EP0483004B1 - Electron cyclotron resonance ion source for highly charged ions with polarisable probe - Google Patents

Electron cyclotron resonance ion source for highly charged ions with polarisable probe Download PDF

Info

Publication number
EP0483004B1
EP0483004B1 EP19910402829 EP91402829A EP0483004B1 EP 0483004 B1 EP0483004 B1 EP 0483004B1 EP 19910402829 EP19910402829 EP 19910402829 EP 91402829 A EP91402829 A EP 91402829A EP 0483004 B1 EP0483004 B1 EP 0483004B1
Authority
EP
European Patent Office
Prior art keywords
cavity
probe
source
ions
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19910402829
Other languages
German (de)
French (fr)
Other versions
EP0483004A1 (en
Inventor
Paul Briand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0483004A1 publication Critical patent/EP0483004A1/en
Application granted granted Critical
Publication of EP0483004B1 publication Critical patent/EP0483004B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field

Definitions

  • the subject of the present invention is a source of highly charged positive ions with probe polarizable and electron cyclotron resonance (RCE). It finds many applications, in function of the different values of kinetic energy ions extracted, in the fields of implantation ionic, microgravure, and more particularly in the equipment of particle accelerators, used both in the scientific field than medical.
  • RCE probe polarizable and electron cyclotron resonance
  • the ions are obtained by ionizing, in a closed cavity-like enclosure microwave, a gas, consisting for example of metallic vapors, using an electron plasma strongly accelerated by cyclotronic resonance electronic.
  • HF high electromagnetic field frequency
  • the amount of ions that can be produced results from competition between two processes: on the one hand the formation of ions by electronic impact on neutral atoms constituting the gas to be ionized and on the other hand the destruction of these same ions by recombination, single or multiple, in a collision of these last with a neutral atom; this neutral atom can come from gas not yet ionized or be produced on the walls of the enclosure by impact of a ion on said walls.
  • This drawback is avoided by confining, in the enclosure constituting the source, the ions formed as well as the electrons used for their ionization. This is achieved by creating inside the enclosure radial and axial magnetic fields, defining a closed tablecloth called "equimagnetic", having no contact with the walls of the enclosure and on which the electronic cyclotronic resonance condition is satisfied.
  • This tablecloth is shaped like a balloon rugby. The closer this equimagnetic sheet walls of the enclosure, the more effective it is great because it limits the volume of attendance neutral atoms and therefore the amount of collision neutral atom-ions.
  • This tablecloth also allows confine the ions and electrons produced by gas ionization. Thanks to this confinement, the created electrons have time to bomb several times the same ion and totally ionize it.
  • This source contains two stages.
  • the role of the first stage A is largely part of providing an electron flow in the axis X of the source.
  • This first stage A has a cavity 2a with symmetry of revolution of the solenoidal coils 14a arranged at the two ends of the cavity 2a, creating an axial magnetic field, this field being plus 18a soft iron shielding located at the entrance from the source.
  • the gas or vapor to be ionized is introduced through a conduit 6 inside the cavity 2a. When it comes to steam, it can be introduced into the cavity in the form of a rod suitable for vaporizing.
  • An electromagnetic field is created inside the cavity 2a by a first high frequency input 4a.
  • This stage B consists of a cylindrical cavity multimode 2 of high order, i.e. of dimension large compared to the dimension of the length of the electromagnetic field. Its axis of symmetry bears the reference X. This electromagnetic field is introduced radially by a second entry high frequency 4.
  • Cavity 2 is joined at its end 5 to a vacuum pump 10b, by means of a pipe in which electrodes are housed 10a.
  • a power source 9 allows to apply a potential difference at these electrodes.
  • This pump, pipe and electrodes constitutes the extraction means 10 of ions.
  • the ions thus extracted from cavity 2 can then be selected according to their degree ionization using any known means using a magnetic field and / or an electric field.
  • coils 14 creating an axial magnetic field and a set 16 of permanent magnets creating a field magnetic radial, generally of the hexapolar type. These axial and radial magnetic fields are superimposed one over the other and distributed throughout the cavity; they thus form a resulting magnetic field which defines at least one equimagnetic surface to inside the cavity 2.
  • the first problem in this type of source is the importance of clutter; to this problem there is also the manufacturing difficulty and therefore the cost of such a source.
  • the subject of the present invention is a ion source with cyclotron resonance allowing to remedy these drawbacks by simplifying including this type of source.
  • the main feature of the invention is to replace the first stage of the source Minimafios by a voltage polarizable probe.
  • the invention allows a lower cost than that existing sources such as Minimafios, the manufacturing the probe being easier than that from the first floor of Minimafios.
  • the voltage supply means consist of a variable voltage source suitable for supplying said probes a negative voltage compared to the potential of the cavity thus ensuring an increase in the current ions.
  • This negative voltage has an absolute value at least equal to about 100 volts for a increased charge of ions.
  • the probe is arranged along the axis of the cavity, at a from its ends and from the side opposite to the means extraction. It is also possible to arrange it laterally.
  • the probe is made of tantalum.
  • any other electron-emitting metal can be considered and, in particular, tungsten and molybdenum.
  • the probe includes a rod of this electron emitting metal and a disc of this same metal attached to one end of this rod. It is possible to use a probe whose rod is made of a metal different from that of the disc.
  • the introduction of gas takes place along the axis of the cavity, parallel to the probe. This increases the ionization of neutral atoms.
  • the introduction of the high frequency is done along the axis of the cavity, on the probe side. However, it is possible to introduce the high frequency radially. This source allows in particular the obtaining of a current seventeen times positively charged argon ions.
  • Figure 2 shows the ion source according to the invention.
  • This source includes, like that of the prior art, a stage B equipped with the cavity 2 RCE almost identical to the second stage B of the source of figure 1.
  • the first floor A from the source in Figure 1 has disappeared and has been replaced by a 20 polarizable probe, powered in voltage by a variable power source 8.
  • this source includes, at the entry of the HF cavity, an element of soft iron 18 and a other element of soft iron 12 at the outlet of the cavity HF, downstream of the electrodes 10a.
  • element 18 The role of element 18 is identical to that of element 18a of the source of the figure 1. Element 12, meanwhile, allows the reduction of the axial magnetic field downstream of the electrodes output 10a.
  • gas or steam supply 6 metallic is carried out along the X axis of the cavity HF and no longer radially in order to increase the quantity ions.
  • the probe 20 is supplied by the source 8 of variable voltage (0 - 200 V) including connection electric is such that the probe 20 receives a voltage negative compared to the potential of the cavity which is a few kilovolts higher (10 to 20 kV) relative to mass.
  • the probe 20 is made up of a rod 20a of an electron emitting metal at end of which is fixed a disc 20b of the same metal. This disc has a diameter about ten times larger than that of the rod 20a in order to improve the emission electrons.
  • This metal is in particular tantalum.
  • the probe 20 is placed at the end 3 of the cavity 2, end opposite to that of the ion extraction means 10. In addition, it is placed along the X axis of the cavity 2, parallel to the high frequency input 4 and when the gas is introduced 6.
  • the probe is fixed in this position using a shutter 22, insulating electric fitted with holes for passage, respectively, of the rod 20a, of the introduction gas 6 and high frequency input 4.
  • FIG 3 there is shown schematically part of the source according to the invention and, in particular, the interior of the microwave cavity 2.
  • the probe 20 located at the end 3 of the cavity 2 has no contact with this surface equimagnetic S in order to best avoid possibilities of recombination of an ion with one or several electrons.
  • FIG. 4 represents the ionization spectra of krypton, that is to say the variations of the ion current I i of krypton, in microamperes, as a function of the state of charge Q of the krypton ion.
  • the first spectrum a is obtained for a non-polarized probe and therefore for a zero probe voltage.
  • the second spectrum b is obtained for a probe polarized by a negative voltage of -180 volts.
  • the inventors have found that the probe, powered by a positive voltage compared to the HF cavity, has the effect of decreasing the ion current and increase the weak states dump.
  • the curve in Figure 5 represents the variations in the quantity N of argon ions seventeen times positively charged, expressed as a number pulses per second, based on potential U of the probe, expressed in volts.
  • This curve was plotted by increasing the intensity of the K ⁇ ray emitted by an Ar ion beam 17+ intercepted by a solid target.
  • the ion beam is extracted from the source with a potential of 15 kV applied to the cavity relative to the mass and is deflected by a magnet, relative to the X axis, to be analyzed.
  • the line K ⁇ (2.957 KeV) is observed with a hyper-pure germanium detector which looks at the target from a solid 4.10 -5 steradian angle through a Kapton® window.
  • This measurement technique does not directly give the intensity of the Ar 17+ ion current but makes it possible to follow its evolution without ambiguity.
  • the intensity of the line being proportional to the current of Ar 17+ ions falling on the target.
  • the energy of the X-rays being characteristic of this ion, one thus avoids any confusion with the states of charge having a close Q / M such as the nitrogen ion six times charged.
  • the growth factor for the number of Ar 17+ ions is approximately 100 for a potential of the probe passing from -5 volts to -150 volts.
  • the curve in FIG. 6 represents the variations in the current I s of the probe in milliamps as a function of the potential U of this same probe in volts.
  • U 0, the tantalum probe current is negative, with an absolute value greater than 3 milliamps; this current corresponds to a capture of electrons.
  • the probe current is positive; it is then emission of electrons by the probe or else of an ion current of tantalum collected or else emission of electrons and of an ion current of tantalum collected.
  • the ion source according to the invention is simpler to manufacture than two sources known floors and makes it possible to reach at least the same performance as a two-stage source for lower cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Particle Accelerators (AREA)

Description

La présente invention a pour objet une source d'ions positifs fortement chargés à sonde polarisable et à résonance cyclotronique électronique (RCE). Elle trouve de nombreuses applications, en fonction des différentes valeurs de l'énergie cinétique des ions extraits, dans les domaines de l'implantation ionique, de la microgravure, et plus particulièrement dans l'équipement des accélérateurs de particules, utilisés aussi bien dans le domaine scientifique que médical.The subject of the present invention is a source of highly charged positive ions with probe polarizable and electron cyclotron resonance (RCE). It finds many applications, in function of the different values of kinetic energy ions extracted, in the fields of implantation ionic, microgravure, and more particularly in the equipment of particle accelerators, used both in the scientific field than medical.

Dans les sources à résonance cyclotronique électronique, les ions sont obtenus en ionisant, dans une enceinte fermée du genre cavité hyperfréquence, un gaz, constitué par exemple de vapeurs métalliques, au moyen d'un plasma d'électrons fortement accélérés par résonance cyclotronique électronique. Cette résonance est obtenue grâce à l'action conjuguée d'un champ électromagnétique haute fréquence (HF) injecté dans l'enceinte, contenant le gaz à ioniser, et d'un champ magnétique, régnant dans cette même enceinte, dont l'amplitude B satisfait à la condition de résonance cyclotronique électronique suivante : B = f.2 πm/e dans laquelle e représente la charge de l'électron, m sa masse et f la fréquence du champ électromagnétique.In cyclotron resonance sources electron, the ions are obtained by ionizing, in a closed cavity-like enclosure microwave, a gas, consisting for example of metallic vapors, using an electron plasma strongly accelerated by cyclotronic resonance electronic. This resonance is obtained thanks to the combined action of a high electromagnetic field frequency (HF) injected into the enclosure, containing the gas to be ionized, and a magnetic field, prevailing in this same enclosure, whose amplitude B satisfies under the condition of electronic cyclotron resonance following: B = f.2 πm / e in which e represents the charge of the electron, m its mass and f the frequency of the electromagnetic field.

Dans ce type de source, la quantité d'ions pouvant être produite résulte de la compétition entre deux processus : d'une part la formation des ions par impact électronique sur des atomes neutres constituant le gaz à ioniser et d'autre part la destruction de ces mêmes ions par recombinaison, simple ou multiple, lors d'une collision de ces derniers avec un atome neutre ; cet atome neutre peut provenir du gaz non encore ionisé ou bien être produit sur les parois de l'enceinte par impact d'un ion sur lesdites parois.In this type of source, the amount of ions that can be produced results from competition between two processes: on the one hand the formation of ions by electronic impact on neutral atoms constituting the gas to be ionized and on the other hand the destruction of these same ions by recombination, single or multiple, in a collision of these last with a neutral atom; this neutral atom can come from gas not yet ionized or be produced on the walls of the enclosure by impact of a ion on said walls.

Cet inconvénient est évité en confinant, dans l'enceinte constituant la source, les ions formés ainsi que les électrons servant à leur ionisation. Ceci est réalisé en créant à l'intérieur de l'enceinte des champs magnétiques radial et axial, définissant une nappe fermée dite "équimagnétique", n'ayant aucun contact avec les parois de l'enceinte et sur laquelle la condition de résonance cyclotronique électronique est satisfaite. Cette nappe a la forme d'un ballon de rugby. Plus cette nappe équimagnétique est proche des parois de l'enceinte, plus son efficacité est grande car elle permet de limiter le volume de présence des atomes neutres et donc la quantité de collision ions-atomes neutres. Cette nappe permet aussi de confiner les ions et les électrons produits par ionisation du gaz. Grâce à ce confinement, les électrons créés ont le temps de bombarder plusieurs fois un même ion et de l'ioniser totalement.This drawback is avoided by confining, in the enclosure constituting the source, the ions formed as well as the electrons used for their ionization. This is achieved by creating inside the enclosure radial and axial magnetic fields, defining a closed tablecloth called "equimagnetic", having no contact with the walls of the enclosure and on which the electronic cyclotronic resonance condition is satisfied. This tablecloth is shaped like a balloon rugby. The closer this equimagnetic sheet walls of the enclosure, the more effective it is great because it limits the volume of attendance neutral atoms and therefore the amount of collision neutral atom-ions. This tablecloth also allows confine the ions and electrons produced by gas ionization. Thanks to this confinement, the created electrons have time to bomb several times the same ion and totally ionize it.

Le principe d'une telle source a été décrit dans le document FR-A-2 475 798, déposé au nom du demandeur et dans les articles :

  • "Minimafios - Surfaces magnétiques et parois" de Mrs GELLER et JACQUOT, publié à l'occasion du quatrième séminaire international sur les sources RCE et sujets annexes, en Janvier 1982, p. 14.1 à 14.14.
  • "Source d'ions lourds multichargés triplemafios" de Mrs BRIAND, CHAN-TUNG, GELLER et JACQUOT, publié dans la revue de physique appliquée, en Août 1977, p.1 135 à 1 138.
  • "Electron cyclotron resonance multiply charged ion sources" de Mr. GELLER, publié dans IEEE transactions on nuclear science, vol. NS 23, n° 2, en Avril 1976, p. 904 à 912.
The principle of such a source has been described in document FR-A-2 475 798, filed on behalf of the applicant and in the articles:
  • "Minimafios - Magnetic surfaces and walls" by Mrs GELLER and JACQUOT, published on the occasion of the fourth international seminar on RCE sources and related subjects, in January 1982, p. 14.1 to 14.14.
  • "Source of heavy ions multicharged triplemafios" of Mrs BRIAND, CHAN-TUNG, GELLER and JACQUOT, published in the review of applied physics, in August 1977, p.1 135 to 1 138.
  • "Electron cyclotron resonance multiply charged ion sources" by Mr. GELLER, published in IEEE transactions on nuclear science, vol. NS 23, n ° 2, in April 1976, p. 904 to 912.

Sur la figure 1, on a représenté schématiquement une source d'ions de l'art antérieur.In Figure 1, there is shown schematically a source of ions of the prior art.

Cette source contient deux étages.This source contains two stages.

Le rôle du premier étage A est en grande partie de fournir un flux d'électrons dans l'axe X de la source. Ce premier étage A comporte une cavité 2a à symétrie de révolution des bobines solénoïdales 14a disposées aux deux extrémités de la cavité 2a, créant un champ magnétique axial, ce champ étant majoré par un blindage de fer doux 18a situé à l'entrée de la source. Le gaz ou la vapeur à ioniser est introduit par un conduit 6 à l'intérieur de la cavité 2a. Lorsqu'il s'agit de vapeur, celle-ci peut être introduite dans la cavité sous la forme d'une tige apte à se vaporiser. Un champ électromagnétique est créé à l'intérieur de la cavité 2a par une première entrée haute fréquence 4a.The role of the first stage A is largely part of providing an electron flow in the axis X of the source. This first stage A has a cavity 2a with symmetry of revolution of the solenoidal coils 14a arranged at the two ends of the cavity 2a, creating an axial magnetic field, this field being plus 18a soft iron shielding located at the entrance from the source. The gas or vapor to be ionized is introduced through a conduit 6 inside the cavity 2a. When it comes to steam, it can be introduced into the cavity in the form of a rod suitable for vaporizing. An electromagnetic field is created inside the cavity 2a by a first high frequency input 4a.

Le gaz sortant du premier étage A est préionisé et passe ensuite dans le second étage B. Cet étage B est constitué d'une cavité cylindrique multimode 2 d'ordre élevé, c'est-à-dire de dimension grande par rapport à la dimension de la longueur d'onde du champ électromagnétique. Son axe de symétrie porte la référence X. Ce champ électromagnétique est introduit radialement par une seconde entrée haute fréquence 4. The gas leaving the first stage A is pre-ionized and then goes into the second stage B. This stage B consists of a cylindrical cavity multimode 2 of high order, i.e. of dimension large compared to the dimension of the length of the electromagnetic field. Its axis of symmetry bears the reference X. This electromagnetic field is introduced radially by a second entry high frequency 4.

La cavité 2 est réunie à son extrémité 5 à une pompe à vide 10b, au moyen d'une canalisation d'extraction dans laquelle sont logées des électrodes 10a. Une source d'alimentation 9 permet d'appliquer une différence de potentiel à ces électrodes.Cavity 2 is joined at its end 5 to a vacuum pump 10b, by means of a pipe in which electrodes are housed 10a. A power source 9 allows to apply a potential difference at these electrodes.

Cet ensemble pompe, canalisation et électrodes constitue les moyens d'extraction 10 des ions. Les ions ainsi extraits de la cavité 2 peuvent ensuite être sélectionnés suivant leur degré d'ionisation à l'aide de tout moyen connu utilisant un champ magnétique et/ou un champ électrique.This pump, pipe and electrodes constitutes the extraction means 10 of ions. The ions thus extracted from cavity 2 can then be selected according to their degree ionization using any known means using a magnetic field and / or an electric field.

Autour de la cavité sont disposées des bobines 14 créant un champ magnétique axial et un ensemble 16 d'aimants permanents créant un champ magnétique radial, généralement du type hexapolaire. Ces champs magnétiques axial et radial sont superposés l'un sur l'autre et répartis dans toute la cavité ; ils forment ainsi un champ magnétique résultant qui définit au moins une surface équimagnétique à l'intérieur de la cavité 2.Around the cavity are arranged coils 14 creating an axial magnetic field and a set 16 of permanent magnets creating a field magnetic radial, generally of the hexapolar type. These axial and radial magnetic fields are superimposed one over the other and distributed throughout the cavity; they thus form a resulting magnetic field which defines at least one equimagnetic surface to inside the cavity 2.

Le premier problème dans ce type de source est l'importance de l'encombrement ; à ce problème vient s'ajouter la difficulté de fabrication et donc le coût d'une telle source.The first problem in this type of source is the importance of clutter; to this problem there is also the manufacturing difficulty and therefore the cost of such a source.

Par ailleurs, les courants d'ions fournis par ces sources sont généralement trop faibles.Furthermore, the ion currents supplied by these sources are usually too weak.

La présente invention a pour objet une source d'ions à résonance cyclotronique permettant de remédier à ces inconvénients en simplifiant notamment ce type de source.The subject of the present invention is a ion source with cyclotron resonance allowing to remedy these drawbacks by simplifying including this type of source.

De façon plus précise, l'invention a pour objet une source d'ions positifs fortement chargés à résonance cyclotronique électronique comportant :

  • une cavité hyperfréquence 2 comportant un axe de symétrie ;
  • une entrée haute fréquence 4 débouchant dans la cavité pour y créer un champ électromagnétique de haute fréquence ;
  • une introduction de gaz 6 dans la cavité ;
  • des moyens de production 14 d'un champ magnétique selon l'axe dans ladite cavité ;
  • des moyens de production 16 d'un champ magnétique radial multipolaire dans cette cavité, la superposition de ces champs magnétiques axial et radial formant un champ magnétique résultant réparti dans toute la cavité et définissant au moins une surface équimagnétique S complètement fermée à l'intérieur de la cavité ;
  • des moyens d'extraction 10 des ions à l'extrémité 5 de la cavité ;
caractérisée en ce qu'elle comporte :
  • une sonde polarisable en tension 20 pour améliorer l'ionisation du gaz et augmenter ainsi le flux d'ions extrait, réalisée en métal émetteur d'électrons, disposée en amont des moyens d'extraction et n'ayant aucun contact avec la surface magnétique ; et
  • des moyens d'alimentation en tension 8 de la sonde.
More specifically, the invention relates to a source of highly charged positive ions with electronic cyclotron resonance comprising:
  • a microwave cavity 2 comprising an axis of symmetry;
  • a high frequency input 4 opening into the cavity to create a high frequency electromagnetic field there;
  • an introduction of gas 6 into the cavity;
  • means 14 for producing a magnetic field along the axis in said cavity;
  • means 16 for producing a multipolar radial magnetic field in this cavity, the superposition of these axial and radial magnetic fields forming a resulting magnetic field distributed throughout the cavity and defining at least one equimagnetic surface S completely closed inside the cavity ;
  • means for extracting ions 10 from the end 5 of the cavity;
characterized in that it comprises:
  • a voltage polarizable probe 20 for improving the ionization of the gas and thus increasing the flow of extracted ions, made of electron emitting metal, disposed upstream of the extraction means and having no contact with the magnetic surface; and
  • voltage supply means 8 for the probe.

Par gaz, il faut aussi comprendre des vapeurs métalliques.By gas, we must also understand vapors metallic.

La caractéristique principale de l'invention est de remplacer le premier étage de la source Minimafios par une sonde polarisable en tension.The main feature of the invention is to replace the first stage of the source Minimafios by a voltage polarizable probe.

Outre les avantages décrits précédemment, l'invention permet un coût plus faible que celui des sources existantes telles Minimafios, la fabrication de la sonde étant plus aisée que celle du premier étage de Minimafios. In addition to the benefits described above, the invention allows a lower cost than that existing sources such as Minimafios, the manufacturing the probe being easier than that from the first floor of Minimafios.

Selon un mode préféré de l'invention, les moyens d'alimentation en tension consistent en une source de tension variable apte à fournir à ladite sonde une tension négative par rapport au potentiel de la cavité assurant ainsi une augmentation du courant d'ions.According to a preferred embodiment of the invention, the voltage supply means consist of a variable voltage source suitable for supplying said probes a negative voltage compared to the potential of the cavity thus ensuring an increase in the current ions.

Cette tension négative a une valeur absolue au moins égale à environ 100 volts pour une augmentation de la charge des ions.This negative voltage has an absolute value at least equal to about 100 volts for a increased charge of ions.

Selon un mode de réalisation préféré, la sonde est disposée selon l'axe de la cavité, à une de ses extrémités et du côté opposé aux moyens d'extraction. Il est aussi possible de la disposer latéralement.According to a preferred embodiment, the probe is arranged along the axis of the cavity, at a from its ends and from the side opposite to the means extraction. It is also possible to arrange it laterally.

Dans un mode préféré de réalisation de la source d'ions, la sonde est fabriquée en tantale. Bien entendu, tout autre métal émetteur d'électrons peut être envisagé et, en particulier, le tungstène et le molybdène.In a preferred embodiment of the ion source, the probe is made of tantalum. Of course, any other electron-emitting metal can be considered and, in particular, tungsten and molybdenum.

En particulier, la sonde comporte une tige de ce métal émetteur d'électrons et un disque de ce même métal fixé à une des extrémités de cette tige. Il est possible d'utiliser une sonde dont la tige est réalisée en un métal différent de celui du disque.In particular, the probe includes a rod of this electron emitting metal and a disc of this same metal attached to one end of this rod. It is possible to use a probe whose rod is made of a metal different from that of the disc.

Avantageusement, l'introduction du gaz se fait selon l'axe de la cavité, parallèlement à la sonde. Ceci permet d'augmenter l'ionisation des atomes neutres. On peut toutefois introduire le gaz radialement. De préférence, l'introduction de la haute fréquence se fait selon l'axe de la cavité, du côté de la sonde. Il est toutefois possible d'introduire la haute fréquence radialement. Cette source permet en particulier l'obtention d'un courant d'ions d'argon dix sept fois chargés positivement.Advantageously, the introduction of gas takes place along the axis of the cavity, parallel to the probe. This increases the ionization of neutral atoms. We can however introduce the gas radially. Preferably, the introduction of the high frequency is done along the axis of the cavity, on the probe side. However, it is possible to introduce the high frequency radially. This source allows in particular the obtaining of a current seventeen times positively charged argon ions.

D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, donnée à titre illustratif mais non limitatif. La description se réfère aux figures annexées, dans lesquelles :

  • la figure 1, déjà décrite, représente schématiquement une source RCE de l'art antérieur ;
  • la figure 2 représente schématiquement la source d'ions selon l'invention ;
  • la figure 3 est une représentation schématique de la cavité de la source de la figure 2 ;
  • les figures 4 à 6 sont des courbes de résultats obtenus lors d'expériences avec la source selon l'invention ; les courbes de la figure 4 donnent les variations du courant ionique Ii exprimé en microampères, en fonction de la charge de l'ion krypton. La courbe de la figure 5 montre les variations du nombre N approximatif d'impulsions par seconde de l'ion Ar17+ en fonction du potentiel U de la sonde exprimé en volts. La courbe de la figure 6 donne les variations du courant Is de la sonde exprimé en milliampères en fonction du potentiel U de cette même sonde exprimé en volts.
Other characteristics and advantages of the invention will emerge more clearly from the description which follows, given by way of illustration but not limitation. The description refers to the appended figures, in which:
  • FIG. 1, already described, schematically represents an RCE source of the prior art;
  • FIG. 2 schematically represents the source of ions according to the invention;
  • Figure 3 is a schematic representation of the source cavity of Figure 2;
  • Figures 4 to 6 are results curves obtained during experiments with the source according to the invention; the curves of Figure 4 show the variations of the ion current I i expressed in microamperes, depending on the charge of the ion krypton. The curve in FIG. 5 shows the variations in the approximate number N of pulses per second of the Ar 17+ ion as a function of the potential U of the probe expressed in volts. The curve of FIG. 6 gives the variations of the current I s of the probe expressed in milliamps as a function of the potential U of this same probe expressed in volts.

La figure 2 représente la source d'ions selon l'invention. Cette source comporte, comme celle de l'art antérieur, un étage B équipé de la cavité 2 RCE quasiment identique au second étage B de la source de la figure 1. En revanche, le premier étage A de la source de la figure 1 a disparu et a été remplacé par une sonde 20 polarisable, alimentée en tension par une source d'alimentation variable 8. Par ailleurs, cette source comporte, à l'entrée de la cavité HF, un élément de fer doux 18 et un autre élément de fer doux 12 à la sortie de la cavité HF, en aval des électrodes 10a.Figure 2 shows the ion source according to the invention. This source includes, like that of the prior art, a stage B equipped with the cavity 2 RCE almost identical to the second stage B of the source of figure 1. On the other hand, the first floor A from the source in Figure 1 has disappeared and has been replaced by a 20 polarizable probe, powered in voltage by a variable power source 8. Furthermore, this source includes, at the entry of the HF cavity, an element of soft iron 18 and a other element of soft iron 12 at the outlet of the cavity HF, downstream of the electrodes 10a.

Le rôle de l'élément 18 est identique à celui de l'élément 18a de la source de la figure 1. L'élément 12, quant à lui, permet la diminution du champ magnétique axial en aval des électrodes de sortie 10a.The role of element 18 is identical to that of element 18a of the source of the figure 1. Element 12, meanwhile, allows the reduction of the axial magnetic field downstream of the electrodes output 10a.

En outre, l'alimentation 6 en gaz ou vapeur métallique est effectuée selon l'axe X de la cavité HF et non plus radialement afin d'augmenter la quantité d'ions.In addition, the gas or steam supply 6 metallic is carried out along the X axis of the cavity HF and no longer radially in order to increase the quantity ions.

La sonde 20 est alimentée par la source 8 de tension variable (0 - 200 V) dont le branchement électrique est tel que la sonde 20 reçoit une tension négative par rapport au potentiel de la cavité qui est supérieur de quelques kilovolts (10 à 20 kV) par rapport à la masse. La sonde 20 est constituée d'une tige 20a d'un métal émetteur d'électrons au bout de laquelle est fixé un disque 20b du même métal. Ce disque a un diamètre environ dix fois plus grand que celui de la tige 20a afin d'améliorer l'émission des électrons. Ce métal est en particulier du tantale.The probe 20 is supplied by the source 8 of variable voltage (0 - 200 V) including connection electric is such that the probe 20 receives a voltage negative compared to the potential of the cavity which is a few kilovolts higher (10 to 20 kV) relative to mass. The probe 20 is made up of a rod 20a of an electron emitting metal at end of which is fixed a disc 20b of the same metal. This disc has a diameter about ten times larger than that of the rod 20a in order to improve the emission electrons. This metal is in particular tantalum.

Dans la réalisation représentée, la sonde 20 est placée à l'extrémité 3 de la cavité 2, extrémité opposée à celle des moyens d'extraction 10 des ions. De plus, elle est placée selon l'axe X de la cavité 2, parallèlement à l'entrée haute fréquence 4 et à l'introduction du gaz 6. La sonde est fixée dans cette position à l'aide d'un obturateur 22, isolant électrique équipé d'orifices pour le passage, respectivement, de la tige 20a, de l'introduction du gaz 6 et de l'entrée haute fréquence 4.In the embodiment shown, the probe 20 is placed at the end 3 of the cavity 2, end opposite to that of the ion extraction means 10. In addition, it is placed along the X axis of the cavity 2, parallel to the high frequency input 4 and when the gas is introduced 6. The probe is fixed in this position using a shutter 22, insulating electric fitted with holes for passage, respectively, of the rod 20a, of the introduction gas 6 and high frequency input 4.

Sur la figure 3, on a représenté schématiquement une partie de la source selon l'invention et, en particulier, l'intérieur de la cavité hyperfréquence 2. La surface équimagnétique S en forme de ballon de rugby, créée par le champ magnétique résultant, est représentée à l'intérieur de la cavité 2, sans contact avec les parois de la cavité. La sonde 20 située à l'extrémité 3 de la cavité 2 n'a aucun contact avec cette surface équimagnétique S afin d'éviter au mieux les possibilités de recombinaisons d'un ion avec un ou plusieurs électrons.In Figure 3, there is shown schematically part of the source according to the invention and, in particular, the interior of the microwave cavity 2. The equimagnetic surface S shaped like a rugby ball, created by the field resulting magnetic, is shown inside of cavity 2, without contact with the walls of the cavity. The probe 20 located at the end 3 of the cavity 2 has no contact with this surface equimagnetic S in order to best avoid possibilities of recombination of an ion with one or several electrons.

Les courbes des figures 4 à 6 ont été établies pour une fréquence de 18 GHz et une tension de 15 kV appliquée à la cavité HF.The curves in Figures 4 to 6 have been established for a frequency of 18 GHz and a voltage 15 kV applied to the HF cavity.

La figure 4 représente les spectres d'ionisation du krypton, c'est-à-dire les variations du courant ionique Ii du krypton, en microampères, en fonction de l'état de charge Q de l'ion krypton. Le premier spectre a est obtenu pour une sonde non polarisée et donc pour une tension de sonde nulle. Le second spectre b est obtenu pour une sonde polarisée par une tension négative de -180 volts. On remarque une augmentation du courant avec la tension de polarisation ; la valeur maximale est multipliée par un facteur au moins égal à deux lorsque la tension de la sonde passe de 0 à -180 volts.FIG. 4 represents the ionization spectra of krypton, that is to say the variations of the ion current I i of krypton, in microamperes, as a function of the state of charge Q of the krypton ion. The first spectrum a is obtained for a non-polarized probe and therefore for a zero probe voltage. The second spectrum b is obtained for a probe polarized by a negative voltage of -180 volts. We notice an increase in the current with the bias voltage; the maximum value is multiplied by a factor at least equal to two when the voltage of the probe goes from 0 to -180 volts.

Une autre conséquence de cette polarisation de la sonde est l'augmentation de la charge des ions du krypton qui passe de quatorze fois chargés positivement à dix sept fois chargés positivement, pour la valeur maximale du courant.Another consequence of this polarization of the probe is the increased charge of the ions krypton going fourteen times loaded positively to seventeen times positively charged, for the maximum current value.

A l'inverse, les inventeurs ont constaté que la sonde, alimentée par une tension positive par rapport à la cavité HF, a pour effet de diminuer le courant d'ions et d'augmenter les faibles états de charge.Conversely, the inventors have found that the probe, powered by a positive voltage compared to the HF cavity, has the effect of decreasing the ion current and increase the weak states dump.

La courbe de la figure 5 représente les variations de la quantité N d'ions argon dix sept fois chargés positivement, exprimée en nombre d'impulsions par seconde, en fonction du potentiel U de la sonde, exprimé en volts.The curve in Figure 5 represents the variations in the quantity N of argon ions seventeen times positively charged, expressed as a number pulses per second, based on potential U of the probe, expressed in volts.

Cette courbe a été tracée en relevant l'intensité de la raie Kα émise par un faisceau d'ions Ar17+ intercepté par une cible solide. Le faisceau d'ions est extrait de la source avec un potentiel de 15 kV appliqué à la cavité par rapport à la masse et est défléchit par un aimant, par rapport à l'axe X, pour être analysé. L'angle de déviation est lié à l'état de charge sélectionné en M/Q (M est la masse de l'ion et Q sa charge). Il est ici de 104° pour Q = 17. La raie Kα (2,957 KeV) est observée avec un détecteur au germanium hyper-pur qui regarde la cible sous un angle solide 4.10-5 stéradian à travers une fenêtre de Kapton®.This curve was plotted by increasing the intensity of the K α ray emitted by an Ar ion beam 17+ intercepted by a solid target. The ion beam is extracted from the source with a potential of 15 kV applied to the cavity relative to the mass and is deflected by a magnet, relative to the X axis, to be analyzed. The deflection angle is linked to the state of charge selected in M / Q (M is the mass of the ion and Q its charge). Here it is 104 ° for Q = 17. The line K α (2.957 KeV) is observed with a hyper-pure germanium detector which looks at the target from a solid 4.10 -5 steradian angle through a Kapton® window.

Cette technique de mesure ne donne pas directement l'intensité du courant d'ions Ar17+ mais permet de suivre son évolution sans ambiguïté. L'intensité de la raie étant proportionnelle au courant d'ions Ar17+ tombant sur la cible. L'énergie des rayons X étant caractéristique de cet ion, on évite ainsi toute confusion avec les états de charge ayant un Q/M voisin tel que l'ion azote six fois chargé. This measurement technique does not directly give the intensity of the Ar 17+ ion current but makes it possible to follow its evolution without ambiguity. The intensity of the line being proportional to the current of Ar 17+ ions falling on the target. The energy of the X-rays being characteristic of this ion, one thus avoids any confusion with the states of charge having a close Q / M such as the nitrogen ion six times charged.

On remarque sur cette courbe la forte dépendance du nombre d'ions N avec le potentiel de la sonde. Le facteur de croissance du nombre d'ions Ar17+ est environ de 100 pour un potentiel de la sonde passant de -5 volts à -150 volts.Note on this curve the strong dependence of the number of N ions with the potential of the probe. The growth factor for the number of Ar 17+ ions is approximately 100 for a potential of the probe passing from -5 volts to -150 volts.

La courbe de la figure 6 représente les variations du courant Is de la sonde en milliampères en fonction du potentiel U de cette même sonde en volts. Aux environs de U = 0, le courant de la sonde en tantale est négatif, d'une valeur absolue supérieure à 3 milliampères ; ce courant correspond à une capture d'électrons. Pour des tensions supérieures, en valeur absolue, à environ 100 volts, le courant de la sonde est positif ; il s'agit alors d'émission d'électrons par la sonde ou bien d'un courant ionique de tantale collecté ou encore d'émission d'électrons et d'un courant ionique de tantale collecté.The curve in FIG. 6 represents the variations in the current I s of the probe in milliamps as a function of the potential U of this same probe in volts. Around U = 0, the tantalum probe current is negative, with an absolute value greater than 3 milliamps; this current corresponds to a capture of electrons. For voltages higher, in absolute value, to around 100 volts, the probe current is positive; it is then emission of electrons by the probe or else of an ion current of tantalum collected or else emission of electrons and of an ion current of tantalum collected.

La source d'ions selon l'invention est de fabrication plus simple que les sources à deux étages connues et permet d'atteindre au moins les mêmes performances qu'une source à deux étages pour un coût moins élevé.The ion source according to the invention is simpler to manufacture than two sources known floors and makes it possible to reach at least the same performance as a two-stage source for lower cost.

Claims (7)

  1. Source of highly charged, positive ions having electron cyclotron resonance comprising:
    a hyperfrequency cavity (2) having an axis of symmetry (X);
    a high frequency inlet (4) opening into the cavity so as to create there a high frequency electromagnetic field;
    a pipe (6) for admitting gas into the cavity;
    means (14) for producing a magnetic field along the axis in said cavity;
    means (16) for producing a multipolar radial magnetic field in this cavity, the superimposition of these axial and radial magnetic fields forming a resultant magnetic field distributed throughout the cavity and defining at least one equimagnetic surface (S) completely closed inside the cavity;
    means (10) for extracting ions at the extremity (5) of the cavity;
    characterized in that it comprises:
    a voltage-polarizable probe (20) so as to increase ionization of the gas and thus increase the flow of extracted ions made from an electron emitting metal, said probe being disposed upstream of the extraction means and having no contact with the equimagnetic surface; and
    means (8) for supplying the probe with voltage.
  2. Source according to claim 1, characterized in that the voltage feeding means consist of a variable voltage source (8) able to provide said probe with a negative voltage with respect to the potential of the cavity ensuring an increase of the ionic current.
  3. Source according to claim 2, characterized in that this negative voltage has an absolute value equal at least to about 100 volts so as to increase the charge of ions.
  4. Source according to any one of the preceding claims, characterized in that the probe is disposed along the axis of the cavity and at one of its extremities.
  5. Source according to any one of the preceding claims, characterized in that the probe has a rod (20a) of an electron emitting metal and a disk (20b) made of this same metal and fixed to one of the extremities of said rod.
  6. Source according to any one of the preceding claims, characterized in that introduction of the gas takes place along the axis of the cavity, parallel to the probe.
  7. Electron cyclotron resonance (ECR) source for obtaining an argon ion current positively charged seventeen times, characterized in that the source is in accordance with any one of the claims 1 to 6 and in that the gas introduced into the cavity contains argon.
EP19910402829 1990-10-25 1991-10-23 Electron cyclotron resonance ion source for highly charged ions with polarisable probe Expired - Lifetime EP0483004B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9013232 1990-10-25
FR9013232A FR2668642B1 (en) 1990-10-25 1990-10-25 HIGHLY CHARGED ION SOURCE WITH POLARIZABLE PROBE AND ELECTRONIC CYCLOTRON RESONANCE.

Publications (2)

Publication Number Publication Date
EP0483004A1 EP0483004A1 (en) 1992-04-29
EP0483004B1 true EP0483004B1 (en) 1999-02-24

Family

ID=9401556

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910402829 Expired - Lifetime EP0483004B1 (en) 1990-10-25 1991-10-23 Electron cyclotron resonance ion source for highly charged ions with polarisable probe

Country Status (4)

Country Link
EP (1) EP0483004B1 (en)
JP (1) JPH0589792A (en)
DE (1) DE69130913T2 (en)
FR (1) FR2668642B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4419970A1 (en) * 1994-06-08 1995-12-21 Juergen Prof Dr Andrae Highly charged ion beam generator
FR2757310B1 (en) 1996-12-18 2006-06-02 Commissariat Energie Atomique MAGNETIC SYSTEM, ESPECIALLY FOR ECR SOURCES, ALLOWING THE CREATION OF CLOSED EQUIMODULE B SURFACES OF ANY SHAPE AND DIMENSIONS
FR2757881B1 (en) * 1996-12-31 1999-04-09 Univ Paris Curie PROCESS FOR TREATING A SURFACE OF A SEMICONDUCTOR, CORRESPONDING DEVICE AND ASSOCIATED SEMICONDUCTOR
FR2933532B1 (en) * 2008-07-02 2010-09-03 Commissariat Energie Atomique ELECTRONIC CYCLOTRON RESONANCE ION GENERATING DEVICE
RU2538764C2 (en) * 2013-01-09 2015-01-10 Федеральное государственное бюджетное учреждение "Государственный научный центр Российской Федерации-Институт Теоретической и Экспериментальной Физики" Laser-plasma high-charge ion generator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2475798A1 (en) * 1980-02-13 1981-08-14 Commissariat Energie Atomique METHOD AND DEVICE FOR PRODUCING HIGHLY CHARGED HEAVY IONS AND AN APPLICATION USING THE METHOD
FR2580427B1 (en) * 1985-04-11 1987-05-15 Commissariat Energie Atomique SOURCE OF NEGATIVE IONS WITH ELECTRON CYCLOTRON RESONANCE

Also Published As

Publication number Publication date
DE69130913T2 (en) 1999-09-09
DE69130913D1 (en) 1999-04-01
JPH0589792A (en) 1993-04-09
EP0483004A1 (en) 1992-04-29
FR2668642A1 (en) 1992-04-30
FR2668642B1 (en) 1993-11-05

Similar Documents

Publication Publication Date Title
EP1496727B1 (en) Closed electron drift plasma accelerator
EP0238397B1 (en) Electronic cyclotron resonance ion source with coaxial injection of electromagnetic waves
Jiang et al. Mini rf-driven ion sources for focused ion beam systems
Anders et al. Characterization of a low-energy constricted-plasma source
BE1005864A5 (en) RESONANT CAVITY ELECTRON ACCELERATOR.
US5528034A (en) Method of ultra high sensitivity hydrogen detection with slow multiply-charged ions
EP0184475B1 (en) Method and apparatus for igniting a hyperfrequency ion source
EP0483004B1 (en) Electron cyclotron resonance ion source for highly charged ions with polarisable probe
EP0199625B1 (en) Electron cyclotron resonance negative ion source
EP0532411B1 (en) Electron cyclotron resonance ion source with coaxial injection of electromagnetic waves
EP0527082B1 (en) Wave guide-type electron cyclotron resonance ion source producing multicharged ions
EP2311061B1 (en) Electron cyclotron resonance ion generator
EP0232651B1 (en) Ion source operating at the electron cyclotron resonance
EP0252845A1 (en) Electron cyclotron resonance ion source
EP0514255B1 (en) Electron cyclotron resonance ion source
FR2999796A1 (en) ELECTRONIC OPTICAL DEVICE
Lebedev et al. Experimental study of the pseudospark-produced electron beam for material processing
EP0374011B1 (en) Process and device using an ECR source for the production of strongly charged heavy ions
EP0813223B1 (en) Magnetic field generation means and ECR ion source using the same
EP0819314B1 (en) Method and device for controlling the energy of at least one charged species bombarding a body immersed in a plasma
FR2766049A1 (en) CYCLOTRON COMPACT AND ITS USE IN PROTON THERAPY
Kato et al. Vacuum-ultraviolet spectroscopic measurement on an electron-cyclotron-resonance multicharged-ion source
FR2756097A1 (en) ELECTRONIC CYCLOTRON RESONANCE SOURCE FOR THE PRODUCTION OF MULTICHARGE IONS IN HOSTILE ENVIRONMENTS
FR2775415A1 (en) Infrared radiation obtained by synchrotron method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB NL

17P Request for examination filed

Effective date: 19921001

17Q First examination report despatched

Effective date: 19960306

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB NL

REF Corresponds to:

Ref document number: 69130913

Country of ref document: DE

Date of ref document: 19990401

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19991015

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991018

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991029

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991103

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 20001031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001023

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010703