EP0513685A1 - Method for impregnating porous, fibrous or pulverulent materials with a melt of a metal or an alloy - Google Patents

Method for impregnating porous, fibrous or pulverulent materials with a melt of a metal or an alloy Download PDF

Info

Publication number
EP0513685A1
EP0513685A1 EP92107799A EP92107799A EP0513685A1 EP 0513685 A1 EP0513685 A1 EP 0513685A1 EP 92107799 A EP92107799 A EP 92107799A EP 92107799 A EP92107799 A EP 92107799A EP 0513685 A1 EP0513685 A1 EP 0513685A1
Authority
EP
European Patent Office
Prior art keywords
metal
pressure
alloy
melt
infiltration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92107799A
Other languages
German (de)
French (fr)
Other versions
EP0513685B1 (en
Inventor
Theodor Dipl.-Ing. Dr. Schmitt
Wolfgang Dipl.-Ing. Dr. Lacom
Jian Dipl.-Ing. Qu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SCHMITT, THEODOR, DIPL.-ING.
Original Assignee
Schmitt Theodor Dipl-Ing
Austria Metall AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schmitt Theodor Dipl-Ing, Austria Metall AG filed Critical Schmitt Theodor Dipl-Ing
Publication of EP0513685A1 publication Critical patent/EP0513685A1/en
Application granted granted Critical
Publication of EP0513685B1 publication Critical patent/EP0513685B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form

Definitions

  • the invention relates to a method for introducing or infiltrating molten metal or molten metal alloys (in the following, the term metal, even if alloy is not expressly mentioned, should also include metal alloys) from a feed area into a receiving volume (infiltration space), the in the metal to be embedded and / or to be filled with metal, for example Receiving volume containing porous materials is evacuated and the metal is pressed into the receiving volume under pressure.
  • molten metal or molten metal alloys in the following, the term metal, even if alloy is not expressly mentioned, should also include metal alloys
  • Such methods are used in particular for the production of metal objects reinforced with fibers, particles or the like, or of preforms which have porous cavities impregnated with metal, such as are e.g. can be used for highly stressed components.
  • the melting parameters (change in volume, thermal expansion of the containers, metals, etc.) are known or can be readily calculated and selected accordingly, the method according to the invention does not cause any great difficulties.
  • a pressure body can also be provided, which e.g. from a higher melting metal or from another material, e.g. Ceramic, can exist; it is essential that between the molten metal and the residual metal or the pressure body a metal layer can melt and solidify again, which lies tightly against the metal to be melted or on the pressure body and the container wall or connects to it or this or adheres to it and, due to the seal, allows pressure to build up when the remaining metal to be melted is melted.
  • the pressure built up pushes the molten metal into the infiltration room.
  • the formation of a sealing zone formed by solidified, molten metal is supported by a temperature gradient between the molten metal and the non-molten metal or the pressure body, e.g. a temperature gradient is created by appropriate heating and cooling of the container.
  • Suitable metals and alloys to be melted are, for example, aluminum, magnesium or Cu and their alloys which are infiltrated into porous substances or infiltrated into a receiving volume which is made of metallic, with reinforcing elements, for example fibers, particles, whiskers or the like.
  • mineral, ceramic, graphitic or other materials are filled as densely as possible or in a predetermined density. It is particularly advantageous if the length of the fibers introduced extends through the entire infiltration space.
  • a device for carrying out the method is characterized in that the part of the pressure chamber close to the pressure vessel and the pressure vessel, preferably over the entire length of the infiltration path, can be heated with a heating device, preferably an induction heater.
  • the infiltration takes place in porous materials or preforms of metallic, ceramic, graphitic or mineral nature or in cavities which are filled with particles, whiskers, short and / or long fibers, with or without a binder, with a metallic melt and with the pressure which arises from the increase in volume when one or more initially solid metal bodies (s) melt in the closed container.
  • the internal volume of the container or the pressure chamber closed by it, the volume of the metal body (s) and the volume of the infiltrate space in the preform, the thermal expansion coefficients of the container and the pressure vessel, the metal (alloy) of the fibers are coordinated with one another, that the evacuated infiltration space (preform) is infiltrated completely with metallic melt either preferably already during the melting process or in the course of a further increase in temperature of the molten metal.
  • the temperature of the melt in the infiltration room is e.g. by appropriate heating of the pressure vessel or the infiltration space itself or the melting range so that the entire or at least the main part of the infiltration pressure is created by the liquefaction of the melt. By regulating the temperature to values just above the melting point, a reaction between the melt and the filling or reinforcing materials can be minimized.
  • the restriction of the melt area to a partial area of the pressure space is carried out by sealing the partial volume with the expanding melt with the aid of at least one pressure body which consists of foreign metal, another material and / or the metal to be melted can, on which the solidifying melt can attach again and seal the melt area.
  • the area in which the sealing takes place is at a temperature level below the melting temperature; this temperature is set by heat dissipation, for example radiation or external cooling.
  • FIG. 1 shows a schematic section through a device according to the invention and FIG. 2 shows a detailed section.
  • FIG. 1 shows a schematic section through a device according to the invention for pressure infiltration of molten metal into a pressure vessel 2 with an infiltration space 8 filled with filler material 7.
  • the pressure vessel is optionally integrally connected to a pressure-resistant container 1.
  • the pressure chamber 6 of the container 1 is divided into two sub-volumes, namely a lower sub-volume in which the metal (alloy metal) is melted and in an upward sub-volume in which the metal 9 to be melted is kept in solid form in order to To act pressure or sealing body; alternatively or additionally, a pressure or sealing body 9 made of a different material can be provided in the application area.
  • a possibly common heating device 11 is assigned to the pressure vessel 2 and the container 1; the upper region of the container 1 is surrounded by a cooling device 12 in order to create a temperature gradient in the container 1.
  • the setting of the temperature gradient can also be achieved by thermal radiation, in that the heating device 11 surrounds the container 1 only over a certain partial area.
  • the metal 10 melted in the melting volume by the heating device 11 solidifies on the colder pressure part 9 or on the colder wall surrounding it and penetrates into the gap between the pressure part 9 and the wall of the pressure vessel 1 in a certain way until it solidifies .
  • This solidifying metal (14) prevents further penetration of the molten metal 10, as a result of which a pressure space is created which is only open towards the pressure vessel 2 or against the infiltration space 8 to be filled.
  • the metal body 9 inserted into the pressure chamber 6 or the metal body 13 inserted into the infiltration chamber 8 due to its thermal expansion, bring about a seal between itself and the respective walls of the container 1 or pressure vessel 6 , which largely prevents the penetration of molten metal.
  • This measure can be carried out in addition or as an alternative to sealing with the aid of a temperature gradient to form a sealing layer 14 made of solidifying metal.
  • the cross sections of the pressure chamber 6 or of the infiltration chamber 8 can be any, since the shape of the sealing body 9 or 13 can also be selected as desired or can be adapted to the clear width of the rooms.
  • the method is particularly advantageously suitable for the infiltration of aluminum, magnesium or other metals or their alloys, since these metals expand considerably during melting; e.g.
  • melting aluminum increases its volume by 6%, and it is for the introduction of aluminum and / or magnesium or their alloys into preforms or infiltration volumes 8, or the like with particles and / or fibers made of silicon carbide, aluminum oxide, carbon, boron nitride. are filled, only short infiltration times are necessary, which largely preclude a reaction of the fibers (formation of metal carbides, nitrides, etc.) with the introduced metals.
  • the device Before melting or after filling the infiltration space 8 with the fibers 7 or the pressure space 6 with the metal to be melted, the device is evacuated, which evacuation can be continued until the seal 14 is formed between the melted metal and the pressure body 9.
  • the pressure bodies 9 or 13 are adapted as precisely as possible to the inside width of the container or pressure vessels 2. This is particularly easy if the pressure body consists of solid metal to be melted, since the extent of the empty spaces to be taken into account when calculating and regulating the infiltration pressure is then minimized.
  • temperature and / or pressure measuring devices 16, 17 are expediently provided, with which the heating device (s) 11 and / or cooling device 12 are controlled if necessary.
  • a possible reaction between the infiltrated metal and the filling material 7 can be minimized if the container 2 is cooled immediately after the infiltration metal has penetrated, e.g. quenched by immersion in water or hot oil.

Abstract

The invention relates to a method and a device for introducing or infiltrating molten metal (10) or molten metal alloys from an application region (6) into a receiving volume (infiltration space), the receiving volume (8), containing, for example, fibres, whiskers, particles or porous materials which are optionally to be embedded in the metal (alloy) and/or to be filled with metal, being evacuated and the metal (alloy) being forced under pressure into the receiving volume. According to the invention, the pressure on the molten metal (alloy) is increased by the increase in the volume of the melt relative to the solid metal which occurs as it melts, in particular by controlled melting of metal (alloy) introduced into the application region, and the metal (alloy) is thus forced into the receiving volume. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Einbringen bzw. Infiltrieren von geschmolzenem Metall bzw. geschmolzenen Metallegierungen (im folgenden soll den Begriff Metall, auch wenn Legierung nicht ausdrücklich erwähnt ist, auch Metallegierungen umfassen) aus einem Aufgabebereich in ein Aufnahmevolumen (Infiltrationsraum), wobei das in das Metall einzubettende und/oder mit Metall zu befüllende, z.B. poröse Materialien enthaltende Aufnahmevolumen evakuiert und das Metall unter Druck in das Aufnahmevolumen eingepreßt wird.The invention relates to a method for introducing or infiltrating molten metal or molten metal alloys (in the following, the term metal, even if alloy is not expressly mentioned, should also include metal alloys) from a feed area into a receiving volume (infiltration space), the in the metal to be embedded and / or to be filled with metal, for example Receiving volume containing porous materials is evacuated and the metal is pressed into the receiving volume under pressure.

Derartige Verfahren dienen insbesondere zur Herstellung von mit Fasern, Teilchen od. dgl. verstärkten Metallgegenständen oder von mit Metall getränkten poröse Hohlräume besitzenden Vorformen, wie sie z.B. für hochbeanspruchte Bauteile verwendet werden.Such methods are used in particular for the production of metal objects reinforced with fibers, particles or the like, or of preforms which have porous cavities impregnated with metal, such as are e.g. can be used for highly stressed components.

Verfahren gemäß dem Oberbegriff des Patentanspruchs 1 sind aus der DE-B-24 15 868 und der DE-C-35 04 118 bekannt.Methods according to the preamble of claim 1 are known from DE-B-24 15 868 and DE-C-35 04 118.

Die Schwierigkeiten bei den bekannten Verfahren und Einrichtungen liegen insbesondere in der Aufbringung und Aufrechterhaltung des Druckes bei den notwendigen hohen Temperaturen während der Infiltration sowie bei der Einbringung des geschmolzenen Metalls in die Zwischenräume zwischen den Füllstoffen.The difficulties with the known methods and devices lie in particular in the application and maintenance of the pressure at the necessary high temperatures during the infiltration and in the introduction of the molten metal into the spaces between the fillers.

Diese Schwierigkeiten werden mit einem Verfahren überwunden, wie es im Patentanspruch 1 definiert ist.These difficulties are overcome with a method as defined in claim 1.

Bei einer derartigen Verfahrensführung ist es möglich, daß das zu infiltrierende Metall nur um einige Grade, z.B. 10° bis 20°C über seinen Schmelzpunkt bzw. Soliduspunkt erwärmt und der notwendige Infiltrationsdruck erreicht wird, gleichzeitig jedoch die Möglichkeit einer Reaktion zwischen dem aufgeschmolzenen Metall und dem Füllmaterial weitgehend eingeschränkt wird.With such a procedure it is possible that the metal to be infiltrated only by a few degrees, e.g. 10 ° to 20 ° C above its melting point or solidus point and the necessary infiltration pressure is reached, but at the same time the possibility of a reaction between the molten metal and the filling material is largely limited.

Da die Schmelzparameter (Volumensänderung, thermische Ausdehnung der Behälter, Metalle usw.) bekannt sind bzw. ohne weiteres errechnet und entsprechend gewählt werden können, verursacht die erfindungsgemäße Verfahrensführung keine großen Schwierigkeiten.Since the melting parameters (change in volume, thermal expansion of the containers, metals, etc.) are known or can be readily calculated and selected accordingly, the method according to the invention does not cause any great difficulties.

Insbesondere zur Abdichtung des Schmelzenraumes bzw. Aufgabebereiches und des Aufnahmevolumens (Infiltrationsraumes) kann vorgesehen sein, daß nur ein dem Aufnahmevolumen naheliegender, insbesondere unterer Teil des in den Aufgabebereich aufgegebenen Metalles (Legierung) aufgeschmolzen wird und zwischen dem das geschmolzene Metall (Legierung) aufnehmenden Teilvolumen des Aufgabenbereiches und dem das ungeschmolzene Metall (Legierung) und/oder einen Druckkörper aufnehmenden Teilvolumen des Aufgabebereiches eine Temperaturdifferenz eingestellt bzw. aufrechterhalten wird, sodaß aufgeschmolzenes in das kältere Teilvolumen eindringende Metall (Legierung) wieder verfestigt wird und als dem ungeschmolzenen Metall (Legierung) und/oder zumindest einem Druckkörper bzw. den Begrenzungswänden anhaftendes verfestigtes Dichtungsmaterial eine Abdichtung zwischen den beiden Teilvolumina ausbildet und aufrecht erhält. In dem Teilvolumen, das das ungeschmolzene Metall aufnimmt, kann anstelle des oder zusätzlich zum ungeschmolzenen Metall(s) auch ein Druckkörper vorgesehen sein, der z.B. aus einem höherschmelzenden Metall oder auch aus einem anderen Material, z.B. Keramik, bestehen kann; wesentlich ist, daß zwischen dem aufgeschmolzenen Metall und dem Restmetall bzw. dem Druckkörper eine Metallschicht aufschmelzen und wieder erstarren kann, die sich dicht an das aufzuschmelzende Metall bzw. an den Druckkörper und die Behälterwand anlegt bzw. sich mit diesem bzw. dieser verbindet bzw. daran anhaftet und aufgrund der Abdichtung einen Druckaufbau beim Aufschmelzen des restlichen aufzuschmelzenden Metalls ermöglicht. Der aufgebaute Druck drückt das aufgeschmolzene Metall in den Infiltrationsaum. Die Ausbildung einer durch verfestigtes, aufgeschmolzenes Metall ausgebildeten Dichtungszone wird unterstützt durch ein Temperaturgefälle zwischen dem aufgeschmolzenen Metall und dem nicht aufgeschmolzenen Metall bzw. dem Druckkörper, indem z.B. durch entsprechendes Heizen und Kühlen des Behälters ein Temperaturgradient erstellt wird.In particular for sealing the melt space or feed area and the receiving volume (infiltration space), provision can be made for only a portion of the metal (alloy) that is close to the receiving volume, in particular the lower portion, to be melted and between the partial volume receiving the molten metal (alloy) a temperature difference is set or maintained in the task area and the partial volume of the application area that receives the unmelted metal (alloy) and / or a pressure body, so that melted metal (alloy) penetrating into the colder partial volume is solidified again and as the unmelted metal (alloy) and / or at least one pressure body or solidified sealing material adhering to the boundary walls forms and maintains a seal between the two partial volumes. In the partial volume that holds the unmelted metal, instead of or in addition to the unmelted metal (s), a pressure body can also be provided, which e.g. from a higher melting metal or from another material, e.g. Ceramic, can exist; it is essential that between the molten metal and the residual metal or the pressure body a metal layer can melt and solidify again, which lies tightly against the metal to be melted or on the pressure body and the container wall or connects to it or this or adheres to it and, due to the seal, allows pressure to build up when the remaining metal to be melted is melted. The pressure built up pushes the molten metal into the infiltration room. The formation of a sealing zone formed by solidified, molten metal is supported by a temperature gradient between the molten metal and the non-molten metal or the pressure body, e.g. a temperature gradient is created by appropriate heating and cooling of the container.

Als aufzuschmelzende Metalle und Legierungen kommen z.B. Aluminium, Magnesium bzw. Cu sowie deren Legierungen in Frage, die in poröse Stoffe infiltriert werden oder in ein Aufnahmevolumen infiltriert werden, das mit Verstärkungselementen, z.B. Fasern, Partikel, Whiskern od.dgl., aus metallischen, mineralischen, keramischen, graphitischen oder anderen Werkstoffen möglichst dicht bzw. in vorgegebener Dichte gefüllt sind. Besonders vorteilhaft ist es, wenn sich die eingebrachten Fasern mit ihrer Länge durch den gesamten Infiltrationsraum erstrecken.Suitable metals and alloys to be melted are, for example, aluminum, magnesium or Cu and their alloys which are infiltrated into porous substances or infiltrated into a receiving volume which is made of metallic, with reinforcing elements, for example fibers, particles, whiskers or the like. mineral, ceramic, graphitic or other materials are filled as densely as possible or in a predetermined density. It is particularly advantageous if the length of the fibers introduced extends through the entire infiltration space.

Eine Einrichtung zur Durchführung des Verfahrens ist dadurch gekennzeichnet, daß der dem Druckgefäß naheliegende Teil des Druckraumes und das Druckgefäß, vorzugsweise über die gesamte Länge des Infiltrationsweges, mit einer Heizeinrichtung, vorzugsweise einer Induktionsheizung, beheizbar sind.A device for carrying out the method is characterized in that the part of the pressure chamber close to the pressure vessel and the pressure vessel, preferably over the entire length of the infiltration path, can be heated with a heating device, preferably an induction heater.

Auf diese Weise erfolgt die Infiltration in poröse Materialien bzw. Vorformen metallischer, keramischer, graphitischer oder mineralischer Natur oder in Hohlräume, die mit Partikeln, Whiskern, Kurz- und/oder Langfasern, mit oder ohne Binder, befüllt sind, mit einer metallischen Schmelze und mit jenem Druck, welcher durch die Volumsvergrößerung beim Aufschmelzen eines oder mehrerer zunächst festen Metallkörper(s) in dem geschlossenen Behälter entsteht. Das innere Volumen des Behälters bzw. des von ihm verschlossenen Druckraumes, das Volumen des Metallkörper(s) und das Volumen des Infiltratraumes in der Vorform, die thermischen Ausdehnungskoeffizienten des Behälters und des Druckgefäßes, des Metalles (Legierung) der Fasern sind so aufeinander abgestimmt, daß der evakuierte Infiltrationsraum (Vorform) entweder vorzugsweise bereits während des Schmelzvorganges oder im Verlauf einer weiteren Temperaturerhöhung des aufgeschmolzenen Metalls zur Gänze mit metallischer Schmelze infiltriert wird. Die Temperatur der Schmelze im Infiltrationsraum wird z.B. durch entsprechende Erwärmung des Druckgefäßes oder des Infiltrationsraumes selbst bzw. des Schmelzbereiches derart eingestellt, daß durch die Verflüssigung der Schmelze der gesamte bzw. zumindest der Hauptanteil des Infiltrationsdruckes erstellt wird. Durch eine Temperaturregelung auf Werte knapp über dem Schmelzpunkt kann eine Reaktion zwischen der Schmelze und den Füll- bzw. Verstärkungsmaterialen minimiert werden.In this way, the infiltration takes place in porous materials or preforms of metallic, ceramic, graphitic or mineral nature or in cavities which are filled with particles, whiskers, short and / or long fibers, with or without a binder, with a metallic melt and with the pressure which arises from the increase in volume when one or more initially solid metal bodies (s) melt in the closed container. The internal volume of the container or the pressure chamber closed by it, the volume of the metal body (s) and the volume of the infiltrate space in the preform, the thermal expansion coefficients of the container and the pressure vessel, the metal (alloy) of the fibers are coordinated with one another, that the evacuated infiltration space (preform) is infiltrated completely with metallic melt either preferably already during the melting process or in the course of a further increase in temperature of the molten metal. The temperature of the melt in the infiltration room is e.g. by appropriate heating of the pressure vessel or the infiltration space itself or the melting range so that the entire or at least the main part of the infiltration pressure is created by the liquefaction of the melt. By regulating the temperature to values just above the melting point, a reaction between the melt and the filling or reinforcing materials can be minimized.

Die für den Druckaufbau im Aufgabebereich bzw. im Druckraum vorgesehene Beschränkung des Schmelzenbereiches auf einen Teilbereich des Druckraumes erfolgt durch eine Abdichtung des Teilvolumens mit der expandierenden Schmelze unter Zuhilfenahme zumindest eines Druckkörpers, der aus Fremdmetall, einem anderen Material und/oder aus dem aufzuschmelzenden Metall bestehen kann, an dem sich wieder verfestigende Schmelze anlagern kann und den Schmelzenbereich abdichtet. Aus diesem Grund liegt der Bereich, in dem die Abdichtung erfolgt, auf einem Temperaturniveau unterhalb der Schmelztemperatur; die Einstellung dieser Temperatur erfolgt durch Wärmeableitung, z.B. Strahlung oder Kühlung von außen.The restriction of the melt area to a partial area of the pressure space, which is provided for the pressure build-up in the feed area or in the pressure space, is carried out by sealing the partial volume with the expanding melt with the aid of at least one pressure body which consists of foreign metal, another material and / or the metal to be melted can, on which the solidifying melt can attach again and seal the melt area. For this reason, the area in which the sealing takes place is at a temperature level below the melting temperature; this temperature is set by heat dissipation, for example radiation or external cooling.

Vorteilhafte Ausführungsformen der Erfindung sind der folgenden Beschreibung, der Zeichnung und den Unteransprüchen zu entnehmen.Advantageous embodiments of the invention can be found in the following description, the drawing and the subclaims.

Im folgenden wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Fig.1 zeigt einen schematischen Schnitt durch eine erfindungsgemäße Einrichtung und Fig.2 einen Detailschnitt.The invention is explained in more detail below on the basis of an exemplary embodiment shown in the drawing. 1 shows a schematic section through a device according to the invention and FIG. 2 shows a detailed section.

Fig.1 zeigt einen schematischen Schnitt durch eine erfindungsgemäße Einrichtung zur Druckinfiltration von Metallschmelze in ein Druckgefäß 2 mit einem mit Füllmaterial 7 befüllten Infiltrationsraum 8. Das Druckgefäß ist mit einem druckfesten Behälter 1 gegebenenfalls einstückig verbunden. Im Betrieb wird der Druckraum 6 des Behälters 1 in zwei Teilvolumina unterteilt, und zwar ein unteres Teilvolumen, in dem aufgegebenes Metall (Legierungsmetall) aufgeschmolzen wird und in ein nach oben anschließendes Teilvolumen, in dem aufzuschmelzendes Metall 9 in fester Form gehalten wird, um als Druck- bzw. Dichtungskörper zu wirken; alternativ oder zusätzlich kann im Aufgabebereich ein Druck- bzw. Dichtungskörper 9 aus einem anderen Material vorgesehen sein. Dem Druckgefäß 2 und dem Behälter 1 ist eine gegebenenfalls gemeinsame Heizeinrichtung 11 zugeordnet; der obere Bereich des Behälters 1 ist mit einer Kühleinrichtung 12 umgeben, um im Behälter 1 ein Temperaturgefälle zu erstellen. Die Einstellung des Temperaturgefälles kann auch durch thermische Abstrahlung erzielt werden, indem die Heizeinrichtung 11 den Behälter 1 nur über einen gewissen Teilbereich umgibt. Durch Anlagerung des aufgeschmolzenen Metalles im Bereich 14 an noch nicht geschmolzenes Metall oder an einen Druckkörper sowie an die Wand des Behälters 1 erfolgt eine Abdichtung des Schmelzenbereiches gegenüber dem Behälterverschluß 3; gleichzeitig kann die Größe des Schmelzvolumens eingeregelt werden. Der Behälter 1 ist mit einem Anschluß 4 an eine Vakuumpumpe angeschlossen. Das in dem Schmelzvolumen durch die Heizeinrichtung 11 aufgeschmolzene Metall 10 verfestigt sich an dem kälteren Druckteil 9 bzw. an der diesen umgebenden kälteren Wand und dringt in den Spalt zwischen dem Druckteil 9 und der Wand des Druckgefäßes 1 über einen gewissen Weg ein, bis es erstarrt. Dieses erstarrende Metall (14) verhindert ein weiteres Vordringen des geschmolzenen Metalles 10, wodurch ein Druckraum erstellt wird, der lediglich zum Druckgefäß 2 hin bzw. gegen den zu befüllenden Infiltrationsraum 8 geöffnet ist.1 shows a schematic section through a device according to the invention for pressure infiltration of molten metal into a pressure vessel 2 with an infiltration space 8 filled with filler material 7. The pressure vessel is optionally integrally connected to a pressure-resistant container 1. In operation, the pressure chamber 6 of the container 1 is divided into two sub-volumes, namely a lower sub-volume in which the metal (alloy metal) is melted and in an upward sub-volume in which the metal 9 to be melted is kept in solid form in order to To act pressure or sealing body; alternatively or additionally, a pressure or sealing body 9 made of a different material can be provided in the application area. A possibly common heating device 11 is assigned to the pressure vessel 2 and the container 1; the upper region of the container 1 is surrounded by a cooling device 12 in order to create a temperature gradient in the container 1. The setting of the temperature gradient can also be achieved by thermal radiation, in that the heating device 11 surrounds the container 1 only over a certain partial area. By depositing the molten metal in the region 14 on metal that has not yet melted or on a pressure body and on the wall of the container 1, the melt region is sealed off from the container closure 3; at the same time the size of the melting volume can be adjusted. The container 1 is connected with a connection 4 to a vacuum pump. The metal 10 melted in the melting volume by the heating device 11 solidifies on the colder pressure part 9 or on the colder wall surrounding it and penetrates into the gap between the pressure part 9 and the wall of the pressure vessel 1 in a certain way until it solidifies . This solidifying metal (14) prevents further penetration of the molten metal 10, as a result of which a pressure space is created which is only open towards the pressure vessel 2 or against the infiltration space 8 to be filled.

In gleicher Weise ist es möglich, das Ende des Infiltrationsraumes 8 abzudichten, wie es in Fig.2 im Detail dargestellt ist. Im Bereich des Verschlusses 5 des Infiltrationsraumes 8 wird ein Körper aus aufzuschmelzendem Metall oder ein aus einem anderen Material bestehender Druckkörper 13 eingebracht und ein Temperaturgefälle bzw. Temperaturgradient durch eine Kühleinrichtung 15 eingestellt, so daß in den Infiltrationsraum 8 infiltriertes, geschmolzenes Metall bei Kontakt mit dem Druckkörper 13 bzw. des diesen umgebenden Wandbereiches erstarrt und den Spalt zwischen dem Druckkörper 13 und der Wandung des Druckgefäßes 2 abdichtet. Auf diese Weise bedürfen die Verschlüsse 3 und 5 keiner besonders ausgebildeten Dichtung, die flüssigem Metall gegenüber resistent ist; sie sind lediglich derart auszulegen, daß dem auftretenden Druck und den auftretenden Temperaturen Widerstand geleistet wird.In the same way, it is possible to seal the end of the infiltration space 8, as is shown in detail in FIG. In the area of Closure 5 of the infiltration space 8, a body made of metal to be melted or a pressure body 13 made of another material is introduced and a temperature gradient or temperature gradient is set by a cooling device 15, so that infiltrated, molten metal in the infiltration space 8 upon contact with the pressure body 13 or of the wall area surrounding it solidifies and seals the gap between the pressure body 13 and the wall of the pressure vessel 2. In this way, the closures 3 and 5 do not require a specially designed seal which is resistant to liquid metal; they are only to be interpreted in such a way that the pressure and the temperatures occurring are resisted.

Möglich ist es auch, daß der (die) in den Druckraum 6 eingesetzten Metallkörper 9 bzw. der (die) in den Infiltrationsraum 8 eingesetzten Metallkörper 13 aufgrund ihrer thermischen Expansion eine Abdichtung zwischen sich und den jeweiligen Wänden des Behälters 1 bzw. Druckgefäßes 6 bewirken, die ein Eindringen von Metallschmelze weitgehend verhindert. Diese Maßnahme kann zusätzlich oder alternativ zur Abdichtung unter Zuhilfenahme eines Temperaturgradienten zur Ausbildung einer Abdichtungsschicht 14 aus erstarrendem Metall erfolgen.It is also possible that the metal body 9 inserted into the pressure chamber 6 or the metal body 13 inserted into the infiltration chamber 8, due to its thermal expansion, bring about a seal between itself and the respective walls of the container 1 or pressure vessel 6 , which largely prevents the penetration of molten metal. This measure can be carried out in addition or as an alternative to sealing with the aid of a temperature gradient to form a sealing layer 14 made of solidifying metal.

Die Querschnitte des Druckraumes 6 bzw. des Infiltrationsraumes 8 können beliebig sein, da die Form der Dichtungskörper 9 bzw. 13 ebenfalls beliebig wählbar ist bzw. an die lichten Weiten der Räume anpaßbar ist.The cross sections of the pressure chamber 6 or of the infiltration chamber 8 can be any, since the shape of the sealing body 9 or 13 can also be selected as desired or can be adapted to the clear width of the rooms.

Besonders vorteilhaft eignet sich das Verfahren zur Infiltration von Aluminium, Magnesium oder anderen Metallen bzw. deren Legierungen, da sich diese Metalle beim Schmelzen beträchtlich ausdehnen; z.B. vergrößert Aluminium beim Schmelzen sein Volumen um 6 %, und es sind zur Einbringung von Aluminium und/oder Magnesium bzw. deren Legierungen in Vorformen bzw. Infiltrationsvolumina 8, die mit Partikeln und/oder Fasern aus Siliciumcarbid Aluminiumoxyd, Kohlenstoff, Bornitrid od.dgl. befüllt sind, nur kurze Infiltrationszeiten notwendig, die eine Reaktion der Fasern (Bildung von Metallkarbiden, -nitriden usw.) mit den eingebrachten Metallen weitgehend ausschließen.The method is particularly advantageously suitable for the infiltration of aluminum, magnesium or other metals or their alloys, since these metals expand considerably during melting; e.g. When melting aluminum increases its volume by 6%, and it is for the introduction of aluminum and / or magnesium or their alloys into preforms or infiltration volumes 8, or the like with particles and / or fibers made of silicon carbide, aluminum oxide, carbon, boron nitride. are filled, only short infiltration times are necessary, which largely preclude a reaction of the fibers (formation of metal carbides, nitrides, etc.) with the introduced metals.

Vor dem Schmelzen bzw. nach Befüllung des Infiltrationsraumes 8 mit den Fasern 7 bzw. des Druckraumes 6 mit dem aufzuschmelzenden Metall wird die Einrichtung evakuiert, welche Evakuierung bis zur Ausbildung der Abdichtung 14 zwischen dem aufgeschmolzenen Metall und dem Druckkörper 9 fortgesetzt werden kann.Before melting or after filling the infiltration space 8 with the fibers 7 or the pressure space 6 with the metal to be melted, the device is evacuated, which evacuation can be continued until the seal 14 is formed between the melted metal and the pressure body 9.

Wesentlich ist es, daß zwischen den Druckkörpern 9 bzw. 13 und der Wand des Druckgefäßes 2 bzw. des Behälters 1 nur ein sehr geringer Zwischenraum (z.B. einige Zehntel Millimeter) eingehalten wird, um ein Durchbrechen des erstarrten Metalles 14 mit flüssigem Metall zu verhindern; aus diesem Grund werden die Druckkörper 9 und 13 möglichst genau an die lichte Weite des Behälters bzw. Druckgefäße 2 angepaßt. Dies ist dann besondes einfach, wenn der Druckkörper massiv aus aufzuschmelzendem Metall besteht, da dann das Ausmaß der bei der Berechnung und Einregelung des Infiltrationsdruckes zu berücksichtigenden Leeräume minimiert ist.It is essential that only a very small space (e.g. a few tenths of a millimeter) is maintained between the pressure bodies 9 or 13 and the wall of the pressure vessel 2 or the container 1 in order to prevent the solidified metal 14 from breaking through with liquid metal; for this reason, the pressure bodies 9 and 13 are adapted as precisely as possible to the inside width of the container or pressure vessels 2. This is particularly easy if the pressure body consists of solid metal to be melted, since the extent of the empty spaces to be taken into account when calculating and regulating the infiltration pressure is then minimized.

Zweckmäßigerweise sind zur Feststellung der Temperatur und/oder des Druckes im Druckraum 6 Temperatur- und/oder Druckmeßgeräte 16,17 vorgesehen, mit denen gegebenenfalls die Heizeinrichtung(en) 11 und/oder Kühleinrichtung 12 gesteuert sind.To determine the temperature and / or the pressure in the pressure chamber 6, temperature and / or pressure measuring devices 16, 17 are expediently provided, with which the heating device (s) 11 and / or cooling device 12 are controlled if necessary.

Prinzipiell ist es auch möglich, den in Fig.1 dargestellten Behälter waagrecht anzuordnen; bevorzugterweise wird jedoch die Infiltration aus dem Druckraum 6 in einen unterhalb desselben liegenden Infiltrationsraum 8 vorgenommen.In principle, it is also possible to arrange the container shown in Figure 1 horizontally; however, the infiltration from the pressure chamber 6 is preferably carried out into an infiltration chamber 8 lying below it.

Eine mögliche Reaktion zwischen dem infiltrierten Metall und dem Füllmaterial 7 kann minimiert werden, wenn unmittelbar nach dem Eindringen des Infiltrationsmetalls der Behälter 2 abgekühlt, z.B. durch Eintauchen in Wasser oder heißes Öl, abgeschreckt wird.A possible reaction between the infiltrated metal and the filling material 7 can be minimized if the container 2 is cooled immediately after the infiltration metal has penetrated, e.g. quenched by immersion in water or hot oil.

Claims (8)

Verfahren zum Tränken von porösen, faserigen oder pulverförmigen Werkstoffen in einem vorher entgasten Infiltrationsraum (8) mit der Schmelze eines Metalls oder einer Legierung aus einem Aufgabebereich (6), wobei die Schmelze unter Druck in den Infiltrationsraum (8) gepreßt wird, dadurch gekennzeichnet, daß durch geregeltes Aufschmelzen des im Aufgabebereich befindlichen Metalls oder der Legierung und die dabei auftretende Volumenvergrößerung der hydrostatische Druck der Schmelze erhöht und diese in den Infiltrationsraum (8) gedrückt wird.Method for impregnating porous, fibrous or powdery materials in a previously degassed infiltration space (8) with the melt of a metal or an alloy from a feed area (6), the melt being pressed under pressure into the infiltration space (8), characterized in that that by controlled melting of the metal or alloy located in the application area and the resulting increase in volume, the hydrostatic pressure of the melt is increased and this is pressed into the infiltration space (8). Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das aufzuschmelzende Metall im Aufgabebereich (6) dessen Querschnitt zumindest weitgehend ausfüllend angeordnet und dann nur in einem an den Infiltrationsraum (8) anschließenden Teilvolumen des Aufgabebereichs aufgeschmolzen wird.A method according to claim 1, characterized in that the metal to be melted is arranged in the feed area (6) at least largely filling its cross section and then only melted in a partial volume of the feed area adjoining the infiltration space (8). Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Abstand des Metalls zu den den Querschnitt bestimmenden Wänden des Aufgabebereichs in der Größenordnung von 0,1 bis 0,5 mm gewählt wird.Method according to claim 2, characterized in that the distance of the metal from the walls of the feed area which determine the cross section is selected in the order of 0.1 to 0.5 mm. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das aufzuschmelzende Metall auf höchstens 20° C über den Soliduspunkt erwärmt wird.Method according to one of the preceding claims, characterized in that the metal to be melted is heated to a maximum of 20 ° C above the solidus point. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß das Teilvolumen, in dem nicht aufgeschmolzen werden soll, gekühlt wird.Method according to one of claims 2 to 4, characterized in that the partial volume in which it is not intended to be melted is cooled. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß als Metalle Aluminium, Magnesium, Blei, Zinn oder deren Legierungen verwendet werden.Method according to one of the preceding claims, characterized in that aluminum, magnesium, lead, tin or their alloys are used as metals. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß ein faseriger Werkstoff getränkt wird, dessen Fasern den Infiltrationsraum (8) über dessen Länge durchsetzen.Method according to one of the preceding claims, characterized in that a fibrous material is impregnated, the fibers of which penetrate the infiltration space (8) along its length. Verfahren nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß der Infiltrationsraum (8) und das an den Infiltrationsraum anschließende Teilvolumen des Aufgabebereichs (6) durch eine Induktionsheizung (11) beheizt werden.Method according to one of claims 2 to 7, characterized in that the infiltration space (8) and the partial volume of the application area (6) adjoining the infiltration space are heated by an induction heater (11).
EP19920107799 1991-05-08 1992-05-08 Method for impregnating porous, fibrous or pulverulent materials with a melt of a metal or an alloy Expired - Lifetime EP0513685B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4115057 1991-05-08
DE19914115057 DE4115057A1 (en) 1991-05-08 1991-05-08 METHOD AND DEVICE FOR INFILTRATING MOLTEN METAL

Publications (2)

Publication Number Publication Date
EP0513685A1 true EP0513685A1 (en) 1992-11-19
EP0513685B1 EP0513685B1 (en) 1995-08-02

Family

ID=6431263

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920107799 Expired - Lifetime EP0513685B1 (en) 1991-05-08 1992-05-08 Method for impregnating porous, fibrous or pulverulent materials with a melt of a metal or an alloy

Country Status (2)

Country Link
EP (1) EP0513685B1 (en)
DE (1) DE4115057A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406837B (en) * 1994-02-10 2000-09-25 Electrovac METHOD AND DEVICE FOR PRODUCING METAL-MATRIX COMPOSITES
DE19624643C2 (en) * 1995-06-21 2001-12-06 Electrovac Process for the production of MMC components
EP1260293A1 (en) * 2001-05-25 2002-11-27 Alcatel Process for fabricating a tube-sheet structure made of metal matrix composite material

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4225530A1 (en) * 1992-08-01 1994-02-03 Bayerische Motoren Werke Ag Method and appts. for manufacture of components - with infiltration of molten metal into a fibre blank under pressure before the blank is forced into a component mould
AT406238B (en) * 1995-07-07 2000-03-27 Electrovac MOLDED BODIES MADE OF MMC WITH MODULAR DESIGN
DE19605398A1 (en) * 1996-02-14 1997-08-21 Wielage Bernhard Prof Dr Ing Production of metal matrix composites in strip or foil form
US5934357A (en) * 1996-11-13 1999-08-10 Aluminum Company Of America System for manufacturing metal matrix composites
JPH10152734A (en) * 1996-11-21 1998-06-09 Aisin Seiki Co Ltd Wear resistant metal composite
DE19710671C2 (en) 1997-03-14 1999-08-05 Daimler Chrysler Ag Method for producing a component and use of a component produced in this way
DE19712624C2 (en) * 1997-03-26 1999-11-04 Vaw Motor Gmbh Aluminum matrix composite and process for its manufacture
DE19851258A1 (en) * 1998-11-06 2000-05-18 Fuerstlich Hohenzollernsche We Method and device for filling cavities or grooves of a body with a liquid metal
DE10333038B4 (en) * 2003-07-21 2006-01-05 Daimlerchrysler Ag Process for pressure infiltration of porous components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2415868A1 (en) * 1973-04-03 1975-01-30 Toyota Motor Co Ltd Porous compacts impregnated with molten metal under pressure - e.g. silicon nitride or carbon compacts impregnated with aluminium alloys
US4508158A (en) * 1983-02-22 1985-04-02 International Harvester Company Graphite-metal matrix bearings and methods of manufacturing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3504118C1 (en) * 1985-02-07 1985-10-31 Daimler-Benz Ag, 7000 Stuttgart Process for the production of fiber-reinforced light metal castings

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2415868A1 (en) * 1973-04-03 1975-01-30 Toyota Motor Co Ltd Porous compacts impregnated with molten metal under pressure - e.g. silicon nitride or carbon compacts impregnated with aluminium alloys
US4508158A (en) * 1983-02-22 1985-04-02 International Harvester Company Graphite-metal matrix bearings and methods of manufacturing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 14, no. 69 (M-932)(4012) 8. Februar 1990 & JP-A-1 289 561 ( TOYOTA MOTOR CORP ) 21. November 1989 *
PATENT ABSTRACTS OF JAPAN vol. 9, no. 132 (M-385)(1855) 7. Juli 1985 & JP-A-60 015 061 ( TORAY K.K. ) 25. Januar 1985 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406837B (en) * 1994-02-10 2000-09-25 Electrovac METHOD AND DEVICE FOR PRODUCING METAL-MATRIX COMPOSITES
DE19624643C2 (en) * 1995-06-21 2001-12-06 Electrovac Process for the production of MMC components
EP1260293A1 (en) * 2001-05-25 2002-11-27 Alcatel Process for fabricating a tube-sheet structure made of metal matrix composite material
FR2825041A1 (en) * 2001-05-25 2002-11-29 Cit Alcatel METHOD FOR MANUFACTURING A TUBE-PLATE STRUCTURE OF COMPOSITE MATERIAL WITH METAL MATRIX
US6595264B2 (en) 2001-05-25 2003-07-22 Alcatel Method of manufacturing a tube-and-plate structure of metal-matrix composite material

Also Published As

Publication number Publication date
DE4115057C2 (en) 1993-03-11
EP0513685B1 (en) 1995-08-02
DE4115057A1 (en) 1992-11-12

Similar Documents

Publication Publication Date Title
EP0513685B1 (en) Method for impregnating porous, fibrous or pulverulent materials with a melt of a metal or an alloy
DE1901766A1 (en) Method for producing a compacted object from powder, in particular from metal powder
DE3033225A1 (en) METHOD FOR HOT PRESSING POWDER IN A CONTAINER
DE2027016A1 (en) Process for compacting metal or ceramic objects
DE3836392C2 (en) Method and device for producing tubular ceramic bodies
DE2015362B2 (en) Process for the production of dispersion strengthened alloys
EP0567008A2 (en) Process to grow several single crystal and apparatus therefor
DE3546148A1 (en) DEVICE FOR PRODUCING COMPOSITE MATERIAL
DE2952150C2 (en) Method and device for the production of ingots from directionally solidified alloys
WO2000048770A1 (en) Method and device for producing cast parts consisting of aluminium and magnesium alloys
DE2951202A1 (en) METHOD FOR FOLLOWING OR FOLLOWING BLOWING IN GAS INTO A STEEL MELT
DE10025014C2 (en) Device for producing light metal castings, in particular parts made of magnesium or magnesium alloys
DE2856466C2 (en) Process for solidifying highly radioactive waste materials in a metal matrix in the form of granules or powder
AT376920B (en) METHOD FOR PRODUCING AN OBJECT FROM A SENSIBLE MATERIAL
CH626550A5 (en) Process for producing a sintered body by hot-pressing powder of a metallic or non-metallic composition
DE3324291A1 (en) METHOD FOR FILLING METAL CONTAINERS WITH A RADIOACTIVE GLASS MELT AND DEVICE FOR RECEIVING A RADIOACTIVE GLASS MELT
DD301654A5 (en) FREE SHIPPING FOR METALLURGICAL GEFAESSES WITH FLOOR CLOSURE
DE1483703B2 (en) METAL, METAL ALLOYS OR INORGANIC METAL COMPOUNDS PROCESS FOR HOT PRESSING POWDERS
DE4303434C1 (en) Process for the production of metal-matrix composite materials
DE2210771A1 (en) Process for the production of a mixed material
DE3307000A1 (en) Process for the production of a composite metal body
AT405915B (en) METHOD FOR PRODUCING METAL-MATRIX COMPOSITIONS AND PREFORM HOLDERS FOR CARRYING OUT THEIR
DE102007038201B3 (en) Production of composite ceramic-metal materials comprises partially filling mold with ceramic or graphite, heating this near melting point of metal. Pouring molten metal in and evacuating chamber containing mold to remove gas bubbles
DE3330137A1 (en) WEAR-PROTECTED WORKPIECE
DE2424840C3 (en) Sealing in a device for the continuous casting of threads

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT

17Q First examination report despatched

Effective date: 19930517

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHMITT, THEODOR, DIPL.-ING.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT

ITF It: translation for a ep patent filed

Owner name: ORGANIZZAZIONE D'AGOSTINI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951014

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000503

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010427

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010508

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050508