EP0505522A1 - Fuel injection pump for internal combustion engines. - Google Patents

Fuel injection pump for internal combustion engines.

Info

Publication number
EP0505522A1
EP0505522A1 EP91915790A EP91915790A EP0505522A1 EP 0505522 A1 EP0505522 A1 EP 0505522A1 EP 91915790 A EP91915790 A EP 91915790A EP 91915790 A EP91915790 A EP 91915790A EP 0505522 A1 EP0505522 A1 EP 0505522A1
Authority
EP
European Patent Office
Prior art keywords
fuel
valve
pump
bore
annular space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91915790A
Other languages
German (de)
French (fr)
Other versions
EP0505522B1 (en
Inventor
Wolfgang Braun
Dieter Junger
Helmut Laufer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0505522A1 publication Critical patent/EP0505522A1/en
Application granted granted Critical
Publication of EP0505522B1 publication Critical patent/EP0505522B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • F02M41/123Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor characterised by means for varying fuel delivery or injection timing
    • F02M41/125Variably-timed valves controlling fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically

Definitions

  • the invention is based on a fuel injection pump for internal combustion engines according to the preamble of claim 1.
  • Such a fuel injection pump is known from DE-OS 37 19 833.
  • the pump work space is filled and relieved before and after the high-pressure delivery via the fuel channel.
  • This configuration has the disadvantage that the fuel which was previously heated by the high pressure formation in the pump work space and which is controlled via the valve to terminate the high pressure injection is fed back to the pump work space at least to the extent of the fuel present in the fuel channel during the subsequent suction stroke.
  • the temperature of the pump work space rises and, on the one hand, there is a high temperature load on the solenoid valve and, on the other hand, load and speed-dependent density fluctuations as a result of fuel drawn in at different temperatures.
  • This known fuel injection pump has a plurality of pump pistons, each of which delimits a pump working space.
  • the pump work space can be connected to a suction space into which fuel is conveyed from a fuel reservoir.
  • the pump work space can be connected to one of several pressure channels which are connected to the injection points of the internal combustion engine via injection lines.
  • the pump work space can be connected to a relief space via an electrically controlled valve.
  • the injection-effective pump piston stroke is controlled by the valve.
  • fuel flows from the suction chamber through an interior of the valve into the pump work chamber during the suction stroke.
  • the fuel flows out during the discharge through a pressure chamber of the valve.
  • a flow through the interior of the valve and thus cooling of the valve is therefore only given during the suction stroke of a pump piston.
  • the fuel injection pump according to the invention with the characterizing features of claim 1 has the advantage that the fuel channel is constantly flowed through and thus improves the cooling of the valve and the temperature of the drawn fuel is avoided while avoiding the disadvantages mentioned above.
  • FIG. 1 shows a longitudinal section of a fuel injection pump in a schematic representation
  • FIG. 2 shows the detail of the fuel injection pump denoted by II in FIG. 1 in an enlarged representation.
  • a distributor-type fuel injection pump shown in FIGS. 1 and 2 has a pump piston 12 which works in a cylinder bore 10 of a cylinder liner 11 and which is driven via a drive shaft 13 by a cam drive consisting of a roller ring 14 and a front cam disk 15 into a reciprocating motion Herein as well as at the same time is set in a rotating movement.
  • the fuel injection pump has a housing 17 which delimits an interior space 18 which serves as a suction space and to which fuel is supplied by a feed pump 19 from a storage container.
  • a distributor body 22 is inserted into the housing.
  • the pump piston 12 is provided with a distributor groove 23 in its end region arranged in the cylinder bore 10.
  • the cylinder liner 11 and the distributor body 22 have delivery channels 24, corresponding to the number of cylinders of the internal combustion engine operated by the fuel injection pump, through which fuel can reach the injection valves on the cylinders of the internal combustion engine via a pressure valve 25 and injection lines 26.
  • the distributor body 22 has a stepped bore 28 which extends coaxially to the longitudinal axis 27 of the pump piston 12.
  • the cylinder liner 11 is inserted into the bore 28 in its area with a smaller diameter facing the interior 18.
  • the cylinder liner 11 projects into the interior 18 of the fuel injection pump and is supported by a flange 29 on an annular shoulder 30 formed on the upper passage of the bore 28 to the smaller diameter from the interior 18.
  • the flange 29 of the cylinder liner 11 is conical in its end region arranged in the region of the bore 28 with the larger diameter, with a cross section tapering towards its end.
  • the cylinder bore 10 has an enlarged diameter in the end region of the cylinder liner 11 arranged in the bore 28.
  • an electrically controlled valve 32 is used from the outside, which closes the bore 28.
  • the valve 32 is designed, for example, as a solenoid valve.
  • the bore 28 is sealed to the outside by two sealing rings 35 inserted at a distance from each other in an annular groove 33 on the outer circumference of the valve housing 34.
  • a valve body 37 is inserted, which projects with its end region out of the valve housing towards the cylinder liner 11 and there clamps a sealing ring 38 between it and the cylinder liner 11.
  • the sealing ring 38 is fitted radially with a small clearance in a shoulder, which is preferably arranged in the cylinder block 11, and can therefore absorb radial forces, as a result of the pressurization, and on the other hand seals one from the other Pump piston 12 in the pump bore 40 enclosed in the cylinder bore 10 towards the bore 28.
  • This configuration defines an annular space 41 between the end of the cylinder liner 11, the valve body and the valve housing 34.
  • the annular space 41 is connected via a fuel duct .42 in the distributor body 22 to the interior 18 of the fuel injection pump.
  • a bypass line 43 leads from the annular space 41 through the valve housing 34 diametrically opposite the channel 42 and extends approximately parallel to the longitudinal axis 27 of the pump piston, in which a throttle 44 is arranged.
  • the bypass line 43 opens out via a short transverse bore 46 into an annular space 48 formed by an annular groove arranged between the sealing rings 35 in the outer circumference of the valve housing 34 and the wall of the bore 28, which in turn has a transverse bore 49 in the distributor body 22 in Connection is established.
  • the transverse bore 49 in the distributor body 22 is connected via a return line 51 to the fuel reservoir 20 or the suction line of the feed pump 19.
  • the interior 18 of the fuel injection pump is also connected in a known manner to the fuel return line 51 via a throttle 52.
  • the valve 32 has, as the closing member, a needle 57 which is tightly guided in a blind bore 56 in the valve body 37, the blind bore 56 having an enlarged cross-sectional area which forms a pressure chamber 58.
  • the pressure chamber 58 of the valve 32 is connected to the pump working chamber 40 via a transverse bore 61 and a longitudinal bore 59 in the valve body 37.
  • the needle 57 has a conical sealing surface 62 towards the working space 40, which cooperates with a sealing seat 63 of the blind bore 56, which is also conically formed at the transition from the pressure chamber 58 to the blind bore.
  • the needle 57 has an area 64 with a reduced cross section.
  • the pressure prevailing in the pump work chamber 40 acts in the pressure chamber 58 on both end faces of the area 64 of the needle 57, so that no resulting compressive force acts on it.
  • the pump working space 40 is a further transverse bore 66 in the valve body 37 via the bore 59, the transverse bore 61, the pressure chamber 58, and an opening 67 in the valve housing 34 with the annular space 41 and via this and the fuel channel 42 with the interior 18 connected.
  • the opening and closing duration as well as the opening and closing time of the valve 34 are controlled as a function of various operating parameters, such as speed, load, etc.
  • a rotary encoder 68 is provided for detecting the speed and the rotational position of the drive shaft 13.
  • the valve 32 is opened and the fuel under the delivery pressure of the feed pump flows from the interior 18 through the channel 42, the annular space 41, the valve 32 and the longitudinal bore 59 into the pump work space 40.
  • the valve 32 is closed and high pressure is built up in the pump work space 40.
  • the distributor groove 23 is connected to one of the delivery channels 24 and as soon as the injection valve opens, fuel flows under high pressure to the relevant injection point.
  • the valve 32 is opened and the fuel flows from the pump working space 40 through the valve 32 into the annular space 41. From there, part of the fuel flows back through the fuel channel 42 into the interior 18.
  • a further part of the fuel flows through the throttle 44 into the further annular space 48, flows through this and the transverse bore 49 in the distributor body 22 and returns to the fuel reservoir 20 via the return line 51.
  • fuel constantly flows from the interior 18 via the annular space 41, the throttle 44 and the annular space 48, since a higher fuel pressure prevails in the interior 18 than in the return line 51.
  • the fuel flow through the two annular spaces 41 and 48 causes fuel to flow the valve 32 and the cylinder liner in the area of the pump work space 40 are washed by the cooler fuel from the interior and thus cooled, and the heated fuel flowing out of the pump work space following the fuel injection phase is fed back to the pump work space to a much lesser extent during the suction stroke.
  • the fuel flow flowing through the annular spaces 41 and 48 can be adjusted by appropriate dimensioning and matching of the throttles 44 and 52 to achieve a desired cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Une pompe d'injection de carburant comprend un piston (12) qui fonctionne dans un alésage cylindrique (10) d'une douille cylindrique (11). Une chambre de pompage (40) est délimitée dans l'alésage cylindrique (10) d'une part par le piston (12) et d'autre part par une soupape (32) à commande électrique. Pendant la course d'aspiration du piston (12) et afin de commander la course du piston qui provoque l'injection, la chambre de pompage (40) peut être reliée par la soupape (32) à une chambre d'aspiration (18). La douille cylindrique (11) est partiellement entourée d'un espace annulaire (41) à travers lequel le carburant s'écoule entre la chambre de pompage (40) et la chambre intérieure (18). Le carburant s'écoule dans un autre espace annulaire (48) qui entoure partiellement la soupape (32) par un conduit de dérivation (43) qui part de l'espace annulaire (41). L'espace annulaire (48) est déchargé au moyen d'un conduit de retour au réservoir de carburant. Compte tenu de la pression qui règne dans la chambre intérieure (18), les deux espaces annulaires (41, 48) sont traversés en continu par du carburant, ce qui assure le refroidissement de la chambre de pompage (40) et de la soupape (32).A fuel injection pump includes a piston (12) which operates in a cylindrical bore (10) of a cylindrical sleeve (11). A pumping chamber (40) is delimited in the cylindrical bore (10) on the one hand by the piston (12) and on the other hand by an electrically controlled valve (32). During the suction stroke of the piston (12) and in order to control the stroke of the piston which causes the injection, the pumping chamber (40) can be connected by the valve (32) to a suction chamber (18) . The cylindrical sleeve (11) is partially surrounded by an annular space (41) through which fuel flows between the pumping chamber (40) and the inner chamber (18). The fuel flows into another annular space (48) which partially surrounds the valve (32) through a bypass duct (43) which starts from the annular space (41). The annular space (48) is discharged by means of a return pipe to the fuel tank. Taking into account the pressure which prevails in the inner chamber (18), the two annular spaces (41, 48) are continuously crossed by fuel, which ensures the cooling of the pumping chamber (40) and of the valve ( 32).

Description

Kraftstoffeinspritzpumpe für BrennkraftmaschinenFuel injection pump for internal combustion engines
Stand der TechnikState of the art
Die Erfindung geht aus von einer Kraftstoffeinspritzpumpe für Brenn¬ kraftmaschinen nach der Gattung des Anspruchs 1.The invention is based on a fuel injection pump for internal combustion engines according to the preamble of claim 1.
Eine solche Kraftstoffeinspritzpumpe ist durch die DE-OS 37 19 833 bekannt. Dort erfolgt das Füllen des Pumpenarbeitsraumes und das Entlasten vor Beginn und nach Ende der Hochdruckförderung über den Kraftstoffkanal. Diese Ausgestaltung hat den Nachteil, daß der zuvor durch die Hochdruckbildung im Pumpenarbeitsraum erhitzte Kraftstoff, der zur Beendigung der Hochdruckeinspritzung über das Ventil abge¬ steuert wird, beim anschließenden Saughub zumindest im Umfang des im Kraftstoffkanal vorhandenen Kraftstoffs dem Pumpenarbeitsraum wieder zugeführt wird. Dadurch steigt die Temperatur des Pumpenarbeitsrau¬ mes an und es kommt einerseits zu einer hohen Temperaturbelastung des Magnetventils und andererseits zu last- und drehzahlabhängigen Dichteschwankungen durch unterschiedlich warmen angesaugten Kraft¬ stoff. Weiterhin ergeben sich bei einer somit erhöhten Temperatur im Pumpenarbeitsraum höhere Leckverluste und ein niedrigerer Kompres¬ sionsenddruck wegen der reduzierten Fülldichte, was sich negativ auf die konstruktiv vorgegebene Leistung auswirkt. Es ist auch generell durch die DE-OS 36 12 942 vorgeschlagen worden eine Kühlung des Ven¬ tils vorzunehmen. Diese bekannte Kraftstoffeinspritzpumpe weist meh¬ rere Pumpenkolben auf, die jeweils einen Pumpenarbeitsraum begren¬ zen. Während eines jeweiligen Saughubs der Pumpenkolben ist der Pum¬ penarbeitsraum mit einem Saugraum verbindbar, in den Kraftstoff aus einem Kraftstoffvorratsbehälter gefördert wird. Während eines jewei¬ ligen Druckhubs der Pumpenkolben ist der Pumpenarbeitsraum mit einem von mehreren Druckkanälen verbindbar, die über Einspritzleitungen mit den Einspritzstellen der Brennkraftmaschine verbunden sind. Der Pumpenarbeitsraum ist über ein elektrisch gesteuertes Ventil mit ei¬ nem Entlastungsraum verbindbar. Durch das Ventil wird der einspritz¬ wirksame Pumpenkolbenhub gesteuert. Zur Kühlung des Ventils strömt beim Saughub Kraftstoff aus dem Saugraum durch einen Innenraum des Ventils in den Pumpenarbeitsraum. Die Abströmung des Kraftstoffs bei der Entlastung erfolgt durch einen Druckraum des Ventils. Eine Durchströmung des Innenraums des Ventils und damit eine Kühlung des Ventils ist somit nur jeweils während des Saughubs eines Pumpenkol¬ bens gegeben.Such a fuel injection pump is known from DE-OS 37 19 833. There, the pump work space is filled and relieved before and after the high-pressure delivery via the fuel channel. This configuration has the disadvantage that the fuel which was previously heated by the high pressure formation in the pump work space and which is controlled via the valve to terminate the high pressure injection is fed back to the pump work space at least to the extent of the fuel present in the fuel channel during the subsequent suction stroke. As a result, the temperature of the pump work space rises and, on the one hand, there is a high temperature load on the solenoid valve and, on the other hand, load and speed-dependent density fluctuations as a result of fuel drawn in at different temperatures. Furthermore, with an increased temperature in the pump work space, there are higher leakage losses and a lower compression end pressure because of the reduced filling density, which has a negative effect on the design performance. It is also general proposed by DE-OS 36 12 942 to cool the valve. This known fuel injection pump has a plurality of pump pistons, each of which delimits a pump working space. During a respective suction stroke of the pump pistons, the pump work space can be connected to a suction space into which fuel is conveyed from a fuel reservoir. During a respective pressure stroke of the pump pistons, the pump work space can be connected to one of several pressure channels which are connected to the injection points of the internal combustion engine via injection lines. The pump work space can be connected to a relief space via an electrically controlled valve. The injection-effective pump piston stroke is controlled by the valve. To cool the valve, fuel flows from the suction chamber through an interior of the valve into the pump work chamber during the suction stroke. The fuel flows out during the discharge through a pressure chamber of the valve. A flow through the interior of the valve and thus cooling of the valve is therefore only given during the suction stroke of a pump piston.
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäße Kraftstoffeinspritzpumpe mit den kennzeichnen¬ den Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß der Kraftstoffkanal ständig durchströmt ist und somit die Kühlung des Ventils verbessert und die Temperatur des angesaugten Kraftstoffs gesenkt wird unter Vermeidung der eingangs genannten Nachteile.The fuel injection pump according to the invention with the characterizing features of claim 1 has the advantage that the fuel channel is constantly flowed through and thus improves the cooling of the valve and the temperature of the drawn fuel is avoided while avoiding the disadvantages mentioned above.
In den Unteransprüchen sind vorteilhafte Ausgestaltungen und Weiter¬ bildungen der Erfindung gekennzeichnet. Durch entsprechende Dimen¬ sionierung der im Anspruch 3 gekennzeichneten Drossel ist die durch den Bypass abströmende Kraftstoffmenge gezielt festlegbar. Durch die Weiterbildung gemäß Anspruch 4 ist eine Kühlung des Pu penarbeits- rauras erreicht, so daß bei der Verdichtung des Kraftstoffs höhere Drücke erzielt werden können und die Temperatur des über das Ventil abströmenden Kraftstoffs reduziert ist. ZeichnungAdvantageous refinements and developments of the invention are characterized in the subclaims. By appropriate dimensioning of the throttle characterized in claim 3, the amount of fuel flowing through the bypass can be specifically determined. Through the development according to claim 4, cooling of the pen work space is achieved, so that higher pressures can be achieved when compressing the fuel and the temperature of the fuel flowing out via the valve is reduced. drawing
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung darge¬ stellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine Kraftstoffeinspritzpumpe im Längsschnitt in schematischer Darstellung und Figur 2 den in Figur 1 mit II bezeich¬ neten Ausschnitt der Kraftstoffeinspritzpumpe in vergrößerter Dar¬ stellung.An embodiment of the invention is shown in the drawing and explained in more detail in the following description. FIG. 1 shows a longitudinal section of a fuel injection pump in a schematic representation, and FIG. 2 shows the detail of the fuel injection pump denoted by II in FIG. 1 in an enlarged representation.
Beschreibung des AusführungsbeispielsDescription of the embodiment
Eine in den Figuren 1 und 2 dargestellte Kraftstoffeinspritzpumpe der Verteilerbauart weist einen in einer Zylinderbohrung 10 einer Zylinderbüchse 11 arbeitenden Pumpenkolben 12 auf, der über eine Antriebswelle 13 von einem aus einem Rollenring 14 und einer Stirn¬ nockenscheibe 15 bestehenden Nockentrieb sowohl in eine hin- und hergehende als auch gleichzeitig in eine rotierende Bewegung ver¬ setzt wird. Die Kraftstoffeinspritzpumpe weist ein Gehäuse 17 auf, das einen Innenraum 18 begrenzt, der als Saugraum dient und demvon einer Förderpumpe 19 Kraftstoff aus einem Vorratsbehälter zugeführt wird. An einer Stirnseite des Gehäuses 18 ist ein Verteilerkörper 22 in das Gehäuse eingesetzt. Der Pumpenkolben 12 ist in seinem in der Zylinderbohrung 10 angeordneten Endbereich mit einer Verteilernut 23 versehen. Die Zylinderbüchse 11, sowie der Verteilerkörper 22 weisen entsprechend der Anzahl der Zylinder der mit der Kraftstoffein- spritzpumpe betriebenen Brennkraftmaschine Förderkanäle 24 auf, durch die Kraftstoff über ein Druckventil '25 und Einspritzleitungen 26 zu den Einspritzventilen an den Zylindern der Brennkraftmaschine gelangen kann.A distributor-type fuel injection pump shown in FIGS. 1 and 2 has a pump piston 12 which works in a cylinder bore 10 of a cylinder liner 11 and which is driven via a drive shaft 13 by a cam drive consisting of a roller ring 14 and a front cam disk 15 into a reciprocating motion Herein as well as at the same time is set in a rotating movement. The fuel injection pump has a housing 17 which delimits an interior space 18 which serves as a suction space and to which fuel is supplied by a feed pump 19 from a storage container. At one end of the housing 18, a distributor body 22 is inserted into the housing. The pump piston 12 is provided with a distributor groove 23 in its end region arranged in the cylinder bore 10. The cylinder liner 11 and the distributor body 22 have delivery channels 24, corresponding to the number of cylinders of the internal combustion engine operated by the fuel injection pump, through which fuel can reach the injection valves on the cylinders of the internal combustion engine via a pressure valve 25 and injection lines 26.
Der Verteilerkörper 22 weist eine koaxial zur Längsachse 27 des Pum¬ penkolbens 12 sich erstreckende, gestufte Bohrung 28 auf. In die Bohrung 28 ist in deren zum Innenraum 18 weisenden Bereich mit klei¬ nerem Durchmesser die Zylinderbüchse 11 eingesetzt. Die Zylinder¬ büchse 11 ragt in den Innenraum 18 der Kraftstoffeinspritzpumpe und stützt sich mit einem Flansch 29 an einer am Obergang der Bohrung 28 zum kleineren Durchmesser gebildeten Ringschulter 30 zum Innenraum 18 hin ab. Der Flansch 29 der Zylinderbüchse 11 ist in seinem im Bereich der Bohrung 28 mit dem größeren Durchmesser angeordneten Endbereich konisch ausgebildet mit sich zu seinem Ende verjüngendem Querschnitt. Die Zylinderbohrung 10 weist im in der Bohrung 28 ange¬ ordneten Endbereich der Zylinderbüchse 11 einen vergrößerten Durch¬ messer auf.The distributor body 22 has a stepped bore 28 which extends coaxially to the longitudinal axis 27 of the pump piston 12. The cylinder liner 11 is inserted into the bore 28 in its area with a smaller diameter facing the interior 18. The cylinder liner 11 projects into the interior 18 of the fuel injection pump and is supported by a flange 29 on an annular shoulder 30 formed on the upper passage of the bore 28 to the smaller diameter from the interior 18. The flange 29 of the cylinder liner 11 is conical in its end region arranged in the region of the bore 28 with the larger diameter, with a cross section tapering towards its end. The cylinder bore 10 has an enlarged diameter in the end region of the cylinder liner 11 arranged in the bore 28.
Im Bereich des größeren Durchmessers der Bohrung 28 ist von der Außenseite her ein elektrisch gesteuertes Ventil 32 eingesetzt, das die Bohrung 28 verschließt. Das Ventil 32 ist beispielsweise als ein Magnetventil ausgeführt. Die Bohrung 28 ist nach außen hin durch zwei mit Abstand zueinander in je einer Ringnut 33 am Außenumfang des Ventilgehäuses 34 eingelegte Dichtringe 35 abgedichtet. In das Ventilgehäuse 34 ist ein Ventilkörper 37 eingesetzt, der mit seinem Endbereich aus dem Ventilgehäuse heraus zur Zylinderbüchse 11 hin heraus ragt und dort zwischen sich und der Zylinderbüchse 11 einen Dichtring 38 einspannt. Der Dichtring 38 ist radial mit kleinem Spiel in einem Absatz, welcher bevorzugt in der Zylinderbü- i 11 angeordnet ist, eingepaßt und kann dadurch Radialkräfte, we._..-ne in¬ folge der Druckbeaufschlagung auftreten, aufnehmen und dichtet somit einen andererseits vom Pumpenkolben 12 in der Zylinderbohrung 10 eingeschlossenen Pumpenarbeitsraum 40 zur Bohrung 28 hin ab. Durch diese Gestaltung wird zwischen dem Ende der Zylinderbüchse 11 , dem Ventilkörper und dem Ventilgehäuse 34 ein Ringraum 41 begrenzt. Der Ringraum 41 ist über einen Kraftstoffkanal .42 im Verteilerkörper 22 mit dem Innenraum 18 der Kraftstoffeinspritzpumpe verbunden. Vom Ringraum 41 führt durch das Ventilgehäuse 34 eine dem Kanal 42 dia¬ metral gegenüberliegende sich etwa parallel zur Längsachse 27 des Pumpenkolbens erstreckende Bypassleitung 43 ab, in der eine Drossel 44 angeordnet ist. Die Bypassleitung 43 mündet über eine kurze Quer¬ bohrung 46 in einen durch eine zwischen den Dichtringen 35 angeord¬ nete Ringnut im Außenumfang des Ventilgehäuses 34 und der Wand der Bohrung 28 gebildeten Ringraum 48, der wiederum mit einer Querboh- rung 49 im Verteilerkδrper 22 in Verbindung steht. Die Querbohrung 49 im Verteilerkörper 22 ist über eine Rücklaufleitung 51 mit dem Kraftstoffvorratsbehälter 20 oder der Saugleitung der Förderpumpe 19 verbunden. Der Innenraum 18 der Kraftstoffeinspritzpumpe ist in be¬ kannter Weise ebenfalls über eine Drossel 52 mit der Kraftstoffrück¬ laufleitung 51 verbunden.In the area of the larger diameter of the bore 28, an electrically controlled valve 32 is used from the outside, which closes the bore 28. The valve 32 is designed, for example, as a solenoid valve. The bore 28 is sealed to the outside by two sealing rings 35 inserted at a distance from each other in an annular groove 33 on the outer circumference of the valve housing 34. In the valve housing 34, a valve body 37 is inserted, which projects with its end region out of the valve housing towards the cylinder liner 11 and there clamps a sealing ring 38 between it and the cylinder liner 11. The sealing ring 38 is fitted radially with a small clearance in a shoulder, which is preferably arranged in the cylinder block 11, and can therefore absorb radial forces, as a result of the pressurization, and on the other hand seals one from the other Pump piston 12 in the pump bore 40 enclosed in the cylinder bore 10 towards the bore 28. This configuration defines an annular space 41 between the end of the cylinder liner 11, the valve body and the valve housing 34. The annular space 41 is connected via a fuel duct .42 in the distributor body 22 to the interior 18 of the fuel injection pump. A bypass line 43 leads from the annular space 41 through the valve housing 34 diametrically opposite the channel 42 and extends approximately parallel to the longitudinal axis 27 of the pump piston, in which a throttle 44 is arranged. The bypass line 43 opens out via a short transverse bore 46 into an annular space 48 formed by an annular groove arranged between the sealing rings 35 in the outer circumference of the valve housing 34 and the wall of the bore 28, which in turn has a transverse bore 49 in the distributor body 22 in Connection is established. The transverse bore 49 in the distributor body 22 is connected via a return line 51 to the fuel reservoir 20 or the suction line of the feed pump 19. The interior 18 of the fuel injection pump is also connected in a known manner to the fuel return line 51 via a throttle 52.
Das Ventil 32 weist als Schließglied eine in einer Sackbohrung 56 im Ventilkörper 37 dicht geführte Nadel 57 auf, wobei die Sackbohrung 56 einen im Querschnitt vergrößerten Bereich aufweist, der einen Druckraum 58 bildet. Der Druckraum 58 des Ventils 32 ist über eine Querbohrung 61 sowie eine Längsbohrung 59 im Ventilkörper 37 mit dem Pumpenarbeitsraum 40 verbunden. Die Nadel 57 weist zum Arbeitsraum 40 hin eine konische Dichtfläche 62 auf, die mit einem ebenfalls ko¬ nisch ausgebildeten Dichtsitz 63 der Sackbohrung 56 am Übergang vom Druckraum 58 zur Sackbohrung zusammenwirkt. Im Druckraum 58 weist die Nadel 57 einen Bereich 64 mit vermindertem Querschnitt auf. Der im Pumpenarbeitsraum 40 herrschende Druck wirkt im Druckraum 58 auf beide Stirnseiten des Bereichs 64 der Nadel 57, so daß auf diese keine resultierende Druckkraft wirkt. Bei abgehobener Nadel 57 ist der Pumpenarbeitsraum 40 über die Bohrung 59, die Querbohrung 61, den Druckraum 58 eine weitere Querbohrung 66 im Ventilkörper 37 so¬ wie eine Öffnung 67 im Ventilgehäuse 34 mit dem Ringraum 41 und über dieseα und den Kraftstoffkanal 42 mit dem Innenraum 18 verbunden. Die Öffnungs- und Schließdauer sowie der Öffnungs- und Schließzeit¬ punkt des Ventils 34 wird in Abhängigkeit von verschiedenen Be¬ triebsparametern, wie beispielsweise Drehzahl, Last, usw. gesteuert. Zur Erfassung der Drehzahl sowie der Drehlage der Antriebswelle 13 ist ein Drehgeber 68 vorgesehen. Beim Saughub des Pumpenkolbens 12 ist das Ventil 32 geöffnet und der unter Förderdruck der Förderpumpe stehende Kraftstoff strömt aus dem Innenraum 18 durch den Kanal 42, den Ringraum 41 , das Ventil 32 und die Längsbohrung 59 in den Pum¬ penarbeitsraum 40. Zu einem bestimmten Zeitpunkt beim Förderhub des Pumpenkolbens 12 wird das Ventil 32 geschlossen und im Pumpenar¬ beitsraum 40 wird Hochdruck aufgebaut. In einer bestimmten Drehstel¬ lung des Pumpenkolbens 12 ist die Verteilernut 23 mit einem der För¬ derkanäle 24 verbunden und sobald das Einspritzventil öffnet, strömt Kraftstoff unter Hochdruck zu der betreffenden Einspritzstelle. Zur Beendigung der Hochdruckförderung wird das Ventil 32 geöffnet und der Kraftstoff strömt aus dem Pumpenarbeitsraum 40 durch das Ventil 32 in den Ringraum 41. Von dort strömt ein Teil des Kraftstoffs durch den Kraftstoffkanal 42 in den Innenraum 18 zurück. Ein weite¬ rer Teil des Kraftstoffs strömt durch die Drossel 44 in den weiteren Ringraum 48, durchströmt diesen und die Querbohrung 49 im Verteiler¬ körper 22 und gelangt über die Rücklaufleitung 51 in den Kraftstoff¬ vorratsbehälter 20 zurück. Außerdem strömt aus dem Innenraum 18 über den Ringraum 41 , die Drossel 44 und den Ringraum 48 ständig Kraft¬ stoff, da im Innenraum 18 ein höherer Kraftstoffdruck herrscht als in der Rücklaufleitung 51. Durch den Kraftstoffström durch die bei¬ den Ringräume 41 und 48 wird das Ventil 32 und die Zylinderbüchse im Bereich des Pumpenarbeitsraum 40 vom kühleren Kraftstoff aus dem Innenraum umspült und damit gekühlt und der erhitzte aus dem Pumpen¬ arbeitsraum im Anschluß an die Kraftstoffeinspritzphase abströmende Kraftstoff in weit geringerem Maß beim Saughub dem Pumpenarbeitsraum wieder zugeführt. Durch eine entsprechende Dimensionierung und Ab¬ stimmung der Drosseln 44 und 52 kann der durch die Ringräume 41 und 48 strömende Kraftstoffstrom zur Erzielung einer gewünschten Kühlung eingestellt werden. The valve 32 has, as the closing member, a needle 57 which is tightly guided in a blind bore 56 in the valve body 37, the blind bore 56 having an enlarged cross-sectional area which forms a pressure chamber 58. The pressure chamber 58 of the valve 32 is connected to the pump working chamber 40 via a transverse bore 61 and a longitudinal bore 59 in the valve body 37. The needle 57 has a conical sealing surface 62 towards the working space 40, which cooperates with a sealing seat 63 of the blind bore 56, which is also conically formed at the transition from the pressure chamber 58 to the blind bore. In the pressure chamber 58, the needle 57 has an area 64 with a reduced cross section. The pressure prevailing in the pump work chamber 40 acts in the pressure chamber 58 on both end faces of the area 64 of the needle 57, so that no resulting compressive force acts on it. When the needle 57 is lifted, the pump working space 40 is a further transverse bore 66 in the valve body 37 via the bore 59, the transverse bore 61, the pressure chamber 58, and an opening 67 in the valve housing 34 with the annular space 41 and via this and the fuel channel 42 with the interior 18 connected. The opening and closing duration as well as the opening and closing time of the valve 34 are controlled as a function of various operating parameters, such as speed, load, etc. A rotary encoder 68 is provided for detecting the speed and the rotational position of the drive shaft 13. During the suction stroke of the pump piston 12, the valve 32 is opened and the fuel under the delivery pressure of the feed pump flows from the interior 18 through the channel 42, the annular space 41, the valve 32 and the longitudinal bore 59 into the pump work space 40. At a certain point in time During the delivery stroke of the pump piston 12, the valve 32 is closed and high pressure is built up in the pump work space 40. In a certain rotational position of the pump piston 12, the distributor groove 23 is connected to one of the delivery channels 24 and as soon as the injection valve opens, fuel flows under high pressure to the relevant injection point. To end the high-pressure delivery, the valve 32 is opened and the fuel flows from the pump working space 40 through the valve 32 into the annular space 41. From there, part of the fuel flows back through the fuel channel 42 into the interior 18. A further part of the fuel flows through the throttle 44 into the further annular space 48, flows through this and the transverse bore 49 in the distributor body 22 and returns to the fuel reservoir 20 via the return line 51. In addition, fuel constantly flows from the interior 18 via the annular space 41, the throttle 44 and the annular space 48, since a higher fuel pressure prevails in the interior 18 than in the return line 51. The fuel flow through the two annular spaces 41 and 48 causes fuel to flow the valve 32 and the cylinder liner in the area of the pump work space 40 are washed by the cooler fuel from the interior and thus cooled, and the heated fuel flowing out of the pump work space following the fuel injection phase is fed back to the pump work space to a much lesser extent during the suction stroke. The fuel flow flowing through the annular spaces 41 and 48 can be adjusted by appropriate dimensioning and matching of the throttles 44 and 52 to achieve a desired cooling.

Claims

Ansprüche Expectations
1. Kraftstoffeinspritzpumpe für Brennkraftmaschinen mit einem Pum¬ penkolben (12), der einen Pumpenarbeitsraum (40) begrenzt, der wäh¬ rend eines jeweiligen Saughubs und während eines gesteuerten Teils des Förderhubs des Pumpenkolbens über einen Kraftstoffkanal (42) , der von einem elektrisch betätigten Ventil (32) gesteuert wird mit einem Saugraum (18) verbindbar ist, in den Kraftstoff aus einem Kraftstoffvorratsbehälter (20) gefördert wird und der über eine in einem Verteiler (12) angeordnete Verteileröffnung (23) während eines jeweiligen Förderhubes des Pumpenkolbens (12) mit einem von mehreren Druckkanälen (24) verbindbar ist, die über Einspritzleitungen mit den Einspritzstellen der Brennkraftmaschine verbunden sind, wobei die Kraftstofförderung unter Hochdruck in die Einspritzleitungen durch die Schließphase des Ventils (32) bestimmt ist, dadurch ge¬ kennzeichnet, daß von dem Kraftstoffkanal (42) eine Bypassleitung (43) zu einem Kr ftstoffrücklauf (51) zwischen dem Saugraum (18) und dem Ventil (32) abzweigt. 1. Fuel injection pump for internal combustion engines with a pump piston (12) which delimits a pump working chamber (40) during a respective suction stroke and during a controlled part of the delivery stroke of the pump piston via a fuel channel (42) operated by an electrically operated one The valve (32) is controlled and can be connected to a suction chamber (18) into which fuel is conveyed from a fuel reservoir (20) and via a distributor opening (23) arranged in a distributor (12) during a respective delivery stroke of the pump piston (12). can be connected to one of a plurality of pressure channels (24) which are connected to the injection points of the internal combustion engine via injection lines, the fuel delivery under high pressure into the injection lines being determined by the closing phase of the valve (32), characterized in that the fuel channel (42) a bypass line (43) to a fuel return (51) between n branches off the suction chamber (18) and the valve (32).
2. Kraftstoffeinspritzpumpe nach Anspruch 1 , dadurch gekennzeichnet, daß das Ventil (32) in einer Bohrung (28) in einem Gehäuseteil (22) der Kraftstoffeinspritzpumpe eingesetzt ist und mit der Bohrung (28) zusammen einen Ringraum (48) begrenzt, der mit der Bypassleitung (43) und mit dem Kraftstoffrücklauf (51) verbunden ist.2. Fuel injection pump according to claim 1, characterized in that the valve (32) is inserted in a bore (28) in a housing part (22) of the fuel injection pump and together with the bore (28) delimits an annular space (48) which with the Bypass line (43) and connected to the fuel return (51).
3. Kraftstoffeinspritzpumpe nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, daß stromabwärts der Abzweigung der Bypassleitung (43) von dem Kraftstoffkanal (42) eine Drossel (44) vorgesehen ist.3. Fuel injection pump according to claim 1 or 2, characterized gekenn¬ characterized in that a throttle (44) is provided downstream of the branch of the bypass line (43) from the fuel channel (42).
4. Kraftstoffeinspritzpumpe nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Pumpenarbeitsraum (40) an seinem Um¬ fang von einer Zylinderbüchse (11) begrenzt ist, die in einer Boh¬ rung (28) im Gehäuseteil (22) angeordnet ist und daß zwischen der Bohrung (28) und der Zylinderbüchse (11) ein Ringraum (41) gebildet ist, der einerseits mit dem Saugraum (18) und andererseits mit dem Ventil (32) verbunden ist, und daß die Bypassleitung (43) von dem die Zylinderbüchse (11) umgebenden Ringraum (41) abzweigt. 4. Fuel injection pump according to one of the preceding claims, characterized in that the pump working space (40) is limited at its circumference by a cylinder liner (11) which is arranged in a bore (28) in the housing part (22) and in that an annular space (41) is formed between the bore (28) and the cylinder liner (11), which is connected on the one hand to the suction chamber (18) and on the other hand to the valve (32), and that the bypass line (43) from which the cylinder liner (11) surrounding annular space (41) branches off.
EP91915790A 1990-10-11 1991-09-11 Fuel injection pump for internal combustion engines Expired - Lifetime EP0505522B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4032279A DE4032279A1 (en) 1990-10-11 1990-10-11 Fuel injection pump for IC engine - has suction and delivery stroke controlled by electrically operated valve across fuel duct
DE4032279 1990-10-11
PCT/DE1991/000723 WO1992007182A1 (en) 1990-10-11 1991-09-11 Fuel injection pump for internal combustion engines

Publications (2)

Publication Number Publication Date
EP0505522A1 true EP0505522A1 (en) 1992-09-30
EP0505522B1 EP0505522B1 (en) 1996-12-27

Family

ID=6416088

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91915790A Expired - Lifetime EP0505522B1 (en) 1990-10-11 1991-09-11 Fuel injection pump for internal combustion engines

Country Status (6)

Country Link
US (1) US5273017A (en)
EP (1) EP0505522B1 (en)
JP (1) JP3167324B2 (en)
DE (2) DE4032279A1 (en)
ES (1) ES2095952T3 (en)
WO (1) WO1992007182A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215060A (en) * 1991-07-16 1993-06-01 Stanadyne Automotive Corp. Fuel system for rotary distributor fuel injection pump
US5325837A (en) * 1992-11-19 1994-07-05 Robert Bosch Gmbh Fuel injection apparatus for internal combustion engines
DE4243665C2 (en) * 1992-12-23 2003-11-13 Bosch Gmbh Robert Fuel injection device, in particular pump nozzle for internal combustion engines
DE4322546A1 (en) * 1993-07-07 1995-01-12 Bosch Gmbh Robert Fuel injection device for internal combustion engines
DE69731241T2 (en) * 1996-07-05 2006-03-02 Nippon Soken, Inc., Nishio High pressure pump for diesel engine fuel injection system
JP3426439B2 (en) * 1996-07-17 2003-07-14 三菱ふそうトラック・バス株式会社 Accumulation type fuel injection control device
JP3237549B2 (en) * 1996-11-25 2001-12-10 トヨタ自動車株式会社 High pressure fuel supply system for internal combustion engine
JP2000345901A (en) * 1999-05-31 2000-12-12 Isuzu Motors Ltd Electronic fuel injection device
WO2001090569A1 (en) * 2000-05-26 2001-11-29 Yanmar Co., Ltd. Fuel injection pump
DE10059424A1 (en) 2000-11-30 2002-06-06 Bosch Gmbh Robert Stroke-controlled valve as a fuel metering device of an injection system for internal combustion engines
US6773240B2 (en) 2002-01-28 2004-08-10 Visteon Global Technologies, Inc. Single piston dual chamber fuel pump
DE102010026159A1 (en) * 2010-07-06 2012-01-12 Audi Ag Fuel system for an internal combustion engine
US20170049274A1 (en) * 2015-08-19 2017-02-23 Terri Lynn Minor Cooking Assembly
IT201700077449A1 (en) * 2017-07-10 2019-01-10 Bosch Gmbh Robert PUMPING GROUP FOR FOOD FUEL, PREFERIBLY GASOIL, FROM A CONTAINMENT TANK TO AN INTERNAL COMBUSTION ENGINE
DE102018200715A1 (en) * 2018-01-17 2019-07-18 Robert Bosch Gmbh Fuel delivery device for cryogenic fuels
DE102018211338A1 (en) * 2018-07-10 2020-01-16 Robert Bosch Gmbh Fuel delivery device for cryogenic fuels and method for operating a fuel delivery device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4385614A (en) * 1979-04-06 1983-05-31 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
JPS60159363A (en) * 1980-01-12 1985-08-20 フオード モーター カンパニー fuel injection pump
DE3142750C2 (en) * 1980-12-19 1984-06-20 Nissan Motor Co., Ltd., Yokohama, Kanagawa Fuel injection pump for a diesel internal combustion engine
DE3211680A1 (en) * 1982-03-30 1983-10-06 Espenschied Helmut Dipl Ing Fuel injection system for internal combustion engines
US4480619A (en) * 1982-06-08 1984-11-06 Nippon Soken, Inc. Flow control device
DE3300876A1 (en) * 1983-01-13 1984-07-19 Robert Bosch Gmbh, 7000 Stuttgart FUEL INJECTION PUMP
JPS60147544A (en) * 1984-01-10 1985-08-03 Diesel Kiki Co Ltd Distributor type fuel injection pump
JPS62206238A (en) * 1986-03-05 1987-09-10 Nippon Denso Co Ltd Pilot injection device for fuel injection pump
DE3612942A1 (en) * 1986-04-17 1987-10-22 Bosch Gmbh Robert FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
DE3719807A1 (en) * 1987-06-13 1988-12-22 Bosch Gmbh Robert RADIAL PISTON FUEL INJECTION PUMP
DE3719833C2 (en) * 1987-06-13 1996-05-30 Bosch Gmbh Robert Fuel injection pump
DE3721352C2 (en) * 1987-06-29 1995-05-11 Bosch Gmbh Robert Method for controlling the fuel injection quantity in a fuel injection pump for internal combustion engines
EP0348865A3 (en) * 1988-06-27 1990-10-10 Nippondenso Co., Ltd. Pilot injection device for fuel injection pump
JP2829639B2 (en) * 1989-09-22 1998-11-25 株式会社ゼクセル Variable oil feed rate control method for electronically controlled distributed fuel injection pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9207182A1 *

Also Published As

Publication number Publication date
DE4032279A1 (en) 1992-04-16
US5273017A (en) 1993-12-28
JP3167324B2 (en) 2001-05-21
DE59108434D1 (en) 1997-02-06
JPH05502494A (en) 1993-04-28
WO1992007182A1 (en) 1992-04-30
EP0505522B1 (en) 1996-12-27
ES2095952T3 (en) 1997-03-01

Similar Documents

Publication Publication Date Title
EP0505522A1 (en) Fuel injection pump for internal combustion engines.
US5566660A (en) Fuel injection rate shaping apparatus for a unit fuel injector
US4036192A (en) Engine fuel injection system
DE3719831A1 (en) FUEL INJECTION PUMP
DE6931277U (en) FUEL INJECTION DEVICE.
DE3144277C2 (en) Fuel injection pump for internal combustion engines
DE10117600C1 (en) High-pressure fuel pump for a fuel system of a direct-injection internal combustion engine, fuel system and internal combustion engine
DE19507295A1 (en) Radial piston fuel pump for IC engine
DE19531870C2 (en) Fuel injection system
DE1576281A1 (en) Fuel injection pump for internal combustion engines
DE19711727A1 (en) Bellows fuel pump
DE3013088A1 (en) Fuel injection pump for compression ignition engine - has stepped piston for independent control of injection duration
EP0530206B1 (en) Fuel-injection pump for internal-combustion engines
DE3816508A1 (en) FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINE
DE4441113C1 (en) High pressure fuel pump for internal combustion engines
EP0372238B1 (en) Fuel injection pump for internal-combustion engines
DE3334199A1 (en) FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
GB2176544A (en) Fuel injection pump
EP0906506B1 (en) Fuel injection pump for an internal combustion engine
DE3719833C2 (en) Fuel injection pump
DE2044572A1 (en) Injection device of a diesel internal combustion engine
DE2250688A1 (en) PUMPING DEVICE FOR LIQUID FUEL
EP0263808B1 (en) Pump element of a fuel pump for an injection combustion engine
JPH0355812Y2 (en)
DE19534286A1 (en) Fuel injection pump for internal combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19940722

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59108434

Country of ref document: DE

Date of ref document: 19970206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2095952

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970226

ITF It: translation for a ep patent filed

Owner name: 0403;07MIFSTUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070925

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070921

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070925

Year of fee payment: 17

Ref country code: DE

Payment date: 20071126

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070926

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080911

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090401

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080912