EP0486573B1 - Absorption von zinkdämpfen in geschmolzenem blei - Google Patents

Absorption von zinkdämpfen in geschmolzenem blei Download PDF

Info

Publication number
EP0486573B1
EP0486573B1 EP90912345A EP90912345A EP0486573B1 EP 0486573 B1 EP0486573 B1 EP 0486573B1 EP 90912345 A EP90912345 A EP 90912345A EP 90912345 A EP90912345 A EP 90912345A EP 0486573 B1 EP0486573 B1 EP 0486573B1
Authority
EP
European Patent Office
Prior art keywords
lead
zinc
stream
mixing chamber
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90912345A
Other languages
English (en)
French (fr)
Other versions
EP0486573A1 (de
EP0486573A4 (en
Inventor
Mark Ian Hoschke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pasminco Australia Ltd
Original Assignee
Pasminco Australia Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pasminco Australia Ltd filed Critical Pasminco Australia Ltd
Publication of EP0486573A1 publication Critical patent/EP0486573A1/de
Publication of EP0486573A4 publication Critical patent/EP0486573A4/en
Application granted granted Critical
Publication of EP0486573B1 publication Critical patent/EP0486573B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/04Obtaining zinc by distilling
    • C22B19/08Obtaining zinc by distilling in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/04Obtaining zinc by distilling
    • C22B19/16Distilling vessels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/04Obtaining zinc by distilling
    • C22B19/16Distilling vessels
    • C22B19/18Condensers, Receiving vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This invention relates to an improved apparatus and process for absorbing zinc vapour into molten lead.
  • Gases containing zinc vapour are commonly generated in zinc smelting processes (for example, the Imperial Smelting Process (ISP)) in slag fuming; and in the treatment of zinc-containing dusts and residues.
  • ISP Imperial Smelting Process
  • ISP process uses rotors or impellers to splash lead from a molten pool into the zinc-laden gas stream.
  • zinc is used as the condensing medium rather than lead.
  • SKF process uses molten lead or molten zinc in the form of a spray or curtain as cooling metal or medium towards which the gas stream containing zinc vapour is directed.
  • the ISP process suffers from accretions at the mouth of the condenser and in the condenser/absorption chamber causing frequent stoppages of the furnace operation. Theses accretions form on surfaces that are below the temperature where solid ZnO forms by the reaction Zn + CO2--> ZnO + CO. This reaction is called the reversion reaction and the temperature at which it occurs the 'reversion temperature'.
  • the SKF process is free of this problem only because of the highly reduced gas entering the condenser.
  • the invention provides a process for absorbing zinc vapour in molten lead which process comprises the steps of: causing a stream of gas containing zinc vapour to enter a mixing chamber; spraying molten lead by a first spraying means into the stream of gas containing zinc vapour to form a dispersion of molten lead droplets in the stream thereby contacting the molten lead droplets with the zinc vapour; and passing the stream of gas containing zinc vapour having droplets of lead dispersed therein into a cyclone which serves both to contact and to separate the gas stream and the zinc-rich molten lead stream.
  • the apparatus of the invention comprises a refractory lined cross-over or off-take having an outlet at the bottom which opens into the mixing chamber that joins the cyclone.
  • Lead is introduced into the chamber by a lead spray directed into the gas stream. This spray produces a dispersion of lead droplets within the gas stream. Lead may be also introduced by additional sprays that completely wet the walls of both the vertical section before the cyclone and also within the cyclone itself.
  • the vertical chamber before the cyclone may also house one or more banks of static mixing elements. These elements not only serve to mix the lead droplets and gas together but also break up the lead droplets. This action causes a high degree of shear and a large contacting area as well as turbulence in both phases.
  • the molten lead now containing the absorbed zinc is passed into a system for recovery of the latter as well as for recirculation of the molten lead for renewed absorption.
  • the off-gas is passed to a conventional gas cleaning system.
  • FIG. 1 represents zinc-laden gas from the smelting or slag fuming operation
  • 2 represents a refractory lined off-take.
  • a burner 3 called the 'transition burner', is provided to maintain the temperature of the lower region of the refractory above the Zn-ZnO reversion temperature.
  • a lead spray (alternatively, a bank of lead sprays) 4 direct(s) molten lead to a vertical chamber 5 which may contain mixing elements 5a to enhance the contact between the zinc-laden gas and the molten lead.
  • a cyclone 6 serves both to contact and to separate the gas and the lead, the latter passing to the gas-cleaning system 7.
  • the zinc-rich lead stream 8 is passed to the pump sump 9 provided with pump 10 conveying lead back through the absorption system.
  • a zinc-lead stream is pumped from the sump 9 via line 11 to a lead cooler 12 and returned to the sump, and via line 11a to lead sprays 4.
  • Numerals 13 and 14 represent a cooling water inlet and outlet respectively.
  • a small portion of the zinc-lead is passed via line 16 to the liquation pot 17, which is provided with cooling water inlet 18 and outlet 19 respectively.
  • Numeral 20 represents the zinc product and 21 a launder for returning liquated lead to the pump sum 9.
  • line 16 of Fig. 1 is replaced by line 16a from pump 10 direct to liquation pot 17 and bypassing lead cooler 12.
  • Fig. 2 provide an example of a preferred transition burner and lead spray assembly.
  • Process gas indicated by numeral 39, enters at the top and flows downward through the assembly.
  • a fuel such as propane is precombusted with oxygen.
  • the hot gas is introduced tangentially into a toroid 30 penetrating a circumferential offtake body 38.
  • the toroid 30 serves two purposes. Firstly, it evenly distributes the gas before it exits the burner and, secondly, it serves to heat the offtake body 38.
  • Numeral 30a indicates an exit port for hot gas into the central open space defined by the offtake body 38, the gas exiting as shown by arrow 33.
  • Upper and lower circumferential mains, 31 and 32 respectively, are shown for supply of streams of lead or zinc-lead in streams indicated by arrows 34 and 35 respectively.
  • Numeral 36 indicates the presence of baffles to remove the swirl from stream 34 before it is deflected downwardly and towards the centre of the open space.
  • a circumferential truncated cone 37 extends downwardly into the stream of gas 39 and forms part of exit ports 30a.
  • the offtake body 38 is heated by the burner otherwise its surface would fall below the reversion temperature.
  • the lower part of the offtake body 38 is directly above the region where lead is sprayed into the absorber. Consequently this lower part loses heat by radiation to the lead.
  • the gases exiting from the exit port 30a serve primarily to stop zinc from diffusing to the top lip of the lead spray causing an accretion. This top lip will always be held below the reversion temperature because of the lead in the spray.
  • cone 37 was found to be necessary to give protection against diffusion of process gas onto the cold lip of the lead spray.
  • the high turbulence of the process gas greatly enhances the possibility of diffusion.
  • the top lead spray 34 is designed to introduce lead to the centre of the process gas stream. Lead may be introduced tangentially into a main 31 surrounding the spray. The swirl introduced to the lead by the tangential inlet is removed by baffles so that the lead is introduced radially but inclined downwardly into the process gas stream.
  • Lead or zinc-lead is introduced tangentially into a main 32 surrounding the spray.
  • the lead maintains its high swirl and as it exits the spray it flattens itself against the walls. The swirl is sufficient to give a uniform coating down the mixer column.
  • top spray 34 is needed to contain the highly swirled bottom spray 35. Without this containment, lead from the bottom spray would flush upwards.
  • the spray system is designed so that splash upwards onto the refractory areas or upward movement from the bottom spray is substantially non-existent. If splash or upward movement occurs, the refractory is cooled below its reversion temperature and accretion forms.
  • the outlets of the top and bottom sprays are designed to be close together so that there are no unwetted areas of steelwork.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Glass Compositions (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Claims (21)

  1. Verfahren zum Absorbieren von Zinkdampf in geschmolzenem Blei, welches die folgenden Schritte aufweist:
    Einlassen eines Zinkdampf enthaltenden Gasstromes (1, 39) in eine Mischkammer (5),
    Einspritzen von geschmolzenem Blei mittels eines ersten Sprühmittels (34) in den Zinkdampf enthaltenden Gasstrom, um dadurch in dem Strom eine Dispersion von geschmolzenen Bleitropfen zu bilden, wobei die geschmolzenen Bleitröpfchen mit dem Zinkdampf in Kontakt gelangen, und
    Überleiten des Zinkdampf enthaltenden Gasstromes mit in ihm verteilten Bleitröpfchen in einen Zyklon (6), der dazu dient, den Gasstrom und den zinkreichen Strom aus geschmolzenem Blei sowohl in Kontakt zu bringen als auch zu trennen.
  2. Verfahren nach Anspruch 1, welches weiters den Schritt aufweist, daß geschmolzenes Blei (35) auf die Wände der Mischkammer (5) gesprüht wird, um eine Rückumwandlung an den kalten Innenflächen der Kammer zu vermeiden.
  3. Verfahren nach Anspruch 1, bei welchem weiters in der Nähe des Einlasses der Mischkammer (5), in welchen Blei eingebracht wird, Refraktoroberflächen (38) auf eine Temperatur oberhalb der Zn/ZnO-Reversionstemperatur erhitzt werden.
  4. Verfahren nach Anspruch 1, bei welchem weiters geschmolzenes Blei durch ein erstes Sprühmittel gesprüht und heißes, reduzierendes Gas (33) zwischen das Zinkdampf enthaltende Gas und das Auslaßende des Bleisprühmittels eingeführt wird.
  5. Verfahren nach Anspruch 2, bei welchem mit Hilfe eines zweiten Sprühmittels (35) geschmolzenes Blei auf die Wände der Mischkammer (5) gesprüht wird und mit Hilfe eines radial gerichteten, ersten Sprühmittels (34), das in Nähe des zweiten Sprühmittels (35), jedoch stromauf von diesem gelegen ist, geschmolzenes Blei in den Zinkdampf enthaltenden Gasstrom gesprüht wird, sodaß das Blei von dem zweiten Sprühmittel (35) daran gehindert wird, mit den Refraktoroberflächen (38) stromauf der Sprühmittel in Kontakt zu kommen.
  6. Verfahren nach Anspruch 1, bei welchem eine oder mehrere Reihen statischer Mischelemente (5a) in der Mischkammer (5) vorgesehen sind, um das Mischen zwischen dem Zinkdampf und dem geschmolzenen Blei zu fördern.
  7. Verfahren nach einem der Ansprüche 1 bis 6, bei welchem weiters ein zinkreicher Bleistrom aus dem Zyklon (6) zu einem Reservoir (9) für Zink/Blei, einem Kühlabschnitt für das Zink/Blei und einem Wiedergewinnungsabschnitt für Zink/Blei zu der Mischkammer (5) geführt wird.
  8. Verfahren nach Anspruch 7, bei welchem ein Teil des gekühlten Stromes zu einer Zinkabscheidestufe (17) abgezogen wird.
  9. Verfahren nach Anspruch 8, bei welchem der zu der Zinkabscheidestufe (17) abgezogene Teil des gekühlten Stromes ein verhältnismäßig geringer Teil des Massenflusses aus Zink/Blei in dem Kreislauf ist.
  10. Verfahren nach Anspruch 7, bei welchem weiters ein Teil des Zink/Bleis aus dem Reservoir (9) abgezogen und der abgezogene Teil ohne Kühlung zu einer Zinkabscheidestufe (17) übergeführt wird.
  11. Verfahren nach Anspruch 8, bei welchem die Zinkabscheidestufe ein Seigermittel (17) aufweist.
  12. Verfahren nach einem der Ansprüche 1 bis 11, bei welchem der Zinkdampf enthaltende Gasstrom (1, 39) mit in ihm verteilten Bleitröpfchen nach unten in die Mischkammer (5) übergeführt wird.
  13. Verfahren nach Anspruch 4, bei welchem das heiße reduzierende Gas in einem Brenner (3) erzeugt wird.
  14. Vorrichtung zum Absorbieren von Zinkdampf in geschmolzenem Blei, mit einer Mischkammer (5) und einem mit der Mischkammer in Verbindung stehenden Zyklon (6), wobei die Mischkammer (5) Einlaßmittel zur Aufnahme eines Zinkdampf enthaltenden Gasstromes aufweist, ein erstes Sprühmittel, um geschmolzenes Blei (34) in den Zinkdampf enthaltenden Gasstrom zu sprühen sowie ein zweites Sprühmittel, um geschmolzenes Blei (35) auf innere Wände der Mischkammer (5) zu sprühen, wobei der Zyklon (6) so angeordnet ist, daß er im Betrieb der Vorrichtung einen Zinkdampf enthaltenden Gasstrom mit darin verteilten Tröpfchen aus geschmolzenem Blei von der Mischkammer erhält.
  15. Vorrichtung nach Anspruch 14, bei welcher der Einlaß eine mit Refraktormaterial ausgekleidete Leitung (2) mit einem sich in die Mischkammer (5) öffnenden Auslaß besitzt.
  16. Vorrichtung nach Anspruch 15, welche weiters einen Umwandlungsbrenner (3) besitzt, um im Betrieb der Vorrichtung die Temperatur der mit Refraktormaterial ausgekleideten Leitung (2) oberhalb der Zn/ZnO-Umwandlungstemperatur zu halten und um im Betrieb der Vorrichtung eine Schicht aus heißem reduzierendem Gas (33) zwischen das Zinkdampf enthaltende Gas und einen oberen Abschnitt des ersten Sprühmittels einzubringen.
  17. Vorrichtung nach Anspruch 14, welches weiters ein Mittel zum Fördern eines zinkreichen Bleistromes (8) von dem Zyklon (6), ein Mittel zur Wiedergewinnung von Zink aus dem Zink/Blei-Strom sowie ein Mittel (11a) zum Zurückführen eines Teils des Zink/Bleis zu der Mischkammer (5) aufweist.
  18. Vorrichtung nach Anspruch 17, welche ein Mittel (12) zum Kühlen eines Teiles des Zink/Bleis besitzt.
  19. Vorrichtung nach Anspruch 17, welche weiters ein Mittel zum Fördern des zinkreichen Bleistroms zu einem Zink/Blei-Sumpf (9), ein Mittel (10, 11a) zum Rückführen eines Teils des Zink/Bleis zu der Mischkammer (5), ein Mittel (11) zum Fördern eines Teils des Zink/Bleis zu einem Kühlmittel (12), ein Mittel (16, 16a) zum Fördern eines Teils des Zink/Bleis zu einem Seigertopf (17) und ein Mittel zum Rückführen des von Zink abgereicherten Bleis (21) von dem Seigertopf (17) zu dem Sumpf (19) besitzt.
  20. Vorrichtung nach Anspruch 19, welche weiters ein Mittel (15) zum Rückführen des gekühlten Blei/Zinks zu dem Sumpf (9) besitzt.
  21. Vorrichtung nach Anspruch 14, bei welcher das erste Sprühmittel stromab der mit Refraktormaterial ausgekleideten Leitung (2) und stromauf des zweiten Sprühmittels gelegen ist, wobei das erste Sprühmittel eingerichtet ist, geschmolzenes Blei (34) radial in die Mischkammer (5) zu sprühen.
EP90912345A 1989-08-15 1990-08-14 Absorption von zinkdämpfen in geschmolzenem blei Expired - Lifetime EP0486573B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AU5782/89 1989-08-15
AUPJ578289 1989-08-15
AUPJ799089 1989-12-22
AU7990/89 1989-12-22
PCT/AU1990/000344 WO1991002825A1 (en) 1989-08-15 1990-08-14 Absorption of zinc vapour in molten lead

Publications (3)

Publication Number Publication Date
EP0486573A1 EP0486573A1 (de) 1992-05-27
EP0486573A4 EP0486573A4 (en) 1993-05-12
EP0486573B1 true EP0486573B1 (de) 1995-10-11

Family

ID=25643736

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90912345A Expired - Lifetime EP0486573B1 (de) 1989-08-15 1990-08-14 Absorption von zinkdämpfen in geschmolzenem blei

Country Status (10)

Country Link
EP (1) EP0486573B1 (de)
JP (1) JPH04507435A (de)
AU (1) AU653919B2 (de)
CA (1) CA2064718A1 (de)
DE (2) DE4091460T1 (de)
ES (1) ES2080153T3 (de)
GB (1) GB2251629B (de)
NL (1) NL9021328A (de)
SE (1) SE506452C2 (de)
WO (1) WO1991002825A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900818A3 (de) 1997-11-06 2008-06-11 Novartis Vaccines and Diagnostics S.r.l. Neissersche Antigene
CA2317815A1 (en) 1998-01-14 1999-07-22 Chiron S.P.A. Neisseria meningitidis antigens
EP2261343A3 (de) 1998-05-01 2012-01-18 Novartis Vaccines and Diagnostics, Inc. Antigene und Zusammensetzungen gegen Neisseria meningitidis
DK1228217T3 (da) 1999-04-30 2013-02-25 Novartis Vaccines & Diagnostic Konserverede neisseria-antigener
GB9911683D0 (en) 1999-05-19 1999-07-21 Chiron Spa Antigenic peptides
GB9916529D0 (en) 1999-07-14 1999-09-15 Chiron Spa Antigenic peptides
ES2543736T3 (es) 1999-10-29 2015-08-21 Glaxosmithkline Biologicals Sa Péptidos antigénicos de Neisseria
DK2289545T3 (en) 2000-01-17 2016-09-05 Glaxosmithkline Biologicals Sa Supplemented OMV vaccine against meningococcus
MXPA03003690A (es) 2000-10-27 2004-05-05 Chiron Spa Acidos nucleicos y proteinas de los grupos a y b de estreptococos.
GB0107661D0 (en) 2001-03-27 2001-05-16 Chiron Spa Staphylococcus aureus
GB0107658D0 (en) 2001-03-27 2001-05-16 Chiron Spa Streptococcus pneumoniae
DE60228758D1 (de) 2001-12-12 2008-10-16 Novartis Vaccines & Diagnostic Immunisierung gegen chlamydia tracheomatis
GB0308198D0 (en) 2003-04-09 2003-05-14 Chiron Srl ADP-ribosylating bacterial toxin

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1470417A (en) * 1974-10-11 1977-04-14 Isc Smelting Condensation of zinc vapour
JPS53112223A (en) * 1977-03-12 1978-09-30 Haruo Mimura Sequential smelting method of zinc based on fluidized reduction
JPS588766U (ja) * 1981-07-09 1983-01-20 三菱電機株式会社 冷凍用圧縮機
FI66199C (fi) * 1982-02-12 1984-09-10 Outokumpu Oy Anordning foer separering av fasta och smaelta partiklar fraon metallurgiska ugnars avgaser samt saett att aotervinna bly fraon dylika avgaser
FI66200C (fi) * 1982-02-12 1984-09-10 Outokumpu Oy Foerfarande foer framstaellning av raobly fraon sulfidkoncentrat
SE450775B (sv) * 1982-06-21 1987-07-27 Skf Steel Eng Ab Sett och anordning for att utvinna zink ur en gas innehallande zinkanga
SE453755B (sv) * 1985-06-12 1988-02-29 Skf Steel Eng Ab Sett och anordning for utkondensering av zinkanga
GB2210897B (en) * 1987-10-12 1990-11-07 Skf Plasma Tech A method and apparatus for separating zinc out of a hot gas containing zinc vapour

Also Published As

Publication number Publication date
WO1991002825A1 (en) 1991-03-07
EP0486573A1 (de) 1992-05-27
SE506452C2 (sv) 1997-12-15
DE4091460T1 (de) 1992-06-25
GB9202332D0 (en) 1992-04-15
ES2080153T3 (es) 1996-02-01
JPH04507435A (ja) 1992-12-24
NL9021328A (nl) 1992-06-01
AU6169190A (en) 1991-04-03
CA2064718A1 (en) 1991-02-16
GB2251629A (en) 1992-07-15
DE4091460C2 (de) 1996-05-09
SE9200438D0 (sv) 1992-02-14
EP0486573A4 (en) 1993-05-12
GB2251629B (en) 1993-12-22
SE9200438L (sv) 1992-02-14
AU653919B2 (en) 1994-10-20

Similar Documents

Publication Publication Date Title
EP0486573B1 (de) Absorption von zinkdämpfen in geschmolzenem blei
FI82612B (fi) Foerfarande och anordning foer behandling av processgaser.
US9970076B2 (en) Method of apparatus for condensing metal vapours using a nozzle and a molten collector
KR20010007296A (ko) 직접적인 제련 용기
US4456479A (en) Vacuum purification of liquid metals
US4358311A (en) Method and apparatus for the smelting of material such as ore concentrates
CA1182648A (en) Method and apparatus for smelting fusible substances such as ore concentrates
JPH07194963A (ja) 高温ガスの処理方法および装置
CA1047259A (en) Condensation of zinc vapour
US5215572A (en) Process and apparatus for absorption of zinc vapour in molten lead
CA1212243A (en) Means for separating solid and molten particles from the exhaust gases of metallurgical furnaces and way to recover lead from such gases
US4210441A (en) Method for the continuous or discontinuous treatment of molten slag, particularly with contents of heavy metal oxides, for the recovery of portions contained therein of valuable metals or their combinations, respectively
US4548621A (en) Condensing zinc vapor
FI93027C (sv) Förfarande och anordning för framställning av järn
US3463473A (en) Installation for extracting zinc from fumes rich in zinc vapour
CN115386726B (zh) 金属蒸气冷却系统及高效冷却方法
GB2196881A (en) Cleaning and cooling metallurgical exit gases
US5558695A (en) Process and unit for continuous metal refinement
CN218372450U (zh) 金属蒸气高效冷却系统
US5358548A (en) Condensation of metal vapors in a fluidized bed and apparatus
AU634309B2 (en) Condensation of metal vapours in a fluidized bed
US3351461A (en) Procedures for decomposing gaseous aluminum subhalide
RU1786106C (ru) Сталеплавильный агрегат
JPH01139734A (ja) 亜鉛蒸気を含有する熱ガスより亜鉛を分離する方法及び装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE ES FR IT

A4 Supplementary search report drawn up and despatched

Effective date: 19930319

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): BE ES FR IT

17Q First examination report despatched

Effective date: 19930726

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE ES FR IT

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: MARCHI & MITTLER S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2080153

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970925

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19971013

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19971017

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980831

BERE Be: lapsed

Owner name: PASMINCO AUSTRALIA LTD

Effective date: 19980831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050814