EP0480078A1 - Dispositif de mesure avec transfert non-électrique de signaux et d'énergie - Google Patents

Dispositif de mesure avec transfert non-électrique de signaux et d'énergie Download PDF

Info

Publication number
EP0480078A1
EP0480078A1 EP90119241A EP90119241A EP0480078A1 EP 0480078 A1 EP0480078 A1 EP 0480078A1 EP 90119241 A EP90119241 A EP 90119241A EP 90119241 A EP90119241 A EP 90119241A EP 0480078 A1 EP0480078 A1 EP 0480078A1
Authority
EP
European Patent Office
Prior art keywords
optical
energy
electrical
optical waveguide
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90119241A
Other languages
German (de)
English (en)
Inventor
Thomas Dr.-Ing. Kölpin
Norbert Schröder
Rudolf Dipl.-Phys. Thurn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP90119241A priority Critical patent/EP0480078A1/fr
Priority to JP3284029A priority patent/JPH04263399A/ja
Publication of EP0480078A1 publication Critical patent/EP0480078A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems

Definitions

  • the invention relates to a device for recording measured values at a remote measuring location with an optical waveguide for transmitting an optical measurement signal from the measuring location to a receiving location, with an electrical sensor and a transmitter diode at the measuring location of the optical waveguide, the sensor being used, among other things, to transmit a measurement-dependent electrical signal to the transmitter diode, with which the corresponding optical measurement signal can then be coupled into the optical waveguide.
  • the transmission of ultrasonic waves in wires is known from DE 28 47 871.
  • the design specification 20 15 698 deals with the ultrasound transmission in glass rods as well as in glass and plastic fibers. However, only ultrasound transmission is considered here in isolation.
  • the invention is therefore based on the object of providing a device of the type mentioned above which enables measurement at a remote measuring location in sensitive areas without electromagnetic interaction with the surroundings and while avoiding the disadvantages mentioned.
  • the object is achieved in that at least one converter is provided at the measuring location for converting non-electrical and non-optical energy waves into electrical energy, for example for operating the sensor.
  • the transducer is designed as an ultrasonic transducer, this means that the energy can be supplied to the ultrasonic transducer in the form of elastic waves. This sound energy can be conducted through a sound-conducting medium to the ultrasound transducer.
  • the optical waveguide is designed as a glass fiber bundle, the flexibility of the glass fiber bundle makes it possible, depending on the requirements, to also provide curved transmission paths.
  • the optical waveguide is designed as a glass rod. If a further ultrasonic transducer is provided at the receiving location, with which the mechanical energy can be coupled into the optical waveguide in the form of elastic waves, the elastic waves in the optical waveguide being transferable to the ultrasonic transducer at the measuring location, this is a measuring device with an acousto-optical single conductor given.
  • the use of only a single optical fiber is particularly simple and cost-saving.
  • a clean separation between the transmission of the mechanical energy and the optical measurement signal is achieved.
  • this acousto-optical principle (energy transmission - information transmission) has the following advantages compared to the purely optical-optical single-conductor systems and acoustic-acoustic single-conductor systems: On expensive laser systems as transmitters for converting electrical energy into photon energy, as is the case with optical-optical single-conductor systems Energy transmission are necessary, can be dispensed with in the acousto-optical single-conductor system. A brief interruption of the energy transmission for the purpose of transmitting oppositely directed signals, as is customary in the optical-optical and acoustic-acoustic single-conductor system, is not necessary in the acousto-optical single-conductor system.
  • the further conductor is designed as an optical waveguide, not only energy in the form of elastic waves can be transmitted via this optical waveguide, but also optical signals at the same time.
  • FIG. 1 shows a single-conductor system with a glass rod 1 as an optical waveguide, which is also used for the transmission of energy and information signals.
  • two ultrasonic transducers 6, 7 in the form of disk-shaped piezoceramics are pushed onto the two ends of the glass rod 1, the inside diameter of the piezoceramic disks corresponding to the outside diameter of the glass rod 1, and an intimate connection is established between the two, optionally with the additional use of adhesive becomes.
  • the piezoceramic 7 at the receiving point 2 is excited by applying an AC voltage. Thereupon a continuous elastic wave is generated in the glass rod 1, which moves to the other end of the glass rod 1 and is picked up there by the piezoceramic at the measuring location 5.
  • a light-emitting diode 4 is attached to the end of the glass rod 1 at the measuring location 5.
  • An electrical sensor 3 is connected between the light-emitting diode 4 and the piezoceramic 6.
  • a receiving diode 8 is connected to a receiving module 9.
  • An AC voltage source is provided here as the energy source 10 for exciting the piezoceramic 7.
  • the AC voltage source 10 excites the piezoceramic 7, which then couples the mechanical energy radially to the glass rod 1 in the form of elastic waves.
  • This energy which is transmitted in the form of elastic waves in the glass rod 1, is received at the measuring location 5 by the piezoceramic 6, which converts this energy into electrical energy in order to supply the electrical sensor 3.
  • the electrical sensor 3 measures e.g. a physical quantity and sends an electrical measurement signal corresponding to the measured value to the light-emitting diode 4, which couples a light pulse into the glass rod 1.
  • the light is guided within the glass rod 1 and can be converted back into an electrical signal on the receiving side 2 by the receiving diode 8.
  • the evaluation module 9 processes this electrical signal by, for example, displaying the measured value of the physical variable or using it to control downstream processes.
  • piezoceramics 6, 7 with bores in the middle can be used, which are pushed onto the two ends of a glass rod.
  • the use of a fiber optic cable 1 from e.g. 2 m length and 2 mm fiber bundle diameter is possible, the ends of the glass fiber cable 1 being provided with end sleeves onto which the two piezoceramics 6, 7 are glued.
  • Infrared diodes can be used as transmitting 4 and receiving diodes 8. With such a structure, energies over 100 mW can be transmitted to the electrical sensor 3 acoustically with a good degree of efficiency.
  • a flexible glass fiber cable 1 is shown here as an optical waveguide, which comprises a glass fiber bundle 13, an end sleeve 15 and a pressure and tensile sheathing 14.
  • a bore is provided in the piezoceramic 7, which corresponds to the diameter of the glass fiber bundle 13 and transmits or receives light pulses through the diode 6, 8.
  • two reflector parts 16, 17 are attached, which are provided on their other side with an adaptation part 12.
  • a piezoceramic 7 is connected to the adaptation part 12 over a large area.
  • the piezoceramic 7 excited by an AC voltage source 10 transmits its mechanical vibration energy in the form of elastic waves to the adapter 12 and from there to the reflector parts 16, 17.
  • the elastic waves pass through the reflector parts 16, 17 with little loss.
  • a light beam 18 is reflected here at a 90 ° angle in the direction of the receiving diode 8.
  • FIG. 4 shows a single-wire system with a rigid glass rod 1 for energy and signal transmission.
  • the acoustic coupling does not take place radially, but on the end face via appropriately designed adapter parts 12.
  • Both the piezoceramics 6, 7 applied to the adapter parts 12 and the adapter parts 12 themselves are provided with small-diameter bores to prevent them from moving Transmitting diode 4 to be able to initiate transmitted light into the glass rod 1 and to be able to receive the light from a receiving diode 8 on the other side of the glass rod. Otherwise, the structure of the single-wire system corresponds to the embodiment already described according to FIG. 1.
  • the embodiment according to FIG. 5 shows a further possible coupling of mechanical oscillation energy and light pulses.
  • This solution can only be used with glass fiber cables.
  • the acoustic and optical coupling to the transmission line is separated here in a special way.
  • the acoustic coupling takes place on the end face of the glass fiber bundle 13 by means of a piezoceramic 7 via an adapter 12.
  • a secondary fiber bundle 19 is used as a light guide to the receiving diode 7.
  • the coupling of light pulses by means of a transmitting diode at the other end of the fiber optic bundle 13 can be carried out in a corresponding manner.
  • the glass fiber bundle is also guided here in a pressure-resistant and tensile-resistant sheath 14.
  • the separation of the glass fiber bundle, i.e. the secondary fiber bundle 19 is separated from the glass fiber bundle only in an end sleeve 15.
  • This embodiment offers a great advantage of an extraordinarily good acoustic coupling. However, this requires the use of directional glass fiber bundles.
  • the transmission lines described above can be implemented either as glass rods or as glass fiber bundles.
  • a measuring device for remote measurement which uses a separate path in addition to an optical waveguide 1 for optical signal transmission for energy supply.
  • An electrical sensor 3 is again provided at the measuring location 5, which measures the measured value e.g. a physical variable in the form of an electrical signal to a transmitter diode 4, which then couples a corresponding light pulse into the optical waveguide 1.
  • a receiving diode 8 receives the optical signal and converts it into an electrical signal for further processing in a receiving module 9.
  • a transducer 6 is provided here, which can be designed as an ultrasonic transducer. This converter 6 is used to convert sound energy into electrical energy. Sound energy is transmitted from an energy source 10 to the converter 6 via a further fixed conductor 11. This conductor can also be used as an optical waveguide 11 in the manner described above for the transmission of mechanical energy and at the same time optical energy.
  • the described embodiments of measuring devices all offer the possibility of measuring at a remote measuring location, the measuring location itself or the transmission path being in a sensitive area.
  • the choice between one of these possible embodiments is to be made on the basis of the prevailing environmental conditions and the justifiable effort.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Optical Communication System (AREA)
EP90119241A 1990-10-08 1990-10-08 Dispositif de mesure avec transfert non-électrique de signaux et d'énergie Withdrawn EP0480078A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP90119241A EP0480078A1 (fr) 1990-10-08 1990-10-08 Dispositif de mesure avec transfert non-électrique de signaux et d'énergie
JP3284029A JPH04263399A (ja) 1990-10-08 1991-10-04 非電気的な信号及びエネルギーの伝送による測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90119241A EP0480078A1 (fr) 1990-10-08 1990-10-08 Dispositif de mesure avec transfert non-électrique de signaux et d'énergie

Publications (1)

Publication Number Publication Date
EP0480078A1 true EP0480078A1 (fr) 1992-04-15

Family

ID=8204590

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90119241A Withdrawn EP0480078A1 (fr) 1990-10-08 1990-10-08 Dispositif de mesure avec transfert non-électrique de signaux et d'énergie

Country Status (2)

Country Link
EP (1) EP0480078A1 (fr)
JP (1) JPH04263399A (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693799A1 (fr) * 1992-07-16 1994-01-21 Bosch Gmbh Robert Capteur de vitesses angulaires, notamment destiné à des véhicules automobiles.
FR2722578A1 (fr) * 1994-06-24 1996-01-19 Omega Engineering Structure de sonde de detection pour un appareil de mesure electrique avec couplage par de l'energie rayonnante
DE10332820A1 (de) * 2003-07-18 2005-02-17 Osypka Medical Gmbh Vorrichtung zum potentialgetrennten Umwandeln einer ersten Spannung in eine zweite Spannung zum Messen von Impedanzen und Admittanzen an biologischen Geweben
US7822470B2 (en) 2001-10-11 2010-10-26 Osypka Medical Gmbh Method for determining the left-ventricular ejection time TLVE of a heart of a subject
DE102016114419B3 (de) * 2016-08-04 2018-01-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Messverfahren, Sensorfeld und Messsystem mit lokalen lichtemittierenden Sensoren
DE102017213294A1 (de) 2017-08-01 2019-02-07 Continental Automotive Gmbh Schaltungssystem mit einer Funktionseinheit an und/oder in einer transparenten Scheibe und mit einer Treibereinheit für die Funktionseinheit sowie Funktionseinheit, Treibereinheit und Betriebsverfahren für das Schaltungssystem
US10470718B2 (en) 2005-08-17 2019-11-12 Osypka Medical Gmbh Method for digital demodulation and further processing of signals obtained in the measurement of electrical bioimpedance or bioadmittance in a human subject

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777189A (en) * 1972-05-04 1973-12-04 Westinghouse Electric Corp Acoustic energy transmission device
GB2167586A (en) * 1984-11-12 1986-05-29 Halpern John Wolfgang Card reader

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3777189A (en) * 1972-05-04 1973-12-04 Westinghouse Electric Corp Acoustic energy transmission device
GB2167586A (en) * 1984-11-12 1986-05-29 Halpern John Wolfgang Card reader

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE 1987 ULTRASONICS SYMPOSIUM PROCEEDINGS, OCTOBER 14-16,1987,DENVER,COLORADO VOL.1, PAGES 443-454, JEN:"ACOUSTIC FIBERS" *
TM TECNISCHES MESSEN . vol. 56, no. 4, April 1989, MUNCHEN DE Seiten 164 - 170; KUNTZ UND MORES: "ENERGIE UND DATEN]BRTRAGUNG ]BER LICHTWELLENLEITER BEI INTELLIGENTEN SENSOREN" *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693799A1 (fr) * 1992-07-16 1994-01-21 Bosch Gmbh Robert Capteur de vitesses angulaires, notamment destiné à des véhicules automobiles.
FR2722578A1 (fr) * 1994-06-24 1996-01-19 Omega Engineering Structure de sonde de detection pour un appareil de mesure electrique avec couplage par de l'energie rayonnante
US7822470B2 (en) 2001-10-11 2010-10-26 Osypka Medical Gmbh Method for determining the left-ventricular ejection time TLVE of a heart of a subject
US7904141B2 (en) 2001-10-11 2011-03-08 Osypka Medical Gmbh System and apparatus for determining the left-ventricular ejection time TLVE of a heart of a subject
US8562538B2 (en) 2001-10-11 2013-10-22 Osypka Medical Gmbh System for determining the left-ventricular ejection time TLVE of a heart of a subject
DE10332820A1 (de) * 2003-07-18 2005-02-17 Osypka Medical Gmbh Vorrichtung zum potentialgetrennten Umwandeln einer ersten Spannung in eine zweite Spannung zum Messen von Impedanzen und Admittanzen an biologischen Geweben
DE10332820B4 (de) * 2003-07-18 2006-07-20 Osypka Medical Gmbh Vorrichtung zum potentialgetrennten Umwandeln einer ersten Spannung in eine zweite Spannung zum Messen von Impedanzen und Admittanzen an biologischen Geweben
US10470718B2 (en) 2005-08-17 2019-11-12 Osypka Medical Gmbh Method for digital demodulation and further processing of signals obtained in the measurement of electrical bioimpedance or bioadmittance in a human subject
US11642088B2 (en) 2005-08-17 2023-05-09 Osypka Medical Gmbh Method and apparatus for digital demodulation and further processing of signals obtained in the measurement of electrical bioimpedance or bioadmittance in an object
DE102016114419B3 (de) * 2016-08-04 2018-01-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Messverfahren, Sensorfeld und Messsystem mit lokalen lichtemittierenden Sensoren
DE102017213294A1 (de) 2017-08-01 2019-02-07 Continental Automotive Gmbh Schaltungssystem mit einer Funktionseinheit an und/oder in einer transparenten Scheibe und mit einer Treibereinheit für die Funktionseinheit sowie Funktionseinheit, Treibereinheit und Betriebsverfahren für das Schaltungssystem

Also Published As

Publication number Publication date
JPH04263399A (ja) 1992-09-18

Similar Documents

Publication Publication Date Title
DE3419320C2 (de) Optoelektrisches Entfernungsmeßgerät mit einer optischen Meßsonde
EP0168114B1 (fr) Méthode et dispositif pour la mesure de l'atténuation dans des guides d'ondes lumineuses
DE3129041A1 (de) Faseroptischer sensor zum erfassen von elektrischen lichtbogenentladungen
DE1908153A1 (de) Faser-optisches Lichtleitersystem
EP0480078A1 (fr) Dispositif de mesure avec transfert non-électrique de signaux et d'énergie
EP0391948B1 (fr) Cable
DE2716788A1 (de) Optisches informationssystem
DE19942508A1 (de) Verfahren und Vorrichtung zur Übertragung von Steuer- und/oder Sensorsignalen
DE3411096A1 (de) Mehrkanaliges messwerterfassungs-, -uebertragungs- und -verarbeitungssystem
DE3127406C2 (de) Modulationsvorrichtung zur optischen Signalübertragung
WO2015107004A1 (fr) Dispositif de génération d'impulsions haute tension
DE2820120C2 (fr)
DE102009018283A1 (de) Röntgensystem
EP0027530B1 (fr) Arrangement optique pour la surveillance des régimes critiques d'un dispositif rotatif
GB2103446A (en) Apparatus for the line-guided transmission of signals
DE2708226A1 (de) Sende- und empfangswandler fuer ultraschall-strahlung, geeignet fuer grossen entfernungsbereich
DE19543363C2 (de) Meßwandleranordnung
DE2936908A1 (de) Optische anordnung zum ueberwachen kritischer drehzahlen rotierender einrichtungen
EP1124150B1 (fr) Microscope chirurgical
DE3530939A1 (de) Optische datenuebertragungsvorrichtung
RU101209U1 (ru) Волоконно-оптический соединитель
DE202019103754U1 (de) HDMI-Verbindungsgerät für ein aktives Lichtwellenleiterkabel
DE3337501A1 (de) Optischer messgroessenumformer
DE3102244A1 (de) Verfahren zum potentialfreien energietransport
DE19758359C1 (de) Einrichtung und Verfahren zur Überwachung einer Schaltstange eines Hochspannungsleistungsschalters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19941107

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19941213