EP0499600B1 - Sintered permanent magnet or permanent magnetic material and process for production thereof - Google Patents

Sintered permanent magnet or permanent magnetic material and process for production thereof Download PDF

Info

Publication number
EP0499600B1
EP0499600B1 EP92890030A EP92890030A EP0499600B1 EP 0499600 B1 EP0499600 B1 EP 0499600B1 EP 92890030 A EP92890030 A EP 92890030A EP 92890030 A EP92890030 A EP 92890030A EP 0499600 B1 EP0499600 B1 EP 0499600B1
Authority
EP
European Patent Office
Prior art keywords
hre
magnetic phase
concentration
phase
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92890030A
Other languages
German (de)
French (fr)
Other versions
EP0499600A1 (en
Inventor
Oskar Dr. Pacher
Siegfried Dr. Heiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehler Ybbstalwerke GmbH
Original Assignee
Boehler Ybbstalwerke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler Ybbstalwerke GmbH filed Critical Boehler Ybbstalwerke GmbH
Publication of EP0499600A1 publication Critical patent/EP0499600A1/en
Application granted granted Critical
Publication of EP0499600B1 publication Critical patent/EP0499600B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the invention relates to a sintered permanent magnet or material consisting essentially of a magnetic phase of the type SE2 (FeCo) 14B and at least one further sinter-active or grain-connecting phase which contains heavy rare earths and / or compounds. Furthermore, the invention relates to a method for producing rare earth-containing permanent magnet (s) (- materials), wherein at least the magnetic phase of the type SE2 (FeCo) 14B forming or containing constituent is produced by melt metallurgy and then pulverized, whereupon the powder is pressed with additives containing heavy rare earths in the magnetic field and then sintered to form a magnetizable raw body and optionally heat-treated.
  • s rare earth-containing permanent magnet
  • Permanent magnets or permanent magnet materials made essentially of an alloy of iron (Fe), boron (B) and rare earths (SE) in the sintering process are preferably used when high coercive force, high remanence and / or large energy product are required.
  • the constituent which forms or contains the magnetic phase of the Se2Fe14B type is produced by melt metallurgy and pulverized, which powder, if appropriate mixed with additives, is pressed into a green compact in the magnetic field and this is sintered, the sintered body optionally being subjected to at least one further heat treatment.
  • EP-B1-0126802 discloses sintered permanent magnets of the Fe-BR type (R means at least one SE element including Y), in which Fe can be partially replaced by Co.
  • the elements are homogeneously distributed in the magnetic phase due to the manufacturing process used, and a heat or aging treatment of the sintered body is said to improve the magnetic values. If Fe is partially replaced by Co, this increases the Curie point or the Curie temperature (T c ) of the magnetic material, but its coercive force, as is known to the person skilled in the art, however decreases with increasing Co content, whereby the energy product can also be adversely affected.
  • the invention has for its object to eliminate the disadvantages of the known SE-containing magnets (materials) and their manufacturing processes and to create sintered permanent magnets that have high saturation magnetization, high coercive force and large energy product with good temperature stability and high Curie point. It is also the object of the invention to provide a new and improved manufacturing method for magnets, with which high magnetic characteristics can be achieved and their scatter can be reduced.
  • grains of the magnetic phase are surface-smoothed or diffusion molded and have a diameter of at most 60 ⁇ m, but at least 3 ⁇ m. Grain surfaces designed in this way are energetically dependent, at least make it difficult to form and / or shift the domain walls, which generally improves the coercive force values.
  • a corresponding grain size of the magnetic phase is of great importance because, as has been found, grain diameters of greater than 60 ⁇ m and less than 3 ⁇ m lead to a decrease in the coercive force or the magnetic induction to lead.
  • a special feature of the new permanent magnet (material) according to the invention is a partial replacement of iron (Fe) by cobalt (Co) in the magnetic phase formed with boron (B) and light rare earths (LSE) and heavy rare earths (SSE) , where the average SSE content is set at a certain value depending on the concentration value of Co. It is known that Co contents cause a slight increase in magnetization and an increase in the Curie point, but the coercive force or magnetic induction is reduced, which leads to a lower energy product (BH max ) of the magnet and thus to a deterioration in all of the magnetic properties.
  • BH max lower energy product
  • LSE magnetic moments of LSE, in particular the advantageously usable elements neodymium (Nd) and praseodymium (Pr), are aligned parallel to Fe or ferromagnetic and the SSE has an antiparallel direction to Fe or an antiferromagnetic direction of its have magnetic moments.
  • SSE Dyprosium (Dy) has been shown to be particularly effective and advantageous because, among other things, the anisotropy field strength increases sharply due to the antiferromagnetic coupling.
  • the SSE content be at least 0.05 times the weight of Co, because lower concentrations cause a reduction in the coercive force.
  • SSE contents higher than 0.2 times the weight of Co lead to a decrease in the saturation magnetization.
  • the local concentration of SSE atoms is inhomogeneous across the diameter of the grains, in particular increasing towards the surface-smoothed grain boundary, domain wall formation and / or domain wall displacement is further reduced, as a result of which the coercive force and the result of the energy product are further increased .
  • An at least 3 times higher concentration of SSE atoms in a range of at most 1 ⁇ m at the grain boundary has proven to be particularly effective.
  • Another particularly important characteristic of the new permanent magnet according to the invention is a higher SSE content than the hard magnetic phase and / or a higher SSE activity at the diffusion temperature of the sinter-active or grain-connecting, essentially paramagnetic phase.
  • Good magnetic values are preferably obtained if the SE concentrations of this grain-connecting phase are at least 25% and their SSE concentrations are at least 90% greater than those of the magnetic phase on average.
  • the constituent which forms or contains the hard magnetic phase of the type SE2 (FeCo) 14B is produced by melting and casting an alloy containing in AT% 8 to 30 rare earths (SE), 2 to 28 B, remainder Fe and Co, if necessary, further alloying elements and impurities in which Co is adjusted with a concentration of 3 to 25 at.%, preferably 6 to 20 at.%, in particular 8 to 14 at.%, and the RE content consists of light rare earths ( LSE) and heavy rare earths (SSE) are formed, manufactured and ground into powders with a grain size of at least 3 ⁇ m, but, as is known per se, less than 60 ⁇ m, preferably less than 45 ⁇ m, in particular less than 30 ⁇ m.
  • SE rare earths
  • SSE heavy rare earths
  • This powder contains one or more additive (s) containing rare earths (SE) with an SE concentration which is at least 25%, preferably at least 35%, in particular at least 80% greater than the powder grains and one at least 100%, preferably 150%, in particular 200%, greater SSE concentration introduced and distributed homogeneously.
  • SE rare earths
  • the additives can also be introduced into the powder in liquid form, for example as SE compounds.
  • the SS content as a function of the Co content is adjusted in a range from 0.02 to 0.19 times the Co content by the melt metallurgical route.
  • the SSE content of the additive is intended to be at least 100% greater than that of the powder.
  • a green compact is pressed from the material formed from powder with the additives, which is preferably sintered in a vacuum or, if appropriate, in a protective gas atmosphere at high temperature.
  • the additives become at least partially liquid or pasty, essentially envelop the grains and act as a sinter-active or grain-binding agent which largely fills the edges and fissures in and between the grains.
  • the sintering temperature is selected for a short time to such an extent that the sintering agent is given a sufficient degree of liquid to in particular fill or envelop the fissures and sharp-edged concave cavities of the grain surfaces.
  • the sintered body is subjected to a diffusion treatment or diffusion annealing at a temperature below the sintering temperature at a temperature between 600 and 100 ° C. and for a period of 1 to 12 hours.
  • the sinter-active or grain-connecting phase or mass has a sufficient degree of strength for shape stabilization.
  • a Diffusion treatment of the sintered body which can be connected directly to the sintering, achieves surface structures and concentration profiles of atoms which are advantageous for the grains for the magnetic properties.
  • the surfaces of the grains forming or containing the hard magnetic phase which are made sharp-edged by the comminution process, are smoothed because the edges or tips represent energy irregularities and an increased atom diffusion takes place in these areas.
  • a shaping of the grains or a largely directed atom diffusion brings about a reduction or minimization of their surface energy. Due to smoothed surfaces with reduced energy of the grains from the hard magnetic phase, based on the change in direction of the magnetic moments, a new formation of domain walls, which preferably occurs at the tips and edges, is effectively reduced and thus the coercive force of the magnets is increased.
  • a certain grain size specified above and a sufficient filling, in particular the fissures and sharp-edged concave cavities of the grain surfaces with sinter-active mass or phase are important.
  • SSE atoms Due to the set concentration difference of SSE atoms in the hard magnetic phase and the grain-connecting, largely paramagnetic phase, SSE atoms also penetrate into the magnetocrystalline phase during the diffusion treatment. Because in the case of elements diffused in, such as AL, for example, a rapid, essentially immediate, concentration equalization takes place, it was surprising that SSE atoms at the grain boundaries or in the region near the grain boundaries can be enriched to at least 3 times the content compared to the grain interior and one inhomogeneous concentration of SSE atoms can be formed in the grains. It is important to choose the diffusion treatment parameters in such a way that the strength of the area of the increased SSE concentration is set to at least 0.05 ⁇ m, but at most 1 ⁇ m. Smaller strengths only cause an insignificant further reduction in the formation of the domain wall and / or domain wall mobility, thus a slight increase in coercive force; greater strengths reduce the achievable saturation magnetization and reduce the energy product of the permanent magnet.
  • Table 1 shows the magnetic values of reference magnets (materials) with different compositions.
  • the respective starting material was produced by melt metallurgy and ground into powder. Under the influence of a magnetic field, the powder was pressed into a green body, which was sintered, heat-treated and magnetized.
  • the composition and the measured magnetic values of the permanent magnet bodies are given under the designations A to F in Table 1.
  • the permanent magnets (materials) according to the invention are listed under numbers 1 to 14 in Table 2.
  • the analytical determinations were carried out by transmission electron microscopy (TEM).
  • TEM transmission electron microscopy
  • the SSE content in the magnetic phase on average was determined by averaging from point and area measurements over the grain cross section.
  • the Co content and the magnetic field strength or the magnetization are increased by the Co content and, as has been shown, the coercive force or induction is kept at high values as a result of the further measures, which synergistically brings about an increased energy product .
  • conventional magnets largely without Co content, high coercive forces become low at low Curie temperatures and at high Co content high magnetization achieved at high Curie temperatures.
  • the magnetic energy product is relatively low in both cases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Compounds Of Iron (AREA)

Abstract

The invention relates to a sintered permanent magnet (material) and a process for its production using a magnetic phase of the type Se2(FeCO)14B and at least one further sinter-active or particle-combining phase. In order to achieve a high saturation magnetisation, high coercive force and high energy product with good temperature stability and high Curie point of the permanent magnet (material), it is proposed according to the invention that the magnetic phase is formed of diffusion-moulded particles, which are decreased in their surface energy, having a diameter of at most 60 mu m, the magnetic phase has contents of Co and heavy rare earths (HRE) in a certain ratio to one another, the HRE concentration being inhomogeneous over the particle cross-section and the particle-binding phase having a higher activity of the HRE at the diffusion temperature compared to the magnetic phase.

Description

Die Erfindung betrifft einen gesinterten Permanentmagnet bzw.-werkstoff im wesentlichen bestehend aus einer magnetischen Phase vom Typ SE₂(FeCo)₁₄B und mindestens einer weiteren sinteraktiven bzw. kornverbindenden Phase, welche Schwere Seltene Erden und/oder Verbindungen enthält.
Weiters bezieht sich die Erfindung auf ein Verfahren zur Herstellung von Seltenen Erden enthaltenden Permanentmagnet(en)(-werkstoffen), wobei zumindest der die magnetische Phase vom Typ SE₂(FeCo)₁₄B bildende oder enthaltende Bestandteil schmelzmetallurgisch hergestellt und danach pulverisiert wird, worauf das Pulver mit Schwere Seltene Erden enthaltenden Zusätzen im Magnetfeld verpreßt und anschließend unter Bildung eines magnetisierbaren Rohkörpers gesintert und gegebenenfalls wärmebehandelt wird.
The invention relates to a sintered permanent magnet or material consisting essentially of a magnetic phase of the type SE₂ (FeCo) ₁₄B and at least one further sinter-active or grain-connecting phase which contains heavy rare earths and / or compounds.
Furthermore, the invention relates to a method for producing rare earth-containing permanent magnet (s) (- materials), wherein at least the magnetic phase of the type SE₂ (FeCo) ₁₄B forming or containing constituent is produced by melt metallurgy and then pulverized, whereupon the powder is pressed with additives containing heavy rare earths in the magnetic field and then sintered to form a magnetizable raw body and optionally heat-treated.

Permanentmagnete bzw. Permanentmagnetwerkstoffe aus im wesentlichen einer Legierung von Eisen (Fe), Bor (B) und Seltenen Erden (SE) im Sinterverfahren gefertigt, werden bevorzugt dann verwendet, wenn hohe Koerzitivkraft, hohe Remanenz und/oder großes Energieprodukt gefordert sind. Dabei wird der die magnetische Phase vom Typ Se₂Fe₁₄B bildende oder enthaltende Bestandteil schmelzmetallurgisch hergestellt und pulverisiert, welches Pulver gegebenenfalls mit Zusätzen vermengt im Magnetfeld zu einem Grünling verpreßt und dieser gesintert wird, wobei der Sinterkörper gegebenenfalls mindestens einer weiteren Wärmebehandlung unterworfen werden kann.Permanent magnets or permanent magnet materials made essentially of an alloy of iron (Fe), boron (B) and rare earths (SE) in the sintering process are preferably used when high coercive force, high remanence and / or large energy product are required. The constituent which forms or contains the magnetic phase of the Se₂Fe₁₄B type is produced by melt metallurgy and pulverized, which powder, if appropriate mixed with additives, is pressed into a green compact in the magnetic field and this is sintered, the sintered body optionally being subjected to at least one further heat treatment.

In der EP-B1-0126802 sind gesinterte Permanentmagnete des Typs Fe-B-R ( R bedeutet mindestens ein SE-Element einschließlich Y) bekannt, bei welchen Fe teilweise durch Co ersetzt werden kann. Die Elemente sind dabei auf Grund des verwendeten Herstellverfahrens in der magnetischen Phase homogen verteilt und eine Wärme- oder Alterungsbehandlung des Sinterkörpers soll die magnetischen Werte verbessern. Wird Fe teilweise durch Co ersetzt, so erfolgt dadurch eine Erhöhung des Curie-Punktes bzw. der Curie-Temperatur (Tc) des Magnetwerkstoffes, dessen Koerzitivkraft, wie dem Fachmann bekannt ist, jedoch mit steigendem Co-Gehalt sinkt, wodurch auch das Energieprodukt nachteilig beeinflußt werden kann.EP-B1-0126802 discloses sintered permanent magnets of the Fe-BR type (R means at least one SE element including Y), in which Fe can be partially replaced by Co. The elements are homogeneously distributed in the magnetic phase due to the manufacturing process used, and a heat or aging treatment of the sintered body is said to improve the magnetic values. If Fe is partially replaced by Co, this increases the Curie point or the Curie temperature (T c ) of the magnetic material, but its coercive force, as is known to the person skilled in the art, however decreases with increasing Co content, whereby the energy product can also be adversely affected.

Um Permanentmagnete mit verbesserten magnetischen Eigenschaften bei Raumtemperatur zu schaffen, wird gemäß EP-B1-101552 vorgeschlagen, eine Co-freie Legierung mit einem Gehalt an Fe-B-.R einzusetzen, die mindestens eine stabile Verbindung des ternären Systems Fe-B-R enthält, wobei R mindestens ein Seltenerdenelement einschließlich Yttrium bedeutet. Die magnetische Hauptphase muß dabei eine intermetallische Verbindung mit konstanter Zusammensetzung sein, was eine homogene Verteilung der Legierungselemente bedingt. Abgesehen von dem großen legierungstechnischen Aufwand bei der Fertigung der Ausgangslegierung und den starken Streuungen der magnetischen Werte des sintertechnisch hergestellten Magnetwerkstoffes weist dieser eine signifikante Abnahme der magnetischen Kennwerte mit steigender Temperatur im Bereich von Raumtemperatur bis 200 ° C auf, wobei der Curie-Punkt schon bei etwa 300 ° C erreicht wird.In order to create permanent magnets with improved magnetic properties at room temperature, it is proposed according to EP-B1-101552 to use a Co-free alloy containing Fe-B-.R, which contains at least one stable compound of the ternary system Fe-BR, wherein R represents at least one rare earth element including yttrium. The main magnetic phase must be an intermetallic compound with a constant composition, which requires a homogeneous distribution of the alloy elements. In addition to the great expenditure on alloy technology in the production of the starting alloy and the strong scatter of the magnetic values of the sintered magnetic material, this shows a significant decrease in the magnetic characteristics with increasing temperature in the range from room temperature to 200 ° C, the Curie point already at about 300 ° C is reached.

Ferner ist aus der EP-A1-256006 ein Verfahren zur Herstellung von gesinterten Permanentmagneten bekannt, bei welchem stöchiometrisch zusammengesetztes kristallines RE₂(FeCo)₁₄B- Material ( RE bedeutet Seltene Erden) mit einem anderen Material gemahlen wird, wobei dieses andere Material bei der Wärmebehandlung bzw. beim Sinterprozeß eine zweite nicht magnetische flüssige Phase an der Oberfläche der Körner aus RE₂(FeCo)₁₄B bildet. Damit soll erreicht werden, daß die genaue chemische Zusammensetzung bei homogener Verteilung aller Elemente der magnetischen Phase im Magnetwerkstoff unabhängig von der zweiten Phase, die besondere schmelztechnische Eigenschaften und/oder Zusammensetzungen aufweisen kann, einstellbar ist. Bei dieser Ausführungsform besteht jedoch der Nachteil im großen legierungstechnischen Aufwand und der schlechten Reproduzierbarkeit der magnetischen Werkstoffdaten.Furthermore, from EP-A1-256006 a process for the production of sintered permanent magnets is known, in which stoichiometrically composed crystalline RE₂ (FeCo) ₁₄B material (RE means rare earths) is ground with another material, this other material during the heat treatment or in the sintering process forms a second non-magnetic liquid phase on the surface of the grains made of RE₂ (FeCo) ₁₄B. This is intended to ensure that the exact chemical composition can be set independently of the second phase, which can have special melting properties and / or compositions, with homogeneous distribution of all elements of the magnetic phase in the magnetic material. In this embodiment, however, there is a disadvantage in the high expenditure on alloy technology and the poor reproducibility of the magnetic material data.

Aus der EP-A- 395625 ist ein gesinterter SE-Fe-B-Permanentwerkstoff und ein Verfahren zur Herstellung desselben bekannt geworden, bei welchem an den Korngrenzen als Legierungszusatz ein Element aus der Gruppe der SSE und/oder eine Verbindung eines Elementes aus der Gruppe gegebenenfalls gemeinsam mit weiteren Korngrenzenlegierungszusätzen eingelagert ist.From EP-A-395625 a sintered SE-Fe-B permanent material and a method for producing the same have become known, in which an element from the group of SSE and / or as an alloy additive at the grain boundaries a compound of an element from the group is optionally incorporated together with other grain boundary alloy additives.

Der Erfindung liegt die Aufgabe zugrunde, die Nachteile der bekannten SE-enthaltenden Magnete(-werkstoffe) sowie ihrer Herstellungsverfahren zu beseitigen und gesinterte Permanentmagnete zu erstellen, die hohe Sättigungsmagnetisierung, hohe Koerzitivkraft und großes Energieprodukt bei guter Temperaturstabilität und hohem Curie-Punkt aufweisen. Ferner ist es Ziel der Erfindung, ein neues und verbessertes Herstellverfahren für Magnete anzugeben, mit welchem hohe magnetische Kennwerte erreicht und deren Streuung verringert werden.The invention has for its object to eliminate the disadvantages of the known SE-containing magnets (materials) and their manufacturing processes and to create sintered permanent magnets that have high saturation magnetization, high coercive force and large energy product with good temperature stability and high Curie point. It is also the object of the invention to provide a new and improved manufacturing method for magnets, with which high magnetic characteristics can be achieved and their scatter can be reduced.

Diese Aufgabe wird bei einem gattungsgemäßen Gegenstand durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen gekennzeichnet. Ein Verfahren der eingangs genannten Art ist erfindungsgemäß in den Ansprüchen 4 bis 12 gekennzeichnet.This object is achieved in a generic subject by the characterizing features of claim 1. Advantageous further developments are characterized in the subclaims. A method of the type mentioned is characterized according to the invention in claims 4 to 12.

Beim erfindungsgemäßen Permanentmagnet bzw.-werkstoff und auf Grund der erfindungsgsgemäßen Vorgangsweise bei einer Herstellung desselben werden synergetisch eine Reihe von Vorteilen erreicht, wobei nachteilige Wechselwirkungen von einzelnen Maßnahmen weitgehend unterdrückt sind und die Gesamtheit der magnetischen Eigenschaften wesentliche erhöht wird. Die wissenschaftlichen Grundlagen und Ursachen dieser Kombinationseffekte sind noch nicht vollkommen geklärt; es handelt sich jedoch im wesentlichen dabei um physikalisch-chemische Wirkungen in Verbindung mit der Magnetokinetik.With the permanent magnet or material according to the invention and due to the procedure according to the invention for producing the same, a number of advantages are achieved synergistically, disadvantageous interactions of individual measures being largely suppressed and the totality of the magnetic properties being significantly increased. The scientific basis and causes of these combination effects have not yet been fully clarified; however, these are essentially physico-chemical effects in connection with magnetokinetics.

Erfindungsgemäß sind Körner der magnetischen Phase oberflächengeglättet bzw. diffunsionseingeformt und weisen einen Durchmesser von höchstens 60 µm, jedoch mindestens von 3 µm auf. Durch derartig ausgebildete Kornoberflächen wird energetisch bedingt, eine Domänwandbildung und/oder- verschiebung zumindest erschwert, womit allgemein eine Verbesserung der Koerzitivkraftwerte erreicht wird. Von hoher Wichtigkeit ist dabei eine entsprechende Korngröße der magnetischen Phase, weil, wie gefunden wurde, Korndurchmesser von größer als 60 µm und kleiner als 3 µm zu einem Abfall der Koerzitivkraft bzw. der magnetischen Induktion führen.According to the invention, grains of the magnetic phase are surface-smoothed or diffusion molded and have a diameter of at most 60 μm, but at least 3 μm. Grain surfaces designed in this way are energetically dependent, at least make it difficult to form and / or shift the domain walls, which generally improves the coercive force values. A corresponding grain size of the magnetic phase is of great importance because, as has been found, grain diameters of greater than 60 μm and less than 3 μm lead to a decrease in the coercive force or the magnetic induction to lead.

Ein besonderes Kennzeichen des neuen erfindungsgemäßen Permanentmagneten(-werkstoffes) ist ein teilweiser Ersatz von Eisen (Fe) durch Kobalt (Co) in der magnetischen, mit Bor (B) sowie leichten Seltenen Erden ( LSE) und Schweren Seltenen Erden (SSE) gebildeten Phase, wobei der Durchschnittsgehalt an SSE mit einem bestimmten Wert in Abhängigkeit vom Konzentrationswert von Co eingestellt ist. Es ist bekannt, daß Co-Gehalte eine geringe Erhöhung der Magnetisierung und eine Anhebung des Curie-Punkte bewirken, die Koerzitivkraft bzw. magnetische Induktion wird jedoch dabei erniedrigt, was zu einem geringeren Energieprodukt ( BHmax) des Magneten und somit zu einer Verschlechterung in der Gesamtheit der magnetischen Eigenschaften führen kann. Diese Wirkungen können damit erklärt werden, daß Co-Atome in der tetragonalen Kristallstruktur bei Raumtemperatur eine Umorientierung der magnetischen Momente in Richtung der Basisebene bewirken und daß die uniachsiale magnetokristalline Anisotropie verschlechtert wird bzw. die Anisotropiefeldstärke sinkt. Vollkommen überraschend wurde gefunden, daß diese Nachteile eines Co-Ersatzes dadurch aufgehoben bzw. minimiert werden können, wenn SSE in einer bestimmten vom Co-Gehalt abhängigen Konzentration vorliegen und der übrige Seltene Erden (SE)- Teil der hartmagnetischen Phase durch LSE gebildet ist. Dies könnte damit im Zusammenhang stehen, daß die der magnetischen Momente von LSE insbesondere die vorteilhaft einsetzbaren Elemente Neodym (Nd) und Praseodym (Pr) parallel zu Fe bzw. ferromagnetisch ausgerichtet sind und die SSE eine antiparallele Richtung zu Fe bzw. eine antiferromagnetische Richtung ihrer magnetischen Momente aufweisen.A special feature of the new permanent magnet (material) according to the invention is a partial replacement of iron (Fe) by cobalt (Co) in the magnetic phase formed with boron (B) and light rare earths (LSE) and heavy rare earths (SSE) , where the average SSE content is set at a certain value depending on the concentration value of Co. It is known that Co contents cause a slight increase in magnetization and an increase in the Curie point, but the coercive force or magnetic induction is reduced, which leads to a lower energy product (BH max ) of the magnet and thus to a deterioration in all of the magnetic properties. These effects can be explained by the fact that Co atoms in the tetragonal crystal structure at room temperature cause a reorientation of the magnetic moments in the direction of the base plane and that the uni-axial magnetocrystalline anisotropy is deteriorated or the anisotropy field strength decreases. Completely surprisingly, it has been found that these disadvantages of a co-replacement can be eliminated or minimized if SSE is present in a specific concentration which is dependent on the Co content and the remaining rare earths (SE) - part of the hard magnetic phase is formed by LSE. This could be related to the fact that the magnetic moments of LSE, in particular the advantageously usable elements neodymium (Nd) and praseodymium (Pr), are aligned parallel to Fe or ferromagnetic and the SSE has an antiparallel direction to Fe or an antiferromagnetic direction of its have magnetic moments.

Als besonders wirkungsvoll und vorteilhaft einsetzbar hat sich unter SSE Dyprosium ( Dy) gezeigt, weil u.a. durch die antiferromagnetische Kopplung die Anisotropiefeldstärke stark zunimmt. Es ist jedoch wichtig, daß der Gehalt an SSE mindestens 0,05 mal dem Gewicht an Co entspricht, weil niedrigere Konzentrationen eine Verringerung der Koerzitivkraft bewirken. Höhere SSE-Gehalte als 0,2 mal dem Gewicht an Co führen zu einer Abnahme der Sättigungsmagnetisierung.SSE Dyprosium (Dy) has been shown to be particularly effective and advantageous because, among other things, the anisotropy field strength increases sharply due to the antiferromagnetic coupling. However, it is important that the SSE content be at least 0.05 times the weight of Co, because lower concentrations cause a reduction in the coercive force. SSE contents higher than 0.2 times the weight of Co lead to a decrease in the saturation magnetization.

Ist zusätzlich erfindungsgemäß die örtliche Konzentration an SSE-Atomen über den Durchmesser der Körner inhomogen, insbesondere in Richtung zur flächengeglätteten Korngrenze hin ansteigend, so wird eine Domänwandbildung und/oder Domänwandverschiebung weiter vermindert, wodurch eine weitere Vergrößerung der Koerzitivkraft und in der Folge des Energieproduktes eintreten. Als besonders wirkungsvoll hat sich eine mindestens 3-fache höhere Konzenration an SSE-Atomen in einem Bereich von höchstens 1 µm an der Korngrenze gezeigt.If, according to the invention, the local concentration of SSE atoms is inhomogeneous across the diameter of the grains, in particular increasing towards the surface-smoothed grain boundary, domain wall formation and / or domain wall displacement is further reduced, as a result of which the coercive force and the result of the energy product are further increased . An at least 3 times higher concentration of SSE atoms in a range of at most 1 µm at the grain boundary has proven to be particularly effective.

Ein weiteres besonders wichtiges Kennzeichen des erfindungsgemäßen neuen Permanentmagneten ist ein gegenüber der hartmagnetischen Phase höherer Gehalt an SSE und/oder eine höherer Aktivität der SSE bei Diffusionstemperatur der sinteraktiven bzw. kornverbindenden, im wesentlichen paramagnetischen Phase. Bevorzugt gute magnetische Werte werden erhalten, wenn die SE-Konzentrationen dieser kornverbindenden Phase um mindestens 25 % und deren SSE-Konzentrationen um mindestens 90 % größer ist als diejenigen der magnetischen Phase im Durchschnitt.Another particularly important characteristic of the new permanent magnet according to the invention is a higher SSE content than the hard magnetic phase and / or a higher SSE activity at the diffusion temperature of the sinter-active or grain-connecting, essentially paramagnetic phase. Good magnetic values are preferably obtained if the SE concentrations of this grain-connecting phase are at least 25% and their SSE concentrations are at least 90% greater than those of the magnetic phase on average.

Beim erfindungsgemäßen Verfahren wird der die hartmagnetische Phase vom Typ SE₂(FeCo)₁₄B bildende oder enthaltende Bestandteil durch Schmelzen und Gießen einer Legierung enthaltend in AT.-% 8 bis 30 Seltene Erden (SE), 2 bis 28 B, Rest Fe sowie Co, gegebenenfalls weitere Legierungselemente und Verunreinigungen, in welcher Co mit einer Konzentration von 3 bis 25 At.-%, vorzugsweise 6 bis 20 At.-%, insbesondere 8 bis 14 At.-% , eingestellt und der SE-Anteil aus Leichten Seltenen Erden (LSE) und Schweren Seltenen Erden (SSE) gebildet werden, hergestellt und zu Pulver mit einer Korngröße von mindestens 3 um, jedoch, wie an sich bekannt, kleiner als 60 µm, vorzugsweise kleiner als 45 µm, insbesondere kleiner als 30 µm, zerkleinert. In dieses Pulver werden ein oder mehrere Seltene Erden (SE) enthaltender(e) Zusatzstoff(e) mit einer gegenüber den Pulverkörnern um mindestens 25%, vorzugsweise um mindestens 35%, insbesondere um mindestens 80%, größere SE-Konzentration und einer um mindestens 100 %, vorzugsweise 150 %, insbesondere 200 %, größeren SSE-Konzentration eingebracht und homogen verteilt. Um die Oberfläche der Pulverkörner und die Zusätze miteinander in guten Kontakt zu bringen, ist es bei festen Zusätzen erforderlich, deren Teilchendurchmesser unter 5 µm bzw. kleiner als 15 % des Durchmessers der Pulverkörner und gegebenenfalls einen weiteren Mahlvorgang vorzusehen. Die Zusätze können auch in flüssiger Form, z.B. als SE-Verbindungen, in das Pulver eingebracht werden.In the process according to the invention, the constituent which forms or contains the hard magnetic phase of the type SE₂ (FeCo) ₁₄B is produced by melting and casting an alloy containing in AT% 8 to 30 rare earths (SE), 2 to 28 B, remainder Fe and Co, if necessary, further alloying elements and impurities in which Co is adjusted with a concentration of 3 to 25 at.%, preferably 6 to 20 at.%, in particular 8 to 14 at.%, and the RE content consists of light rare earths ( LSE) and heavy rare earths (SSE) are formed, manufactured and ground into powders with a grain size of at least 3 μm, but, as is known per se, less than 60 μm, preferably less than 45 μm, in particular less than 30 μm. This powder contains one or more additive (s) containing rare earths (SE) with an SE concentration which is at least 25%, preferably at least 35%, in particular at least 80% greater than the powder grains and one at least 100%, preferably 150%, in particular 200%, greater SSE concentration introduced and distributed homogeneously. In order to bring the surface of the powder grains and the additives into good contact with one another, it is necessary for solid additives whose particle diameter is less than 5 μm or less than 15% of the Provide diameter of the powder grains and, if necessary, a further grinding process. The additives can also be introduced into the powder in liquid form, for example as SE compounds.

Im Ausgangsmaterial des Pulvers wird auf schmelzmetallurgischem Weg vom SE-Anteil der SSE-Gehalt in Abhängigkeit vom Co-Gehalt und zwar in einem Bereich von 0,02 bis 0,19 mal dem Co-Gehalt eingestellt. Der SSE-Gehalt des Zusatzes wird um mindestens 100% größer als derjenige des Pulvers vorgesehen.In the starting material of the powder, the SS content as a function of the Co content is adjusted in a range from 0.02 to 0.19 times the Co content by the melt metallurgical route. The SSE content of the additive is intended to be at least 100% greater than that of the powder.

Aus dem aus Pulver mit den Zusätzen gebildeten Material wird in einem Magnetfeld ein Grünling gepreßt, welcher vorzugsweise im Vakuum oder gegebenenfalls in Schutzgasatmosphäre bei hoher Temperatur gesintert wird. Die Zusätze werden dabei zumindest teilweise flüssig oder teigig, hüllen die Körner im wesentlichen ein und wirken als sinteraktives bzw. kornverbindendes Mittel, welches die Kanten und Klüfte in und zwischen den Körnern weitgehend ausfüllt. Dazu ist es wichtig, daß die Sintertemperatur kurzzeitig derart hoch gewählt wird, daß dem sinteraktiven Mittel ein ausreichender Flüssigkeitsgrad erteilt wird, um insbesondere die Klüfte und scharfkantigen Konkavhohlräume der Kornoberflächen auszufüllen bzw. zu umhüllen.A green compact is pressed from the material formed from powder with the additives, which is preferably sintered in a vacuum or, if appropriate, in a protective gas atmosphere at high temperature. The additives become at least partially liquid or pasty, essentially envelop the grains and act as a sinter-active or grain-binding agent which largely fills the edges and fissures in and between the grains. For this it is important that the sintering temperature is selected for a short time to such an extent that the sintering agent is given a sufficient degree of liquid to in particular fill or envelop the fissures and sharp-edged concave cavities of the grain surfaces.

Nach dem Sintervorgang wird der Sinterkörper bei einer Temperatur unterhalb der Sintertemperatur einer Diffusionsbehandlung bzw. Diffusionsglühung mit einer Temperatur zwischen 600 und 100°C und einer Zeitdauer von 1 bis 12 Stunden unterworfen. Die sinteraktive bzw. kornverbindende Phase bzw. Masse weist dabei einen ausreichenden Festigkeitsgrad zur Formstabilisierung auf. Mit einer Diffusionsbehandlung des Sinterkörpers, die unmittelbar an das Sintern angeschlossen werden kann, werden betreffend die Körner für die magnetischen Eigenschaften vorteilhafte Oberflächenstrukturen und Konzentrationsprofile von Atomen erreicht. Die durch den Zerkleinerungsvorgang scharfkantig ausgebildeten Oberflächen der die hartmagnetische Phase bildenden oder enthaltenden Körner werden geglättet, weil die Kanten bzw. Spitzen energetische Unregelmäßigkeiten darstellen und in diesen Bereichen eine verstärkte Atomdiffusion erfolgt. Eine Einformung der Körner bzw. eine weitgehend gerichtete Atomdiffusion bewirkt eine Verringerung bzw. Minimierung ihrer Oberflächenergie. Durch geglättete Oberflächen mit verringerter Enerige der Körner aus hartmagnetischer Phase wird, bezogen auf die Richtungsänderung der magnetischen Momente energetisch eine Neubildung von Domänwänden, welche bevorzugt an Spitzen und Kanten erfolgt, wirksam verringert und damit die Koerzitivkraft der Magnete erhöht. Dabei sind jedoch eine bestimmte oben angegebene Korngröße und eine ausreichende Füllung, insbesondere der Klüfte und scharfkantigen Konkavhohlräume der Kornoberflächen mit sinteraktiver Masse bzw. Phase wichtig.After the sintering process, the sintered body is subjected to a diffusion treatment or diffusion annealing at a temperature below the sintering temperature at a temperature between 600 and 100 ° C. and for a period of 1 to 12 hours. The sinter-active or grain-connecting phase or mass has a sufficient degree of strength for shape stabilization. With a Diffusion treatment of the sintered body, which can be connected directly to the sintering, achieves surface structures and concentration profiles of atoms which are advantageous for the grains for the magnetic properties. The surfaces of the grains forming or containing the hard magnetic phase, which are made sharp-edged by the comminution process, are smoothed because the edges or tips represent energy irregularities and an increased atom diffusion takes place in these areas. A shaping of the grains or a largely directed atom diffusion brings about a reduction or minimization of their surface energy. Due to smoothed surfaces with reduced energy of the grains from the hard magnetic phase, based on the change in direction of the magnetic moments, a new formation of domain walls, which preferably occurs at the tips and edges, is effectively reduced and thus the coercive force of the magnets is increased. However, a certain grain size specified above and a sufficient filling, in particular the fissures and sharp-edged concave cavities of the grain surfaces with sinter-active mass or phase, are important.

Auf Grund des eingestellten Konzentrationsunterschiedes an SSE-Atome in der hartmagnetischen Phase und der kornverbindenden, weitgehend paramagnetischen Phase erfolgt bei der Diffusionsbehandlung auch ein Eindringen von SSE- Atomen in die magnetokristalline Phase. Weil bei eindiffundierten Elementen wie beispielsweise AL ein rascher, im wesentlicher unmittelbarer, Konzentrationsausgleich stattfindet, war es überraschend, daß SSE-Atome an den Korngrenzen bzw. im korngrenzennahen Bereich auf einen im Vergleich mit dem Korninneren mindestens 3-fachen Gehalt angereichert werden können und eine inhomogene Konzentration von SSE- Atomen in den Körnern ausbildbar ist. Dabei ist es wichtig, die Diffusionsbehandlungsparameter derart zu wählen, daß die Stärke des Bereiches der erhöhten SSE- Konzentration auf mindestens 0,05 µm, höchstens jedoch 1 µm eingestellt wird. Kleinere Stärken bewirken nur eine unmaßgebliche weitere Verminderung der Domänwandbildung und/oder Domänwandbeweglichkeit, somit eine geringfügige Erhöhung der Koerzitivkraft; größere Stärken reduzieren die erreichbare Sättigungsmagnetisierung und verkleinern das Energieprodukt des Permanentmagneten.Due to the set concentration difference of SSE atoms in the hard magnetic phase and the grain-connecting, largely paramagnetic phase, SSE atoms also penetrate into the magnetocrystalline phase during the diffusion treatment. Because in the case of elements diffused in, such as AL, for example, a rapid, essentially immediate, concentration equalization takes place, it was surprising that SSE atoms at the grain boundaries or in the region near the grain boundaries can be enriched to at least 3 times the content compared to the grain interior and one inhomogeneous concentration of SSE atoms can be formed in the grains. It is important to choose the diffusion treatment parameters in such a way that the strength of the area of the increased SSE concentration is set to at least 0.05 μm, but at most 1 μm. Smaller strengths only cause an insignificant further reduction in the formation of the domain wall and / or domain wall mobility, thus a slight increase in coercive force; greater strengths reduce the achievable saturation magnetization and reduce the energy product of the permanent magnet.

Im folgenden wird die Erfindung anhand von beiliegenden Tabellen 1 und 2, in welchen Legierungsgehalte und Mittelwerte von magnetischen Messungen von Permanentmagnetkörpern angegeben sind, näher erläutert.The invention is explained in more detail below with the aid of the accompanying tables 1 and 2, in which alloy contents and mean values of magnetic measurements of permanent magnet bodies are given.

In der Tabelle 1 sind die magnetischen Werte von Vergleichsmagneten(-werkstoffen) mit unterschiedlicher Zusammensetzung angegeben. Dabei wurde das jeweilige Ausgangsmaterial schmelzmetallurgisch hergestellt und zu Pulver gemahlen. Unter Einwirkung eines Magnetfeldes erfolgte die Verpressung des Pulvers zu einem Grünling, welcher gesintert, wärmebehandelt und magnetisiert wurde. Die Zusammensetzung und die gemessenen magnetischen Werte der Permanentmagnetkörper ( Vergleichsmagnete) sind unter der Bezeichnung A bis F in Tabelle 1 angegeben.Table 1 shows the magnetic values of reference magnets (materials) with different compositions. The respective starting material was produced by melt metallurgy and ground into powder. Under the influence of a magnetic field, the powder was pressed into a green body, which was sintered, heat-treated and magnetized. The composition and the measured magnetic values of the permanent magnet bodies (comparison magnets) are given under the designations A to F in Table 1.

Unter den Nummern 1 bis 14 in der Tabelle 2 werden erfindungsgemäße Permanentmagnete(-werkstoffe) angeführt. Die analytischen Bestimmungen erfolgten durch Transmissions-Elektronen-Mikroskopie (TEM).
Der SSE- Gehalt in der magnetischen Phase im Durchschnitt wurde dabei durch Mittelwertbildung aus Punkt- und Bereichsmessungen über den Kornquerschnitt festgestellt.
The permanent magnets (materials) according to the invention are listed under numbers 1 to 14 in Table 2. The analytical determinations were carried out by transmission electron microscopy (TEM).
The SSE content in the magnetic phase on average was determined by averaging from point and area measurements over the grain cross section.

Bei den erfindungsgemäßen Permanentmagneten wird durch den Co-Gehalt der Curie-Punkt und die magnetische Feldstärke bzw. die Magnetisierung erhöht und infolge der weiteren Maßnahmen , wie sich erwiesen hat, die Koerzitivkraft bzw. Induktion auf hohen Werten gehalten, was synergetisch ein erhöhtes Energieprodukt bewirkt. Bei üblichen Magneten, weitgehend ohne Co- Gehalt, werden hohe Koerzitivkräfte beiniedrigen Curie-Temperaturen und bei hohem Co-Gehalt hohe Magnetisierung bei hohen Curie- Temperaturen erreicht. Das magnetische Energieprodukt ist jedoch in beiden Fällen relativ niedrig.

Figure imgb0001
Figure imgb0002
In the permanent magnets according to the invention, the Co content and the magnetic field strength or the magnetization are increased by the Co content and, as has been shown, the coercive force or induction is kept at high values as a result of the further measures, which synergistically brings about an increased energy product . With conventional magnets, largely without Co content, high coercive forces become low at low Curie temperatures and at high Co content high magnetization achieved at high Curie temperatures. However, the magnetic energy product is relatively low in both cases.
Figure imgb0001
Figure imgb0002

Claims (12)

  1. Sintered permanent magnet or permanent magnet material consisting substantially of a magnetic phase of the type RE₂(FeCo)₁₄B and at least one further sinter-activated or grain-bonding phase which contains heavy rare earths, HRE, and/or compounds, characterised in that the magnetic phase is formed from grains with a smooth surface or shaped by diffusion with a minimum diameter of 3 µm and a maximum diameter, which is known per se, of 60 µm, preferably 45 µm, especially 30 µm, the magnetic phase or the grains formed from this phase having cobalt, Co, with a concentration of 3 to 25% by atom, preferably 6 to 20% by atom, especially 8 to 14% by atom, and rare earths, RE, with proportions of light rare earths, LRE, and heavy rare earths, HRE, wherein the average content of HRE is equal to 0.05 to 0.2, preferably 0.06 to 0.15, especially 0.1, multiplied by the concentration value of Co, and the local concentration of HRE atoms over the diameter of the grains, as is known per se, rises inhomogeneously in the direction of the grain boundary, preferably rising over-proportionally, and the sinter-activated or grain-bonding phase(s) which optionally contain(s) occlusions of metals and/or metal compounds has (have) relative to the magnetic phase or the grains a higher content of RE with a RE concentration value which is greater on average by at least 25%, preferably by at least 35%, especially by at least 80%, and a HRE concentration value which is greater by at least 90%, preferably 140%, especially at least 190%.
  2. Permanent magnet or permanent magnet material according to Claim 1, characterised in that the concentration of HRE atoms on or in the region of the grain boundaries has a value which amounts to at least 3 times, preferably at least 4.5 times, especially at least 6 times the value in the interior of the grain.
  3. Permanent magnet or permanent magnet material according to one of Claims 1 or 2, characterised in that the region with a higher concentration of HRE atoms on the grain boundaries has a thickness of 0.05 to 1 µm, preferably 0.09 to 0.9 µm, especially 0.2 to 0.4 µm.
  4. Method of manufacturing permanent magnets or permanent magnet materials containing rare earths (RE), in which at least the component forming or containing the magnetic phase of the type RE₂(FeCo)₁₄B is produced by fusion metallurgy and then pulverised, whereupon the powder is compressed with additives containing heavy rare earths, HRE, in a magnetic field and then sintered to form a magnetisable blank and optionally heat-treated, characterised in that the component forming or containing the magnetic phase is produced by melting and casting an alloy containing in % by atom 8 to 30 rare earth, RE, 2 to 8 B, the rest Fe and Co, optionally further alloy elements and impurities, in which Co is set at a concentration of 3 to 25% by atom, preferably 6 to 20% by atom, especially 8 to 14% by atom, and the RE component is formed from light rare earths, LRE, and heavy rare earths, HRE, and crushed to powder with a grain size of at least 3 µm, but, as is known per se, smaller than 60 µm, preferably smaller than 45 µm, especially smaller than 30 µm, into which powder there is (are) introduced one or more additives containing rare earths, RE, with a RE concentration which, relative to the powder grains, is greater by at least 25%, preferably by at least 35%, especially by at least 80%, and a HRE concentration which is greater by at least 100%, preferably 150%, especially 200%, and homogeneously distributed, whereupon the mixture is compressed in the magnetic field to form a blank, the latter is sintered and the sintered body is subjected to diffusion treatment or diffusion annealing and subsequently optionally to one or more further heat treatment operation(s).
  5. Method according to Claim 4, characterised in that the HRE proportion of the RE component of the alloy forming or containing the magnetic phase is set as a function of the Co concentration.
  6. Method according to Claim 4 or 5, characterised in that in the alloy a HRE contont is set with a value in % by atom of 0.02 to 0.19, preferably 0.06 to 0.12, especially 0.08, multiplied by the concentration value of Co.
  7. Method according to one of Claims 4 to 6, characterised in that the powdered additive or additives is or are introduced into the powder containing or forming the magnetic phase, with a grain size which is smaller than 15%, preferably smaller than 9%, especially smaller than 2%, of the grain size of the powder containing or forming the magnetic phase.
  8. Method according to one of Claims 4 to 7, characterised in that an additive or additives in at least partially liquid form, especially as chemical compounds and especially as organometallic compounds which when heated form oxides and/or nitrides and/or carbides, is (are) introduced into the powder containing or forming the magnetic phase and homogeneously distributed.
  9. Method according to one of Claims 4 to 8, characterised in that the sintered body produced by sintering of the blank is subjected to diffusion treatment or annealed in such a way that the grains forming or containing the magnetic phase are smoothed on the surface or shaped by diffusion and that HRE atoms from the sinter-activated or grain-bonding medium or phase containing the addition or additions and/or formed thereby are allowed to diffuse into the surface region of the grains forming or containing the magnetic phase.
  10. Method according to one of Claims 4 to 9, characterised in that in the grains forming or containing the magnetic phase a concentration of HRE atoms is formed which is known per se, is inhomogeneous and in particular rises in the direction of the grain boundary.
  11. Method according to one of Claims 4 to 10, characterised in that the diffusion treatment or diffusion annealing of the sintered body is carried out at a temperature of 500 to 1100°C, preferably 800 to 1050°C, especially 900 to 1000°C, which lies below the sintering temperature.
  12. Method according to one of Claims 4 to 11, characterised in that the diffusion treatment or diffusion annealing is carried out for a period of 1 to 12 hours, preferably 2 to 8 hours, especially 3 to 5 hours, the period being prolonged in the event of low treatment temperatures.
EP92890030A 1991-02-11 1992-02-10 Sintered permanent magnet or permanent magnetic material and process for production thereof Expired - Lifetime EP0499600B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0028791A AT398861B (en) 1991-02-11 1991-02-11 SINTERED PERMANENT MAGNET (MATERIAL) AND METHOD FOR THE PRODUCTION THEREOF
AT287/91 1991-02-11

Publications (2)

Publication Number Publication Date
EP0499600A1 EP0499600A1 (en) 1992-08-19
EP0499600B1 true EP0499600B1 (en) 1994-11-23

Family

ID=3486534

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92890030A Expired - Lifetime EP0499600B1 (en) 1991-02-11 1992-02-10 Sintered permanent magnet or permanent magnetic material and process for production thereof

Country Status (6)

Country Link
EP (1) EP0499600B1 (en)
AT (2) AT398861B (en)
CZ (1) CZ281161B6 (en)
DE (1) DE59200795D1 (en)
HU (1) HU213284B (en)
PL (1) PL169844B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4331563A1 (en) * 1992-09-18 1994-03-24 Hitachi Metals Ltd Sintered permanent magnet with good thermal stability - containing defined percentages by weight of specified elements

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395625A2 (en) * 1989-04-28 1990-10-31 BÖHLER YBBSTALWERKE Ges.m.b.H. Process of Manufacturing a Permanent Magnet or Permanent Magnet Material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1316375C (en) * 1982-08-21 1993-04-20 Masato Sagawa Magnetic materials and permanent magnets
US4601875A (en) * 1983-05-25 1986-07-22 Sumitomo Special Metals Co., Ltd. Process for producing magnetic materials
US4857118A (en) * 1986-10-13 1989-08-15 U.S. Philips Corporation Method of manufacturing a permanent magnet
US5000800A (en) * 1988-06-03 1991-03-19 Masato Sagawa Permanent magnet and method for producing the same
US5147447A (en) * 1988-06-03 1992-09-15 Mitsubishi Materials Corporation Sintered rare earth metal-boron-iron alloy magnets and a method for their production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395625A2 (en) * 1989-04-28 1990-10-31 BÖHLER YBBSTALWERKE Ges.m.b.H. Process of Manufacturing a Permanent Magnet or Permanent Magnet Material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Handbuch der Sonderstahlkunde, E. Houdremont, Erster Band, 1956, Springer Verlag, Seiten 124-128 *

Also Published As

Publication number Publication date
DE59200795D1 (en) 1995-01-05
HU9200403D0 (en) 1992-04-28
PL293427A1 (en) 1992-10-19
CZ281161B6 (en) 1996-07-17
PL169844B1 (en) 1996-09-30
CZ39292A3 (en) 1993-12-15
EP0499600A1 (en) 1992-08-19
ATE114383T1 (en) 1994-12-15
ATA28791A (en) 1994-06-15
AT398861B (en) 1995-02-27
HUT64108A (en) 1993-11-29
HU213284B (en) 1997-04-28

Similar Documents

Publication Publication Date Title
DE3780876T2 (en) PERMANENT MAGNET BASED ON THE RARE EARTH.
DE602004009979T2 (en) R-T-B rare earth permanent magnet
DE3783413T2 (en) METHOD FOR PRODUCING A RARE-EARTH IRON BOR PERMANENT MAGNET WITH THE AID OF A QUARKED ALLOY POWDER.
DE60221448T2 (en) Rare earth alloy sintered compact
DE69720206T2 (en) Compound magnet with low losses and easy saturation
DE69911138T2 (en) Sintered R-T-B permanent magnet
DE60309120T2 (en) Sintered R-Fe-B magnet
DE112015001405B4 (en) A method of manufacturing an R-T-B based sintered magnet
DE102014118984B4 (en) Rare earth based magnet
DE102017115791B4 (en) R-T-B-based rare earth permanent magnet
DE60319339T2 (en) METHOD FOR THE PRODUCTION OF R-T-B BASED RARE-ELEMENT PERMANENT MAGNETS
DE102014119040B4 (en) Rare earth based magnet
DE3887429T2 (en) Corrosion resistant rare earth magnet.
DE112016002876T5 (en) R-T-B based sintered magnet and process for its preparation
DE60317767T2 (en) R-T-B rare earth permanent magnet
DE4408114B4 (en) Magnetic material
DE3786426T2 (en) Permanent magnet and permanent magnet alloy.
DE69006459T2 (en) Rare earth iron boron permanent magnet.
DE112015001825T5 (en) Rare earth permanent magnet
DE3889996T2 (en) RARE EARTH IRON TYPE PERMANENT MAGNET AND ITS PRODUCTION METHOD.
DE102014119055B4 (en) Rare earth based magnet
DE60031914T2 (en) Magnetic powder and isotropic bonded magnet
DE3884817T2 (en) MAGNETIC ANISOTROPE SINTER MAGNET.
DE69220876T2 (en) Magnetic material
EP0395625B1 (en) Process of Manufacturing a Permanent Magnet or Permanent Magnet Material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19930728

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19941123

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19941123

Ref country code: DK

Effective date: 19941123

Ref country code: BE

Effective date: 19941123

REF Corresponds to:

Ref document number: 114383

Country of ref document: AT

Date of ref document: 19941215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59200795

Country of ref document: DE

Date of ref document: 19950105

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950126

Year of fee payment: 4

EAL Se: european patent in force in sweden

Ref document number: 92890030.7

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950228

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950901

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950901

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960211

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: BOEHLER YBBSTALWERKE G.M.B.H. TRANSFER- VACUUMSCHM

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980210

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990210

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DIPL.-ING. ETH H. R. WERFFELI PATENTANWALT

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020530

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050125

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050216

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060210

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060210

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070328

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902