only touches the periphery of the detection range of the sensor and has already moved away from the area that can be grasped by the active body when this active body finally descends into the target area after passing through its apogee with the search detonator switched on. Therefore, lifting from the starting device should only be initiated by a target object if it is sufficiently certain that the detonator active body can actually still detect this target object in its effective range (and as centrally as possible) when it descends. On the other hand, the active body should remain in its operational readiness, that is, it should not yet rise if, due to the target movement, the probability is too low that the target object currently detected by the sensor can actually be combated in a promising manner.

In diesem Zusammenhang ist es also problematisch, daß der etwa von Hand oder mittels eines Werfers verbrachte Wirkkörper mit seinem Sensor sich schon aus Tarnungsgründen nicht zu hoch über den Untergrund erheben sollte, so daß bereits niedrige Bodenwellen oder Bewuchs in der Umgebung die direkte Sicht zum sich annähernden Zielobjekt unterbinden. Denn dann arbeitet ein Radarsensor gemäß der eingangs zitierten gattungsbildenden Vorveröffentlichung nicht mehr. Das gilt sinngemäß für die Funktion eines Radar-Annäherungszünders gemäß DE 21 20 735 C1, zumal dieser noch mit einer gerichteten Antenne für noch höhere, also auf direkte Sicht arbeitende Radarfrequenz und mit einer besonderen Schaltung ausgestattet ist, die sicherstellen soll, daß für die Zündauslösung ausschließlich unmittelbar aufgenommene Reflexionsenergie vom zu bekämpfenden Zielobjekt ausgewertet wird, aber nicht nur mittelbar (über Bodenreflexionen) aufgenommene Zielechos.In this context, it is therefore problematic that the active body, which is spent by hand or by means of a launcher with its sensor, should not rise too high above the ground for camouflage reasons, so that even low bumps or vegetation in the area provide a direct view to itself prevent approximate target object. Because then a radar sensor no longer works in accordance with the generic publication cited at the beginning. This applies mutatis mutandis to the function of a radar proximity detonator according to DE 21 20 735 C1, especially since it is also equipped with a directional antenna for an even higher, that is to say a radar frequency that works directly, and with a special circuit which is intended to ensure that the ignition is triggered only directly recorded reflection energy from the target object to be combated is evaluated, but not only target echoes recorded indirectly (via ground reflections).

Die Effizienz eines Minenfeldes läßt sich dadurch steigern, daß die einzelnen Wirkkörper miteinander kommunizieren, sobald sie von Wecksensoren in Funktionsbereitschaft versetzt sind, welche zweckmäßigerweise auf mechanische Schwingungen ansprechen, wie sie etwa bei dem seismischen Wecksensor nach der EP 0 375 872 A1 ausgewertet werden. Dort ist vorgesehen, eine Ansprechschwelle in Abhängigkeit von den Umgebungsbedingungen am Einsatzorte, insbesondere in Abhängigkeit von der Beschaffenheit des Untergrundes, vorzugeben, um einerseits eine zu hohe Fehler-Signalrate zu vermeiden und andererseits doch eine reproduzierbare Empfindlichkeit gegen spezifische Zielobjekte sicherstellen zu können. Wenn also die Annäherung eines potentiellen Zielobjektes mehrere Wecksensoren ansprechen läßt, wird zweckmäßigerweise nur bei derjenigen Mine der Abwehrmechanismus initiiert, die aufgrund ihrer relativen Position zur momentanen Zielbewegung die größte Erfolgsaussicht für die Zielakquisition aufweist. Darüberhinaus kann es für die Optimierung des Einsatzes der Wirkkörper noch von Interesse sein, nicht nur die radiale Entfernung und Geschwindigkeit des sich annähernden Zielobjektes zu erfassen, sondern auch die Richtung zum erfaßten Zielobjekt, um daraus beispielsweise eine Kommandoübergabe an eine günstiger positionierte Mine ableiten zu können, ohne des apparativen Aufwandes etwa für ein Laser-Retromodulatorsystem zu bedürfen, wie es dafür aus der DE 36 25 334 C2 bekannt ist.The efficiency of a minefield can be increased in that the individual active bodies communicate with one another as soon as they are set to work by alarm sensors, which expediently respond to mechanical vibrations, such as are evaluated in the seismic alarm sensor according to EP 0 375 872 A1. There it is provided to set a response threshold as a function of the ambient conditions at the place of use, in particular as a function of the nature of the surface, in order to avoid an excessively high error signal rate on the one hand and to ensure reproducible sensitivity to specific target objects on the other. If, therefore, the approach of a potential target object triggers several wake-up sensors, the defense mechanism is expediently initiated only in the mine which, because of its position relative to the current target movement, has the greatest chance of success for the target acquisition. In addition, for the optimization of the use of the active bodies, it may also be of interest not only to record the radial distance and speed of the approaching target object, but also the direction to the registered target object, in order, for example, to be able to derive a transfer of command to a more favorably positioned mine without requiring the outlay in terms of equipment, for example for a laser retromodulator system, as is known for this from DE 36 25 334 C2.

In Erkenntnis dieser Gegebenheiten und zu eröffnenden Möglichkeiten liegt der Erfindung die Aufgabe zugrunde, eine Sensoreinrichtung gattungsgemäßer Art derart auszulegen, daß sie auch aus der Deckung heraus mit einfachen apparativen Mitteln die wichtigsten Zielinformationen für den effektiven Einsatz der aus der Entfernung wirkenden Landmine gegen ein sich annäherndes Zielobjekt gewinnen läßt, um so eine wirksame Grundlage für den optimierten Einsatz insbesondere eines Wirkkörpers auf Basis der Suchzünder-Submunition zu bilden.In recognition of these circumstances and the possibilities to be opened, the invention is based on the object of designing a sensor device of the generic type in such a way that it also covers the most important target information for the effective use of the land mine acting from a distance against an approaching one with simple apparatus The target object can be obtained in order to form an effective basis for the optimized use, in particular, of an active body based on the search fuse submunition.

Diese Aufgabe ist bei einer Sensoreinrichtung gattungsgemäßer Art dadurch gelöst, daß sie gemäß dem Kennzeichnungsteil des Anspruches 1 ausgelegt ist. Bevorzugte Abwandlungen und Weiterbildungen dieser erfindungsgemäßen Lösung sind in den Unteransprüchen gekennzeichnet.This object is achieved in a sensor device of the generic type in that it is designed according to the characterizing part of claim 1. Preferred modifications and developments of this solution according to the invention are characterized in the subclaims.

Die erfindungsgemäße Sensoreinrichtung weist den Vorteil auf, daß mit ihr bei relativ geringer Gesamtbauhöhe, d.h. Anbringung der mindestens einen Antenne über Grund, vergleichsweise präzise Zielinformationen bezüglich Zielentfernung und Zielgeschwindigkeit bzw. gegebenenfalls auch bezüglich Geschwindigkeitsrichtung des zu bekämpfenden Zieles für das Kriterium der Auslösung des Wirkkörpers gewinnbar sind.The sensor device according to the invention has the advantage that with a relatively low overall height, i. Attachment of the at least one antenna above ground, comparatively precise target information relating to target distance and target speed or, if appropriate, also regarding the direction of speed of the target to be combated, can be obtained for the criterion of triggering the active body.

Weitere Einzelheiten, Merkmale und Vorteile ergeben sich aus der nachfolgenden Beschreibung eines in der Zeichnung schematisch in einer Blockdarstellung verdeutlichten Ausführungsbeispieles der erfindungsgemäßen Sensoreinrichtung zur Auslösung eines Wirkkörpers. Die Figur zeigt in einem Block die nach dem Prinzip eines Puls-Doppler-Radars arbeitende Sensoreinrichtung 10, die mit einem Wecksensor 12 verbunden ist, was durch den Pfeil 14 angedeutet ist. Bei dem Wecksensor 12 handelt es sich um einen akustischen und/oder um einen auf seismische Signale ansprechenden Sensor.Further details, features and advantages emerge from the following description of an exemplary embodiment of the sensor device according to the invention for triggering an active body which is illustrated schematically in the drawing in a block diagram. The figure shows in a block the sensor device 10 operating on the principle of a pulse-Doppler radar, which is connected to a wake-up sensor 12, which is indicated by the arrow 14. The alarm sensor 12 is an acoustic and / or a sensor that responds to seismic signals.

Die Sensoreinrichtung 10 weist einen Sender 16 und einen Empfänger 18 auf, wobei der Sender 16 zur Erzeugung eines pulsmodulierten Sendesignals einen Pulsmodulator und einen kohärenten Oszillator aufweist. Der Sender 16 und der Empfänger 18 sind über einen Empfängerschutzschalter 20 entkoppelt. Die mindestens eine Antenne ist mit der Bezugsziffer 22 bezeichnet. Bei ihr handelt es sich bspw. um eine horizontal polarisierte Yagi-Antenne oder um eine Stabantenne. Die Antenne 22 dient im zeichnerisch dargestellten Beispiel sowohl als Sendeantenne als auch als Empfangsantenne. Es ist jedoch auch möglich, dem Sender 16 und dem Empfänger 18 jeweils eine eigene Antenne zuzuordnen.The sensor device 10 has a transmitter 16 and a receiver 18, the transmitter 16 having a pulse modulator and a coherent oscillator for generating a pulse-modulated transmission signal. The transmitter 16 and the receiver 18 are decoupled via a receiver protection switch 20. The at least one antenna is designated by the reference number 22. It is, for example, a horizontally polarized Yagi antenna or a rod antenna. In the example shown in the drawing, the antenna 22 serves both as a transmitting antenna and as a receiving antenna. However, it is also possible for the transmitter 16 and to assign a separate antenna to the receiver 18.

Der Empfänger 18 weist einen ersten Empfängermischer 24 mit einem ersten Eingang 26, einem zweiten Eingang 28 sowie einem Zwischenfrequenzsignalausgang 30 sowie einen zweiten Empfängermischer 32 mit einem ersten Eingang 34, einem zweiten Eingang 36 und einem Ausgang 38 auf.The receiver 18 has a first receiver mixer 24 with a first input 26, a second input 28 and an intermediate frequency signal output 30 and a second receiver mixer 32 with a first input 34, a second input 36 and an output 38.

Der Empfängerschutzschalter 20 ist mit dem ersten Eingang 26 des ersten Empfängermischers 24 über ein Bandpaßfilter und einen rauscharmen Vorverstärker 42 verbunden. Der zweite Eingang 28 des ersten Empfängermischers 24 ist mit einem Rückmischsignalausgang 44 des Senders 16 verbunden. Der Zwischenfrequenzsignalausgang 30 des ersten Empfängermischers 24 ist über ein Tiefpaßfilter 46 und einen Verstärker 48 mit dem ersten Eingang 34 des zweiten Empfängermischers 32 verbunden. Der zweite Eingang 36 des zweiten Empfängermischers 32, bei dem es sich um einen bipolare Videosignale erzeugenden Quadraturdetektor handeln kann, ist mit einem Zwischenfrequenzsignalausgang 50 des Senders 16 verbunden.The receiver protection switch 20 is connected to the first input 26 of the first receiver mixer 24 via a bandpass filter and a low-noise preamplifier 42. The second input 28 of the first receiver mixer 24 is connected to a backmix signal output 44 of the transmitter 16. The intermediate frequency signal output 30 of the first receiver mixer 24 is connected to the first input 34 of the second receiver mixer 32 via a low-pass filter 46 and an amplifier 48. The second input 36 of the second receiver mixer 32, which can be a quadrature detector generating bipolar video signals, is connected to an intermediate frequency signal output 50 of the transmitter 16.

Der Ausgang 38 des zweiten Empfängermischers 32 ist über einen Videoverstärker 52 und ein A/D-Wandlersystem 54 mit einem Signalprozessor 56 verbunden.The output 38 of the second receiver mixer 32 is connected to a signal processor 56 via a video amplifier 52 and an A / D converter system 54.

Die erfindungsgemäße Sensoreinrichtung 10 eignet sich als Minensensor gegen Boden- und Luftziele, der in niedriger Höhe zur Bestimmung der radialen Zielentfernung und der radialen Zielgeschwindigkeit funktioniert. Hierbei kann zu dem zu bekämpfenden Ziel Sichtverbindung gegeben sein; diese ist jedoch nicht unbedingt erforderlich. Optional kann auch die Zielrichtung in Azimut und Elevation bestimmt werden. Die Sensoreinrichtung 10 arbeitet nach dem Prinzip eines Puls-Doppler-Radars mit einer Frequenz im HF-, VHF-, UHF- oder Mikrowellen-Bereich. Wie bereits erwähnt worden ist, ist zur Bestimmung der Zielentfernung und der Zielgeschwindigkeit mindestens eine Antenne 22 erforderlich. Soll außerdem auch die Zielrichtung bestimmt werden, so sind mindestens drei Antennen 22 erforderlich.The sensor device 10 according to the invention is suitable as a mine sensor against ground and air targets, which functions at a low height to determine the radial target distance and the radial target speed. This can provide line of sight to the target to be fought; however, this is not absolutely necessary. Optionally, the target direction can be determined in azimuth and elevation will. The sensor device 10 operates on the principle of a pulse Doppler radar with a frequency in the HF, VHF, UHF or microwave range. As has already been mentioned, at least one antenna 22 is required to determine the target distance and the target speed. If the target direction is also to be determined, at least three antennas 22 are required.

Mittels des erwähnten Pulsmodulators und kohärenten Oszillators des Senders 16 wird bei einem Ausführungsbeispiel der Sensoreinrichtung 10 ein pulsmoduliertes Sendesignal mit einer Frequenz von 1000 MHz erzeugt. Die Sendeimpulse werden über eine Richt- oder Rundstrahlantenne 22 abgestrahlt. Der Sender 16 und der Empfänger 18 sind während der Aussendung der Sendeimpulse über den Empfängerschutzschalter 20 entkoppelt.In one exemplary embodiment of sensor device 10, a pulse-modulated transmission signal with a frequency of 1000 MHz is generated by means of the aforementioned pulse modulator and coherent oscillator of transmitter 16. The transmission pulses are emitted via a directional or omnidirectional antenna 22. The transmitter 16 and the receiver 18 are decoupled via the receiver protection switch 20 during the transmission of the transmission pulses.

Das Echosignal, das vom umliegenden Bodenclutter und von möglichen Zielen reflektiert wird, gelangt über die mindestens eine Antenne 22 in den Empfänger 18. Dort wird das Empfangssignal zunächst bandpaßgefiltert (bei 40) und durchläuft dann einen rauscharmen Vorverstärker 42 mit einer Mittenfrequenz von 1000 MHz.The echo signal, which is reflected by the surrounding ground clutter and possible targets, reaches the receiver 18 via the at least one antenna 22, where the received signal is first bandpass-filtered (at 40) and then passes through a low-noise preamplifier 42 with a center frequency of 1000 MHz.

Im nachfolgenden Empfängermischer 24 wird das Signal kohärent mit einem Rückmischsignal (bei 44 bzw. 28) von 880 MHz auf eine Zwischenfrequenz von 120 MHz am Ausgang 30 umgesetzt.In the subsequent receiver mixer 24, the signal is converted coherently with a backmix signal (at 44 or 28) of 880 MHz to an intermediate frequency of 120 MHz at the output 30.

Da alle Sende- und Empfangsoszillatoren auf eine gemeinsame 10 MHz-Referenzquelle phasenstarr angebunden sind, ist das gesamte System kohärent.Since all transmit and receive oscillators are phase locked to a common 10 MHz reference source, the entire system is coherent.

Das Zwischenfrequenzsignal von 120 MHz am Ausgang 30 des ersten Empfängermischers 24 wird in einem nachfolgenden Verstärker 48 auf den erforderlichen Signalpegel angehoben und mittels des Tiefpaßfilters 46, das eine Grenzfrequenz von 200 MHz besitzt, tiefpaßgefiltert. Dieses am ersten Eingang 34 anstehende Zwischenfrequenzsignal von 120 MHz wird im zweiten Empfängermischer 32 mit einem Signal von 120 MHz gemischt, das am Zwischenfrequenzsignalausgang 50 des Senders 16 ansteht. Im zweiten Empfängermischer 32 wird ein bipolares Videosignal erzeugt, das am Ausgang 38 des zweiten Empfängermischers 32 ansteht. Je nach Ausführung der Sensoreinrichtung 10 ist das Signal am Ausgang 38 entweder einkanalig oder zweikanalig, bestehend aus den Bestandteilen Inphasesignal und Quadratursignal.The intermediate frequency signal of 120 MHz at the output 30 of the first receiver mixer 24 is raised to the required signal level in a subsequent amplifier 48 and is low-pass filtered by means of the low-pass filter 46, which has a cut-off frequency of 200 MHz. This intermediate frequency signal of 120 MHz present at the first input 34 is mixed in the second receiver mixer 32 with a signal of 120 MHz which is present at the intermediate frequency signal output 50 of the transmitter 16. A bipolar video signal is generated in the second receiver mixer 32 and is present at the output 38 of the second receiver mixer 32. Depending on the design of the sensor device 10, the signal at the output 38 is either single-channel or two-channel, consisting of the components in-phase signal and quadrature signal.

Das Signal am Ausgang 38 des zweiten Empfängermischers 32 wird mittels eines Videoverstärkers 52 auf den erforderlichen Signalpegel gebracht und einem A/D-Wandlersystem 54 zugeführt. Dieses Analog-Digital-Wandlersystem besteht aus ein bis zwei schnellen Analog-Digital-Wandler. Die Abtastfrequenz ist auf die Pulsdauer ausgelegt. Im beschriebenen Ausführungsbeispiel beträgt die Abtastfrequenz entsprechend der Pulsdauer von 50 ns minimal 20 MHz.The signal at the output 38 of the second receiver mixer 32 is brought to the required signal level by means of a video amplifier 52 and fed to an A / D converter system 54. This analog-to-digital converter system consists of one or two fast analog-to-digital converters. The sampling frequency is designed for the pulse duration. In the exemplary embodiment described, the sampling frequency corresponding to the pulse duration of 50 ns is a minimum of 20 MHz.

Das digitalisierte Empfangssignal wird in dem nachgeschalteten Signalprozessor 56 weiter verarbeitet.The digitized received signal is further processed in the downstream signal processor 56.

Beim Einsatz der Sensoreinrichtung 10 in einem intelligenten Minensystem ist die Sensoreinrichtung 10 zunächst passiv. Sie wird durch einen einfach ausgebildeten Wecksensor 12, bei dem es sich z.B. um einen Akustiksensor oder um einen Seismiksensor handelt, aktiviert. Auf diese Weise ist die Mine nur sehr schwer detektier- und ortbar, da der Sender 16 lediglich kurzzeitig während einiger ms arbeitet.When the sensor device 10 is used in an intelligent mine system, the sensor device 10 is initially passive. It is activated by a simple wake-up sensor 12, which is, for example, an acoustic sensor or a seismic sensor. In this way, the mine is very difficult to detect and locate, since the transmitter 16 only works briefly during a few ms.

Nach der Aufstellung der Mine am vorgesehenen Standort wird die Sensoreinrichtung 10 zunächst einmal aktiviert, so daß sie eine sog. Clutteradaption durchführen kann. Diese Clutteradaption besteht in der Messung des zeitinvarianten Signalechos der Umgebung. Diese zeitinvarianten Echosignale werden im Signalprozessor 56 abgespeichert. Danach wird die Sensoreinrichtung 10 in den passiven Zustand geschaltet. Bewegt sich nun ein mögliches Ziel entweder in der Luft, z.B. ein Hubschrauber, oder am Boden, z.B. ein zu bekämpfendes Panzerfahrzeug, innerhalb der Reichweite der Sensoreinrichtung 10 an dieser vorbei, so wird die Sensoreinrichtung 10 mittels des vorgeschalteten Wecksensor 12 aktiviert.After the mine has been set up at the intended location, the sensor device 10 is first activated so that it can carry out a so-called clutter adaptation. This clutter adaptation consists in measuring the time-invariant signal echo of the environment. These time-invariant echo signals are stored in the signal processor 56. The sensor device 10 is then switched to the passive state. Now a possible target is moving in the air, e.g. a helicopter, or on the ground, e.g. If an armored vehicle to be combated passes within the range of the sensor device 10, the sensor device 10 is activated by means of the upstream wake-up sensor 12.

Zur Bekämpfung von Luftzielen wird eine Bestimmung der Anflugrichtung in Azimut und Elevation nach dem Interferrometerprinzip durchgeführt. Hierzu werden -wie erwähnt worden ist- mindestens drei Antennen 22 benötigt. Die Richtungsbestimmung kann auch hierbei nach dem Doppler-Radarprinzip mit mehreren Antennen 22 als Teilbasis durchgeführt werden.To combat air targets, the direction of approach in azimuth and elevation is determined according to the interferrometer principle. As has been mentioned, at least three antennas 22 are required for this. The direction can also be determined here using the Doppler radar principle with a plurality of antennas 22 as a partial basis.

In anderer elektrischer Auslegung der Sendefrequenz, nämlich im Mikrowellenbereich, ist die Sensoreinrichtung 10 zur Bedrohungsanalyse von Kpz geeignet.In another electrical configuration of the transmission frequency, namely in the microwave range, the sensor device 10 is suitable for threat analysis of Kpz.

Claims (14)

  1. Sensory device (10) for a land mine having at least one aerial (22) to be set up at a low level above ground for the omni-directional radiation of electromagnetic energy and for picking up reflected energy,
    characterized in that
    the sensory device (10) is fitted with circuit arrangements for the environmentally adaptive adjustment of sensor evaluating circuits,
    in that its aerial (22) emits a ground wave and again picks up the ground wave energy not reflected by way of a target-sighting contact,
    and in that, by way of a signal processor (56), it carries out a signal processing for the release of an active mechanism for defence of the target.
  2. Sensory device according to Claim 1,
    characterized in that,
    for adapting to clutter, it picks up and stores time-invariable echo signals from the environment and subsequently only switches on again briefly, when a ringing sensor (12) is actuated, for radiating and picking up electromagnetic energy.
  3. Sensory device according to Claim 1 or 2,
    characterized in that
    its aerial (22) also serves for wireless communication between active elements of a mine-field.
  4. Sensory device according to Claim 1, having a transmitter (16) and a receiver (18),
    characterized in that
    the sensory device (10) is provided at least for determining distance and speed of a target to be attacked,
    and in that transmitter (16) and receiver (18) are actively connected with a common aerial (22) and are disconnected from each other by way of a receiver protective switch (20).
  5. Sensory device according to Claim 1 having a transmitter (16) and a receiver,
    characterized in that
    the sensory device (10) is provided at least for determining distance and speed of a target to be attacked, and in that in each case a separate aerial (22) is associated with the transmitter (16) and with the receiver (18).
  6. Sensory device according to one of the preceding claims,
    characterized in that
    the sensory device (10) works according to the principle of a pulse-Doppler radar, the transmitter (16), for the production of a pulse-modulated transmission signal, having a pulse modulator and a coherent oscillator.
  7. Sensory device according to one of Claims 1 to 3,
    characterized in that
    the sensory device (10) is provided for sending out and for receiving a frequency-modulated continuous wave transmitted or received signal.
  8. Sensory device according to one of the preceding claims,
    characterized in that
    at least three aerials (22) are provided for determining distance and speed and possibly direction of a target to be attacked.
  9. Sensory device according to one of the preceding claims,
    characterized in that
    the receiver (18) has a first receiver mixer (24) and a second receiver mixer (32) with a first input (26) being connected to the receiver protective switch (20), with a second input (28) being connected to a reconversion signal output (44) of the transmitter (16) and with its intermediate frequency signal output (30) being connected with a first input (34) of the second receiver mixer (32), whose second input (36) is connected with an intermediate frequency signal output (50) of the transmitter (16) and whose output (38) is connected with the signal processor (56), whereby the signal frequency at the intermediate frequency signal output (50) or at the second input (36) of the second receiver mixer (32) and the signal frequency at the intermediate frequency signal output (30) of the first receiver mixer (24) and the signal frequency of the intermediate frequency signal output (50) of the transmitter (16) correspond with one another.
  10. Sensory device according to Claim 9,
    characterized in that
    the receiver protective switch (20) is connected by way of a band-pass filter (40) and a low-noise pre-amplifier (42) with the first input (26) of the first receiver mixer (24).
  11. Sensory device according to Claim 9,
    characterized in that
    the intermediate frequency signal output (30) of the first receiver mixer (24) is connected by way of a low-pass filter (46) and an amplifier (48) with the first input (34) of the second receiver mixer (32).
  12. Sensory device according to Claim 9 or 10,
    characterized in that
    the second receiver mixer (32) is a mixer or a quadrature detector producing bipolar video signals.
  13. Sensory device according to one of Claims 9 to 11,
    characterized in that
    the output (38) of the second receiver mixer (32) is connected by way of a video amplifier (52) and an A/D converter system (54) with the signal processor (56).
  14. Sensory device according to one of the preceding claims,
    characterized in that
    the ringing sensor (12) is a sensor which is sensitive to acoustic and/or seismic signals.
EP92107564A 1991-05-31 1992-05-05 Sensor arrangement for firing ammunition Expired - Lifetime EP0515872B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4117873 1991-05-31
DE4117873A DE4117873C2 (en) 1991-05-31 1991-05-31 landmine

Publications (3)

Publication Number Publication Date
EP0515872A2 EP0515872A2 (en) 1992-12-02
EP0515872A3 EP0515872A3 (en) 1993-03-17
EP0515872B1 true EP0515872B1 (en) 1996-08-07

Family

ID=6432897

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92107564A Expired - Lifetime EP0515872B1 (en) 1991-05-31 1992-05-05 Sensor arrangement for firing ammunition

Country Status (3)

Country Link
US (1) US5206653A (en)
EP (1) EP0515872B1 (en)
DE (2) DE4117873C2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4121274C2 (en) * 1991-06-14 2003-05-08 Diehl Munitionssysteme Gmbh Sensor device for triggering an active body
DE4133543C2 (en) * 1991-10-10 2001-12-13 Diehl Stiftung & Co Helicopter defense mine
DE4342328A1 (en) * 1993-12-11 1995-06-14 Dynamit Nobel Ag Target recognition sensor system
US5837926A (en) * 1996-08-07 1998-11-17 United States Of America As Represented By The Secretary Of The Army Mines having tuned passive electromagnetic reflectors to enhance radar detection
DE19712371A1 (en) * 1997-03-25 2005-12-15 Rheinmetall Waffe Munition Gmbh Defending a Mine
US6026135A (en) * 1997-04-04 2000-02-15 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Multisensor vehicle-mounted mine detector
DE19824321C2 (en) * 1998-06-02 2001-04-19 Diehl Stiftung & Co Method for securing barrier areas and device for carrying out the method
FI106407B (en) * 1999-04-20 2001-01-31 Sea Valve Engineering Oy Apparatus for land, sea and air defense

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196433A (en) * 1956-02-21 1980-04-01 The United States Of America As Represented By The Secretary Of The Navy Doppler frequency proximity fuze
DE1199662B (en) * 1962-10-04 1965-08-26 Boelkow Gmbh Device for triggering an explosive charge for the defense of ground vehicles
FR1590594A (en) * 1968-05-17 1970-04-20
US3924233A (en) * 1969-04-10 1975-12-02 Us Navy Active-passive target detection system
FR2199863A5 (en) * 1970-06-25 1974-04-12 France Etat
DE2120735C1 (en) * 1971-04-28 1985-07-25 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Detonator for grenade or missile - has approach circuit activated by range circuit at given range taking into account
GB2092853B (en) * 1981-02-11 1985-03-20 Racal Mesl Ltd Radar doppler intruder detector
DE3140399A1 (en) * 1981-10-10 1983-05-05 Dynamit Nobel Ag, 5210 Troisdorf LANDMINE THAT CAN BE USED FOR CLOSE AND DISTANCE AREAS
DE3515497A1 (en) * 1985-04-30 1986-10-30 Diehl GmbH & Co, 8500 Nürnberg ARMOR DEVICE MINE
FR2589246B1 (en) * 1985-10-29 1987-11-27 Trt Telecom Radio Electr DEVICE FOR MEASURING THE DISTANCE FROM A MOBILE
DE3538785A1 (en) * 1985-10-31 1987-05-07 Diehl Gmbh & Co MINE WITH ALARM AND TRIGGER SENSORS
DE3625334A1 (en) * 1986-07-26 1989-09-07 Messerschmitt Boelkow Blohm Anti-tank weapon system
DE3817266A1 (en) * 1988-05-20 1994-03-24 Diehl Gmbh & Co Target seeking mine with launch tube - has improved target data acquisition and evaluation system
DE3840732A1 (en) * 1988-12-02 1990-06-07 Krupp Atlas Elektronik Gmbh WAKE-UP DEVICE RESPECTING CHAIN VEHICLES

Also Published As

Publication number Publication date
US5206653A (en) 1993-04-27
EP0515872A2 (en) 1992-12-02
DE4117873C2 (en) 2002-11-14
EP0515872A3 (en) 1993-03-17
DE59206866D1 (en) 1996-09-12
DE4117873A1 (en) 1992-12-03

Similar Documents

Publication Publication Date Title
DE69805576T2 (en) Digital bistatic spread spectrum radar
EP0518309B1 (en) Sensing device, in particular for landmines
DE69519503T2 (en) Detection of an interferer who interferes with his signals reflected from the ground by means of ground echo determination
CN108562892B (en) Unmanned aerial vehicle-mounted passive bistatic radar device and target positioning method
Neng-Jing Radar ECCMs new area: anti-stealth and anti-ARM
EP0515872B1 (en) Sensor arrangement for firing ammunition
DE2643175A1 (en) MISSILE GUIDANCE SYSTEM
DE4122622C2 (en) Tripping sensor for active protective device
EP0884604B1 (en) Warning sensor, especially for a target tracking device
CA1316240C (en) Aircraft radar system
EP0608732B1 (en) Sensor apparatus for detecting a threat
DE3244708C2 (en)
DE3343604C2 (en) Method and device for combating ground targets by means of a radar-guided missile
DE4133543A1 (en) METHOD FOR ACTIVATING A MINE
DE3323519C2 (en)
US7460056B2 (en) Multi purpose radar surveillance system
DE1964700C3 (en) Doppler radar proximity detonator with phase coding on the transmit side and correlation on the receive side
WO2022074218A1 (en) Method for detecting a missile equipped with surface elements made of metamaterial or "frequency-selective surface" materials
EP0414203B1 (en) Device for target acquisition and firing or horizontal mines to be launched for defense against tanks
EP3869146A1 (en) Control method for a missile radar sensor of a missile, missile control unit and missile
Tang et al. Techniques and System Design of Radar Active Jamming
DE2622419C3 (en) Device to prevent deliberate interference in wireless location and command transmission systems by sending out system-independent signals
RU2739903C1 (en) Method of forming a spatially-distributed masking system of a high-speed object
DE3540808A1 (en) Device for detecting and combating ground targets pulled under cover
DE4119612C2 (en) landmine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19930210

17Q First examination report despatched

Effective date: 19940617

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59206866

Country of ref document: DE

Date of ref document: 19960912

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960913

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970429

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980505

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000428

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040720

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051201