EP0506727B1 - A method and a device for radio receivers if (intermediate frequency) signal detection - Google Patents

A method and a device for radio receivers if (intermediate frequency) signal detection Download PDF

Info

Publication number
EP0506727B1
EP0506727B1 EP91900815A EP91900815A EP0506727B1 EP 0506727 B1 EP0506727 B1 EP 0506727B1 EP 91900815 A EP91900815 A EP 91900815A EP 91900815 A EP91900815 A EP 91900815A EP 0506727 B1 EP0506727 B1 EP 0506727B1
Authority
EP
European Patent Office
Prior art keywords
signal
output
local oscillator
mixer
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91900815A
Other languages
German (de)
French (fr)
Other versions
EP0506727A1 (en
Inventor
Ari-Matti Luoma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINNTRACKER Oy
Original Assignee
FINNTRACKER Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINNTRACKER Oy filed Critical FINNTRACKER Oy
Publication of EP0506727A1 publication Critical patent/EP0506727A1/en
Application granted granted Critical
Publication of EP0506727B1 publication Critical patent/EP0506727B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0094Measures to address temperature induced variations of demodulation
    • H03D2200/0096Measures to address temperature induced variations of demodulation by stabilising the temperature

Definitions

  • the object of the invention is a method and a device that uses this method for IF signal detection in a portable radio receiver that is specially used for tracking the location of a target object carrying a radio transmitter.
  • a so called BEAT oscillator and a mixer for IF detection has usually been used.
  • This kind of a prior art method has a mixer in the receiver after the last IF stage.
  • the IF signal e.g. 455 kHz and the signal from the BEAT oscillator, e.g. 454 or 456 kHz, are mixed in that mixer.
  • the mixing result is a 1 kHz LF (low frequency) signal which can be heard.
  • the method described is used e.g. in devices that are tracking the location of animals by using a portable receiver to track a transmitter which is attached to an animal. In this kind of device the transmitter is small and cannot therefore be manufactured to be stable against ageing and temperature drifting.
  • One of the disadvantages of such a prior art method is that it is very sensitive to the frequency changes in the transmitting or the receiving end. If the frequency provided by the last IF stage changes (whatever the reason of the change is), the frequency of the receiver's BEAT-oscillator has to be changed accordingly, so that the mixer output signal will remain at 1 kHz. E.g. changes in temperature will cause drifting in the electronic components in the receiver and in the transmitter which will have an effect on the frequency.
  • the published Japan patent application No 58-142637 discloses a frequency converting system of super heterodyne receiver, the purpose of which is to elevate stability in case of reception, by using a frequency difference between receiving frequency and the same frequency as fixed intermediate frequency oscillated by an oscillator, as a local oscillating signal of a frequency converting circuit.
  • this publication there is no mentioning neither of audible signal detection of a received intermediate frequency nor of any audible signal at all.
  • the IF signal to be detected is branched into two branches.
  • the first branch signal is mixed with the second signal which has been derived from the second branch signal as follows.
  • the second branch signal has been treated in a 90° phase shifting device, and the received sidebands are mixed with a LF oscillator signal fed through another 90° phase shifting device (i.e. in quadrature).
  • the mixed sidebands are then fed to a summing device SA, in order to yield the second signal.
  • This second signal is lead to the mixing device to be mixed with the first branched signal.
  • This mixing produces an audible signal representing the IF signal to be detected. According to the solution of the present invention this audible signal remains constant despite fluctuations in the IF signal to be detected.
  • the IF signal F1 from the receiver's last IF stage e.g. 455 kHz
  • the BEAT oscillator signal F2 e.g. 454 kHz (lower sideband), or 456 kHz (upper sideband)
  • the mixer M1 output will provide a 1 kHz LF signal which can be heard.
  • the mixer M1 output will provide a 2 kHz LF signal.
  • the error in the signal is 100% from desired 1 kHz. To compensate the situation the BEAT oscillator frequency must be tuned manually by listening to the tone.
  • Fig. 2 describes the principle of the new method of the invention.
  • the mixed signal F2 is produced using the IF signal F1 and signal F3 generated by the LO. Then the mixed signal F2 is tracking the changes in the IF signal F1 directly and the LF signal F0 which is detected from the IF signal F1 by the mixed signal F2 in mixer M1 will remain in it's desired constant value.
  • the circuit in fig. 2 will not work because the mixed signal F2 consists of both sidebands.
  • the method of the invention can be realized by using the circuit in fig.3.
  • the principle of the phase shift circuit PSC in fig. 3 is priorly known from so called SSB (single-sideband suppressed carrier) technique where it is used in radio transceivers that send only one of the sidebands. Then the bandwidth required by one channel is reduced to the half.
  • SSB single-sideband suppressed carrier
  • the IF signal F1 is routed to the input of a first mixer M1 and directly or through an amplifier OA to the input of a first 90 deg phase shift circuit PS1.
  • Signal F4 from the output of the first phase shift circuit PS1 is in phase with the IF signal F1.
  • Signal F4 is routed to the input of a second mixer M2 and the signal F5 from the first phase shift circuit PS1 which is 90 deg out of phase with the IF signal F1 are routed to the input of a third mixer M3.
  • the LF signal F3 generated by a local oscillator LO is routed to the input of a second 90 deg phase shift circuit PS2.
  • the signal F6 from the output of the second phase shift circuit PS2 is in phase with the LO- generated LF signal F3, and it is routed to the input of the second mixer M2.
  • Signal F7 from the output of the second phase shift circuit PS2 is 90 deg. out of phase with the LF signal F3 and it is routed to the input of the third mixer circuit M3.
  • Signals F8 and F9 from the outputs of the second M2 and the third M3 mixer are routed to the inputs of a summing amplifier SA, and the output of the summing amplifier SA is connected to the input of the first mixer M1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superheterodyne Receivers (AREA)
  • Noise Elimination (AREA)

Abstract

A method and a device to detect an IF signal (F1) from a radio receiver. The device consists of a first mixer (M1) the first input of which is connected to the output of the last IF stage, and of a prior art phase tracking circuit (PSC) the input of which is also connected either directly or through an amplifier (OA) to the output of the last IF section, and the output of which is connected to the second input of the first mixer (M1). Then the mixed signal (F2) is produced by phase tracking the IF signal (F1) and the local oscillator signal (F3).

Description

  • The object of the invention is a method and a device that uses this method for IF signal detection in a portable radio receiver that is specially used for tracking the location of a target object carrying a radio transmitter.
  • In receivers using a pulsed RF (radio frequency) signal as a carrier wave, a so called BEAT oscillator and a mixer for IF detection has usually been used. This kind of a prior art method has a mixer in the receiver after the last IF stage. The IF signal e.g. 455 kHz and the signal from the BEAT oscillator, e.g. 454 or 456 kHz, are mixed in that mixer. The mixing result is a 1 kHz LF (low frequency) signal which can be heard. The method described is used e.g. in devices that are tracking the location of animals by using a portable receiver to track a transmitter which is attached to an animal. In this kind of device the transmitter is small and cannot therefore be manufactured to be stable against ageing and temperature drifting.
  • One of the disadvantages of such a prior art method is that it is very sensitive to the frequency changes in the transmitting or the receiving end. If the frequency provided by the last IF stage changes (whatever the reason of the change is), the frequency of the receiver's BEAT-oscillator has to be changed accordingly, so that the mixer output signal will remain at 1 kHz. E.g. changes in temperature will cause drifting in the electronic components in the receiver and in the transmitter which will have an effect on the frequency.
  • In the prior art devices the frequency of the BEAT-oscillator is tuned manually with the receiver's tuning mechanism by listening to the tone. Manual tuning by listening to the tone is difficult and to be successful certain experience is needed from the user, who usually is not an expert in this field.
  • The published Japan patent application No 58-142637 discloses a frequency converting system of super heterodyne receiver, the purpose of which is to elevate stability in case of reception, by using a frequency difference between receiving frequency and the same frequency as fixed intermediate frequency oscillated by an oscillator, as a local oscillating signal of a frequency converting circuit. In this publication there is no mentioning neither of audible signal detection of a received intermediate frequency nor of any audible signal at all.
  • It is an object of the present invention to improve the audible detection of an IF signal.
  • This object is achieved by the features of claim 1.
  • According to the invention the IF signal to be detected is branched into two branches. The first branch signal is mixed with the second signal which has been derived from the second branch signal as follows. The second branch signal has been treated in a 90° phase shifting device, and the received sidebands are mixed with a LF oscillator signal fed through another 90° phase shifting device (i.e. in quadrature). The mixed sidebands are then fed to a summing device SA, in order to yield the second signal. This second signal is lead to the mixing device to be mixed with the first branched signal. This mixing produces an audible signal representing the IF signal to be detected. According to the solution of the present invention this audible signal remains constant despite fluctuations in the IF signal to be detected.
  • The following is an example where the invention is described by making references to the figures enclosed. The figures are
    • Fig. 1 Principle block diagram of a prior art method
    • Fig. 2 Block diagram describing the principles of the method of the object of the invention
    • Fig. 3 Block diagram of the method of the embodiment of the invention
  • In the diagram in Fig. 1 the IF signal F1 from the receiver's last IF stage, e.g. 455 kHz, and the BEAT oscillator signal F2, e.g. 454 kHz (lower sideband), or 456 kHz (upper sideband), are routed to the mixer M1 inputs. Then the mixer M1 output will provide a 1 kHz LF signal which can be heard. If e.g. the IF signal F1 changes 1 kHz upwards or it is 456 kHz and the BEAT oscillator frequency remains unchanged at 454 kHz, the mixer M1 output will provide a 2 kHz LF signal. The error in the signal is 100% from desired 1 kHz. To compensate the situation the BEAT oscillator frequency must be tuned manually by listening to the tone.
  • Fig. 2 describes the principle of the new method of the invention. In the new method of the invention, the mixed signal F2 is produced using the IF signal F1 and signal F3 generated by the LO. Then the mixed signal F2 is tracking the changes in the IF signal F1 directly and the LF signal F0 which is detected from the IF signal F1 by the mixed signal F2 in mixer M1 will remain in it's desired constant value. In practice the circuit in fig. 2 will not work because the mixed signal F2 consists of both sidebands.
  • The method of the invention can be realized by using the circuit in fig.3. The principle of the phase shift circuit PSC in fig. 3 is priorly known from so called SSB (single-sideband suppressed carrier) technique where it is used in radio transceivers that send only one of the sidebands. Then the bandwidth required by one channel is reduced to the half.
  • In fig. 3 the IF signal F1 is routed to the input of a first mixer M1 and directly or through an amplifier OA to the input of a first 90 deg phase shift circuit PS1. Signal F4 from the output of the first phase shift circuit PS1 is in phase with the IF signal F1. Signal F4 is routed to the input of a second mixer M2 and the signal F5 from the first phase shift circuit PS1 which is 90 deg out of phase with the IF signal F1 are routed to the input of a third mixer M3. The LF signal F3 generated by a local oscillator LO is routed to the input of a second 90 deg phase shift circuit PS2. The signal F6 from the output of the second phase shift circuit PS2 is in phase with the LO- generated LF signal F3, and it is routed to the input of the second mixer M2. Signal F7 from the output of the second phase shift circuit PS2 is 90 deg. out of phase with the LF signal F3 and it is routed to the input of the third mixer circuit M3. Signals F8 and F9 from the outputs of the second M2 and the third M3 mixer are routed to the inputs of a summing amplifier SA, and the output of the summing amplifier SA is connected to the input of the first mixer M1.
  • In fig.3 there is a mathematical model which explains the functions of the circuitry by using trigonometric functions. Sin(xt) represents the IF signal F1 from the last IF stage. Sin(yt) represents the LF signal F3 which is generated by the local oscillator LO. At the mixer outputs M1, M2, M3 there is the product of the mixer input signals and at the output of the summing amplifier SA there is the sum of its input signals. In fig. 3 circuitry the mixed signal F2=2cos(x-y)t is detected from the lower sideband of the modulation result of the LO signal F3=sin(yt) and the IF signal F1=sin(xt) by using phase tracking.
  • If in fig. 3 either the outputs of the 90 deg phase shift circuit PS2 in the local oscillator circuit or the outputs of the 90 deg phase shift circuit PS1 are interchanged, the result will be that from the summing amplifier we will get the mixed signal F2=2sin(x+y)t which is the upper sideband.
  • E.g. in a receiver using pulsed RF (radio frequency) as a carrier wave and where IF signal is detected by using the method of the invention it is possible to use either sideband.
  • The way of presenting the invention in fig. 3 is not intended to limit the invention. It is also obviously possible to use other prior art phase tracking applications well known by a professional of this branch to realize the idea of this invention.

Claims (3)

  1. A method for detecting an IF radio signal (F1) as an audible signal (F0) characterised by:
    branching the IF signal into two branches;
    passing the second branch signal through a first phase shift circuit (PS1) producing first (F4) and second (F5) IF output signals, whose phases differ by 90°;
    passing a local oscillator signal (F3) through a second phase shift circuit (PS2) producing first (F6) and second (F7) local oscillator output signals whose phases differ by 90°;
    mixing the first IF output signal (F4) with the first local oscillator output signal (F6) to produce a first mixed product signal (F8) and the second IF output signal (F5) with the second local oscillator output signal (F7) to produce a second mixed product signal (F9);
    summing the first and second mixed product signals (F8, F9) in a summing amplifier (SA) to a second signal (F2); and
    mixing this summed signal (F2) with the first branch signal (F1).
  2. A method according to claim 1, characterized in that the frequency of the local oscillator signai (F3) lies within such a distance from the frequency of the IF radio signal (F1) that the combination of both frequencies yields an audible signal (F0) of about 1 kHz.
  3. A method according to claim 1 or 2, characterized in that for an IF radio signal F1 = sin(xt)
    the first IF output signal F4 = 2sin(xt) and the second IF output signal F5 = 2cos(xt),
    the first local oscillator output signal F6 = sin(yt) and the second local oscillator output signal F7 = cos(yt),
    the first mixed product signal of the respective first output signals F8 = cos(x-y)t-cos(x+y)t and the second mixed product signal of the respective second output signals F9 = cos(x+y)t +cos (x-y)t, and in that
    the summed signal F2 = 2cos(x-y)t,
    which summed signal (F2) is mixed with the first branch signal F1 = sin(xt).
EP91900815A 1989-12-20 1990-12-19 A method and a device for radio receivers if (intermediate frequency) signal detection Expired - Lifetime EP0506727B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI896141 1989-12-20
FI896141A FI84412C (en) 1989-12-20 1989-12-20 Method for demodulating the intermediate frequency in a radio receiver with apparatus for realizing the method
PCT/FI1990/000305 WO1991009472A1 (en) 1989-12-20 1990-12-19 A method and a device for radio receivers if (intermediate frequency) signal detection

Publications (2)

Publication Number Publication Date
EP0506727A1 EP0506727A1 (en) 1992-10-07
EP0506727B1 true EP0506727B1 (en) 1996-06-26

Family

ID=8529551

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91900815A Expired - Lifetime EP0506727B1 (en) 1989-12-20 1990-12-19 A method and a device for radio receivers if (intermediate frequency) signal detection

Country Status (4)

Country Link
EP (1) EP0506727B1 (en)
DE (1) DE69027610D1 (en)
FI (1) FI84412C (en)
WO (1) WO1991009472A1 (en)

Also Published As

Publication number Publication date
FI84412B (en) 1991-08-15
DE69027610D1 (en) 1996-08-01
FI84412C (en) 1991-11-25
WO1991009472A1 (en) 1991-06-27
FI896141A0 (en) 1989-12-20
FI896141A (en) 1991-06-21
EP0506727A1 (en) 1992-10-07

Similar Documents

Publication Publication Date Title
US5495500A (en) Homodyne radio architecture for direct sequence spread spectrum data reception
US4317217A (en) Tag generator for a same-frequency repeater
AU2003255865A1 (en) Improved mixers with a plurality of local oscillators and systems based thereon
US7242259B2 (en) Active backscatter transponder, communication system comprising the same and method for transmitting data by way of such an active backscatter transponder
GB636467A (en) Improvements in or relating to transmitters and receivers for single-sideband signals
KR101222223B1 (en) Device for Receiving and/or Transmitting Radio Frequency Signals with Noise Reduction
SE9604438D0 (en) Device in a communication system
JP2003318823A (en) Method for processing signal of modulated light and device therefor
US5134723A (en) Radio sensitivity enhancer
EP0506727B1 (en) A method and a device for radio receivers if (intermediate frequency) signal detection
US20120294343A1 (en) RF I/Q Modulator with Sampling Calibration System
US2583573A (en) Radio receiving system
RU2804516C1 (en) Method for transmitting control commands on board aerlogical radiosonde and radar system implementing it
EP0165265A1 (en) Duplex communication transceiver with modulation cancellation
JPH01199185A (en) Microwave communication apparatus
KR100249676B1 (en) Apparatus for leakage signal erasing of local oscillating signal
RU2114509C1 (en) Multichannel communication device
EP1033818A1 (en) Signal generating circuit, and transmitter, receiver and transmitting and receiving device using the circuit
KR0143727B1 (en) Apparatus for oscillating frequency for satellite communication
KR970006770B1 (en) Device for measuring multipath reflected wave
KR20010064316A (en) Radio frequency module for remorte meter reading apparatus
Shelke et al. Wireless RF communication based on DSP
JPS6322649B2 (en)
JP3018453B2 (en) Communication method
JPS6077534A (en) Transmitter-receiver

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WINDOW ANTENNA OY

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LUOMA, ARI-MATTI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FINNTRACKER OY

17Q First examination report despatched

Effective date: 19940511

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960626

REF Corresponds to:

Ref document number: 69027610

Country of ref document: DE

Date of ref document: 19960801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960927

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961219

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961219