EP0479421A1 - Spiralverdichter mit schwimmender Abdichtung - Google Patents

Spiralverdichter mit schwimmender Abdichtung Download PDF

Info

Publication number
EP0479421A1
EP0479421A1 EP91307172A EP91307172A EP0479421A1 EP 0479421 A1 EP0479421 A1 EP 0479421A1 EP 91307172 A EP91307172 A EP 91307172A EP 91307172 A EP91307172 A EP 91307172A EP 0479421 A1 EP0479421 A1 EP 0479421A1
Authority
EP
European Patent Office
Prior art keywords
seal
scroll
cavity
fluid
seals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91307172A
Other languages
English (en)
French (fr)
Other versions
EP0479421B1 (de
Inventor
Gary Justin Anderson
James William Bush
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Copeland Corp LLC
Original Assignee
Copeland Corp LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Copeland Corp LLC filed Critical Copeland Corp LLC
Publication of EP0479421A1 publication Critical patent/EP0479421A1/de
Application granted granted Critical
Publication of EP0479421B1 publication Critical patent/EP0479421B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/06Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents of other than internal-axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • F04C28/265Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels being obtained by displacing a lateral sealing face
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid

Definitions

  • the present invention relates to seals for scroll- type machinery, and more particularly to a multi-function floating seal for axially compliant scroll compressors.
  • a typical scroll machine has an orbiting scroll member having a spiral wrap on one face thereof, a non-orbiting scroll member having a spiral wrap on one face thereof, said wraps being entermeshed with one another, and means for causing said orbiting scroll member to orbit about an axis with respect to said non-orbiting scroll member, whereby said wraps will create pockets of progressively changing volume.
  • seals of the present invention are embodied in a compressor and suited for use in machines which use discharge pressure alone, discharge and an independent intermediate pressure, or solely an Intermediate pressure only, in order to provide the necessary axial biasing forces to enhance tip sealing.
  • seals of the present invention which in most embodiments are three seals in one, are suitable for use in applications which bias the non-orbiting scroll or those which bias the orbiting scroll, although they are particularly suited for the former.
  • the seal has been discovered to be particularly sensitive to the pressure ratio of the scroll machine and consequently provides particularly good protection against vacuum conditions such as caused by reverse rotation or a blocked suction condition. In this condition, the seal will become ineffective and thus permit discharge gas to be bypassed directly into a zone of suction gas at suction gas pressure. This prevents the creation of a high vacuum on the inlet side of the compressor which might otherwise occur and which could cause excessive and damaging forces pulling the scroll members together. Even more importantly, it prevents the arcing or burning of the motor protector connector pins which has been observed to occur under some vacuum conditions.
  • the seals of the present invention also, in some applications, provide a degree of temperature protection, particularly in motor-compressors where suction gas is used to cool the motor. This is because the seal will leak from the high side to the low side at pressure differentials which are significantly higher than those for which the machine was designed. This leakage of discharge fluid to the suction side of the compressor will cause the machine to have a reduced output and the resulting heat build-up within the compressor enclosure due to the reduced flow of cooling gas will cause the standard motor protector to trip and shut the machine down.
  • This characteristic of the seals of the present invention therefore provides a degree of protection in certain applications from excessive discharge temperatures which could result from loss of working fluid charge, or from a blocked condensor fan In a refrigeration system, or from an excessive discharge pressure (for whatever reason). All of these undesirable conditions will cause a scroll machine to function at a pressure ratio is greater than that which is designed into the machine in terms of its predetermined fixed volume ratio.
  • the compressor comprises a cylindrical hermetic shell 10 having welded at the upper end thereof a cap 12, which is provided with a refrigerant discharge fitting 14 optionally having the usual discharge valve therein (not shown).
  • affixed to the shell include a transversely extending partition 16 which is welded about its periphery at the same point that cap 12 is welded to shell 10, a main bearing housing 18 which is affixed to shell 10 at a plurality of points in any desirable manner, and a suction gas inlet fitting 17 having a gas deflector 19 disposed in communication therewith inside the shell.
  • a motor stator 20 which is generally square in cross-section but with the corners rounded off is press fit into shell 10.
  • the flats between the rounded corners on the stator provide passageways between the stator and shell, indicated at 22, which facilitate the flow of lubricant from the top of the shell to the bottom.
  • a crankshaft 24 having an eccentric crank pin 26 at the upper end thereof is rotatably journaled in a bearing 28 in main bearing housing 18 and a second bearing in a lower bearing housing (not shown).
  • Crankshaft 24 has at the lower end the usual relatively large diameter oil- pumping concentric bore (not shown) which communicates with a radially outwardly inclined smaller diameter bore 30 extending upwardly therefrom to the top of the crankshaft.
  • the lower portion of the interior shell 10 is filled with lubricating oil in the usual manner and the pump at the bottom of the crankshaft is the primary pump acting in conjunction with bore 30, which acts as a secondary pump, to pump lubricating fluid to all of the various portions of the compressor which require lubrication.
  • Crankshaft 24 is rotatively driven by an electric motor including stator 20, windings 32 passing therethrough, and a rotor 34 press fit on the crankshaft and having one or more counterweights 36.
  • a motor protector 35 of the usual type, is provided in close proximity to motor windings 32 so that if the motor exceeds its normal temperature range the protector will deenergize the motor.
  • main bearing housing 18 The upper surface of main bearing housing 18 is provided with an annular flat thrust bearing surface 38 on which is disposed an orbiting scroll member 40 comprising an end plate 42 having the usual spiral vane or wrap 44 on the upper surface thereof, an annular flat thrust surface 46 on the lower surface, and projecting downwardly therefrom a cylindrical hub 48 having a journal bearing 50 therein and in which is rotatively disposed a drive bushing 52 having an inner bore 54 in which crank pin 26 is drivingly disposed.
  • Crank pin 26 has a flat on one surface (not shown) which drivingly engages a flat surface in a portion of bore 54 (not shown) to provide a radially compliant driving arrangement, such as shown in assignee's U.S. Letters Patent No. 4,877,382, the disclosure of which is herein incorporated by reference.
  • non-orbiting scroll member 58 has a plurality of circumferentially spaced mounting bosses 60, one of which is shown, each having a flat upper surface 62 and an axial bore 64 in which is slidably disposed a sleeve 66 which is bolted to main bearing housing 18 by a bolt 68 in the manner shown.
  • Bolt 68 has an enlarged head having a flat lower surface 70 which engages surface 62 to limit the axially upper or separating movement of non-orbiting scroll member, movement in the opposite direction being limited by axial engagement of the lower tip surface of wrap 56 and the flat upper surface of orbiting scroll member 40.
  • Non-orbiting scroll member 58 has a centrally disposed discharge passageway 72 communicating with an upwardly open recess 74 which is in fluid communication via an opening 75 in partition 16 with the discharge muffler chamber 76 defined by cap 12 and partition 16.
  • Non-orbiting scroll member 58 has in the upper surface thereof an annular recess 78 having parallel coaxial side walls in which is sealingly disposed for relative axial movement an annular floating seal 80 which serves to isolate the bottom of recess 78 from the presence of gas under suction and discharge pressure so that it can be placed in fluid communication with a source of intermediate fluid pressure by means of a passageway 82.
  • the non-orbiting scroll member is thus axially biased against the orbiting scroll member by the forces created by discharge pressure acting on the central portion of scroll member 58 and those created by intermediate fluid pressure acting on the bottom of recess 78.
  • This axial pressure biasing, as well as various techniques for supporting scroll member 58 for limited axial movement, are disclosed in much greater detail in assignee's aforesaid U.S. Letters Patent No. 4,877,328.
  • Oldham coupling comprising a ring 83 having a first pair of keys 84 (one of which is shown) slidably disposed in diametrically opposed slots 86 (one of which is shown) in scroll member 58 and a second pair of keys (not shown) slidably disposed in diametrically opposed slots (not shown) in scroll member 40.
  • the compressor is preferably of the "low side" type in which suction gas entering via deflector 19 is allowed, in part, to escape into the shell and assist in cooling the motor. So long as there is an adequate flow of returning suction gas the motor will remain within desired temperature limits. When this flow ceases, however, the loss of cooling will cause motor protector 35 to trip and shut the machine down.
  • the floating seal of the first embodiment is of a coaxial sandwiched construction and comprises an annular base plate 100, cast out of aluminum or the like, having a plurality of equally spaced upstanding integral projections 102 each having an enlarged base portion 104.
  • annular gasket 106 formed of epoxy coated fiber gasket material having a plurality of equally spaced holes which receive base portions 104, on top of which is disposed a pair of normally flat identical lower lip seals 108 formed of glass filled PTFE (approximately 5%) and optionally including 5% MoS2, by weight. Seals 108 have a plurality of equally spaced holes which receive base portions 104.
  • annular spacer plate 110 On top of seals 108 is disposed an annular spacer plate 110, which can be a simple steel stamping, having annular recesses 112 and 114 on the top and bottom surfaces thereof and a plurality of equally spaced holes which receive base portions 104, and on top of plate 110 are a pair of normally flat identical annular upper lip seals 116 formed of the same material as lip seals 108 and maintained in coaxial position by means of an annular upper seal plate 118 having a plurality of equally spaced holes receiving projections 102 and an annular rim 120 disposed in recess 112.
  • Seal plate 118 which may be formed of grey cast iron, has disposed about the inner periphery thereof an upwardly projecting planar sealing lip 122. The assembly is secured together by swaging the ends of each of the projections 102, as indicated at 123.
  • the overall seal assembly therefore provides three distinct seals; namely, an inside diameter seal at 124 and 126, an outside diameter seal at 128 and a top seal at 130, as best seen in Figure 1.
  • Seal 124 is between the inner periphery of lip seals 108 and the inside wall of recess 78
  • seal 126 is between the inner periphery of lip seals 116 and the inside wall of recess 78.
  • Seals 124 and 126 isolate fluid under intermediate pressure in the bottom of recess 78 from fluid under discharge pressure in recess 74.
  • Seal 128 is between the outer periphery of lip seals 108 and the outer wall of recess 78, and isolates fluid under intermediate pressure in the bottom of recess 78 from fluid at suction pressure within shell 10.
  • Seal 130 is be- twen lip seal 122 and an annular wear ring 132, formed of cast iron or the like and affixed to partition 16 by a suitable adhesive in a position surrounding opening 75, and isolates fluid at suction pressure from fluid at discharge pressure across the top of the seal assembly.
  • an annular wear ring 132 for the upper seal the lower surface of partition 16 surrounding opening 75 can be locally hardened, by nitriding, carbo-nitriding or the like.
  • the diameter of seal 130 is chosen so that there is a positive upward sealing force on seal 80 under normal operating conditions, i.e., at normal pressure differentials. Therefore, when excessive pressure differentials are encountered, the seal will be forced downwardly by discharge pressure, thereby permitting a leak of high side discharge gas directly across the seal to a zone of low side suction gas. If this leakage is great enough, then the resultant loss of flow of motor-cooling suction gas (aggravated by the excessive temperature of the leaking discharge gas) will cause the motor protector to trip, thereby deenergizing the motor.
  • the width of seal 130 is chosen so that the unit pressure on the seal itself (i.e., between seal 122 and seat 132) is greater than normally encountered discharge pressure, thus insuring consistant sealing.
  • the floating seal of the second embodiment is also of a coaxial sandwiched construction and comprises an annular base plate 200, cast out of aluminum or the like and having an annular upstanding integral rib 202.
  • plate 200 Disposed on plate 200 is a lower inner lip seal 204 formed of 5% glass and 5% molydisulfide filled PTFE and having a conical resilient sealing lip 206; and an outer lip seal 208 of the same material having a resilient conical sealing lip 210.
  • annular metal separator plate 212 Disposed on top of inner seal 204 and inside rib 202 is an annular metal separator plate 212 having minutely ribbed upper and lower surfaces to increase mechanical contact with the seals.
  • a pair of identical annular upper lip seals 214 formed of the same material as lip seals 206 and 208, also maintained in coaxial position by means of an annular rib 202, and an upper seal element 216 having disposed about the inner periphery thereof an upwardly projecting planar sealing lip 218.
  • Seals 214 have resilient conical inner sealing lips 220.
  • Seal plate 118 is preferably formed of cast iron. Outer seal 208 is retained in place by an annular metal ring 222, and the entire assembly is secured together by swaging the top of rib 202 at spaced locations, as indicated at 224.
  • This seal assembly also provides three distinct seals; namely, an inside diameter seal at 226 and 228, an outside diameter seal at 230 and a top seal at 232, as best seen in Figure 4.
  • Seal 226 is between the inner periphery of lip seal 204 and the inside wall of recess 78
  • seal 228 is between the inner periphery of lip seals 214 and the inside wall of recess 78.
  • Seals 226 and 228 isolate fluid under intermediate pressure in the bottom of recess 78 from fluid under discharge pressure in recess 74.
  • Seal 230 is between the outer periphery of lip seal 208 and the outer wall of recess 78, and isolates fluid under intermediate pressure in the bottom of recess 78 from fluid at suction pressure within shell 10.
  • Seal 232 is between lip seal 218 and annular wear ring 132 surrounding opening 75 in partition 16, and isolates fluid at suction pressure from fluid at discharge pressure across the top of the seal assembly.
  • the diameter and width of the top seal are chosen in the same manner as for the first embodiment.
  • the floating seal of the third embodiment is also of a coaxial sandwiched construction and comprises an annular base plate 300, cast out of alumminum or the like, having a plurality of equally spaced upstanding integral projections 302 projecting from a shallow annular rib 304. Disposed on the inner periphery of plate 300 inside rib 304 are a pair of normally flat identical inner lip seals 306 formed of suitably filled PTFE. Disposed on top of the outer periphery of plate 300, outside rib 304, are a pair of normally flat identical annular outer lip seals 308 formed of the same material as lip seals 306.
  • Both pairs of seals are maintained in coaxial position by means of rib 304, and are clamped in place by an annular upper seal plate 310 having a plurality of equally spaced holes receiving projections 302.
  • Seal plate 118 which is preferably formed of grey cast iron, stamped steel or powered metal, has disposed about the inner periphery thereof an upwardly projecting planar sealing lip 312. The assembly is secured together by swaging the ends of each of the projections 302, as indicated at 314.
  • seal 316 is between the inner periphery of lip seals 306 and the inside wall of recess 78. Seal 316 isolates fluid under intermediate pressure in the bottom of recess 78 from fluid under discharge pressure in recess 74. Seal 318 is between the outer periphery of lip seals 308 and the outer wall of recess 78, and isolates fluid under intermediate pressure in the bottom of recess 78 from fluid at suction pressure within shell 10.
  • Seal 320 is between lip seal 312 and annular wear ring 132 surrounding opening 75 in partition 16, and isolates fluid at suction pressure from fluid at discharge pressure across the top of the seal assembly.
  • the diameter and width of the top seal are chosen in the same manner as for the first embodiment.
  • a suitable vent can be provided, such as at 125 in Figure 2 and at 316 in Figure 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Sealing With Elastic Sealing Lips (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
EP91307172A 1990-10-01 1991-08-05 Spiralverdichter mit schwimmender Abdichtung Expired - Lifetime EP0479421B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59145490A 1990-10-01 1990-10-01
US591454 1990-10-01

Publications (2)

Publication Number Publication Date
EP0479421A1 true EP0479421A1 (de) 1992-04-08
EP0479421B1 EP0479421B1 (de) 1995-12-13

Family

ID=24366553

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91307172A Expired - Lifetime EP0479421B1 (de) 1990-10-01 1991-08-05 Spiralverdichter mit schwimmender Abdichtung

Country Status (9)

Country Link
EP (1) EP0479421B1 (de)
JP (1) JP2922343B2 (de)
KR (1) KR100188324B1 (de)
CN (1) CN1028379C (de)
AU (1) AU651606B2 (de)
BR (1) BR9103456A (de)
CA (1) CA2046548C (de)
DE (1) DE69115422T2 (de)
MX (1) MX9100629A (de)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0579374A1 (de) * 1992-07-13 1994-01-19 Copeland Corporation Spiralverdichter mit Flüssigkeitseinspritzung
EP0843098A1 (de) * 1996-05-28 1998-05-20 Daikin Industries, Limited Spiralverdichter
EP0844398A1 (de) * 1996-11-21 1998-05-27 Copeland Corporation Spiralmaschine mit Schutz gegen Drehrichtungsumkehr
US8065886B2 (en) 2001-05-03 2011-11-29 Emerson Retail Services, Inc. Refrigeration system energy monitoring and diagnostics
US8473106B2 (en) 2009-05-29 2013-06-25 Emerson Climate Technologies Retail Solutions, Inc. System and method for monitoring and evaluating equipment operating parameter modifications
US8495886B2 (en) 2001-05-03 2013-07-30 Emerson Climate Technologies Retail Solutions, Inc. Model-based alarming
US8700444B2 (en) 2002-10-31 2014-04-15 Emerson Retail Services Inc. System for monitoring optimal equipment operating parameters
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US8974573B2 (en) 2004-08-11 2015-03-10 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9121407B2 (en) 2004-04-27 2015-09-01 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
US9285802B2 (en) 2011-02-28 2016-03-15 Emerson Electric Co. Residential solutions HVAC monitoring and diagnosis
US9310094B2 (en) 2007-07-30 2016-04-12 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
EP3159542A4 (de) * 2014-06-20 2017-09-13 Panasonic Intellectual Property Management Co., Ltd. Spiralverdichter
US9765979B2 (en) 2013-04-05 2017-09-19 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
EP3205882A4 (de) * 2014-10-07 2017-11-15 Panasonic Intellectual Property Management Co., Ltd. Spiralverdichter
US9823632B2 (en) 2006-09-07 2017-11-21 Emerson Climate Technologies, Inc. Compressor data module
US9885507B2 (en) 2006-07-19 2018-02-06 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US9897088B2 (en) 2013-01-21 2018-02-20 Emerson Climate Technologies (Suzhou) Co., Ltd. Scroll compressor with back pressure chamber having leakage channel
US10041713B1 (en) 1999-08-20 2018-08-07 Hudson Technologies, Inc. Method and apparatus for measuring and improving efficiency in refrigeration systems
US11371504B2 (en) 2019-09-29 2022-06-28 Danfoss (Tianjin) Ltd. Scroll compressor
EP3575602B1 (de) * 2017-01-27 2023-01-04 Panasonic Intellectual Property Management Co., Ltd. Spiralverdichter
US11656003B2 (en) 2019-03-11 2023-05-23 Emerson Climate Technologies, Inc. Climate-control system having valve assembly

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1084441C (zh) * 1996-10-21 2002-05-08 甘肃工业大学 带背压腔密封装置的涡旋压缩机
US6289776B1 (en) * 1999-07-02 2001-09-18 Copeland Corporation Method and apparatus for machining bearing housing
KR100446213B1 (ko) * 2001-11-29 2004-08-30 주식회사 롤텍 스크롤압축기의 실링구조
EP1851959B1 (de) 2005-02-21 2012-04-11 Computer Process Controls, Inc. Kontroll- und beobachtungssystem für unternehmen
DE202005006553U1 (de) * 2005-04-22 2005-07-14 Vr Dichtungen Gmbh Radialwellendichtring
US7665315B2 (en) 2005-10-21 2010-02-23 Emerson Retail Services, Inc. Proofing a refrigeration system operating state
US7752853B2 (en) 2005-10-21 2010-07-13 Emerson Retail Services, Inc. Monitoring refrigerant in a refrigeration system
US7752854B2 (en) 2005-10-21 2010-07-13 Emerson Retail Services, Inc. Monitoring a condenser in a refrigeration system
WO2009091996A2 (en) * 2008-01-16 2009-07-23 Emerson Climate Technologies, Inc. Scroll machine
CN102418698B (zh) 2008-05-30 2014-12-10 艾默生环境优化技术有限公司 具有包括活塞致动的输出调节组件的压缩机
KR101280915B1 (ko) * 2008-05-30 2013-07-02 에머슨 클리메이트 테크놀로지즈 인코퍼레이티드 용량조절 시스템을 가진 압축기
CN102089523B (zh) * 2008-05-30 2014-01-08 艾默生环境优化技术有限公司 具有容量调节系统的压缩机
US8568118B2 (en) * 2009-05-29 2013-10-29 Emerson Climate Technologies, Inc. Compressor having piston assembly
US8616014B2 (en) 2009-05-29 2013-12-31 Emerson Climate Technologies, Inc. Compressor having capacity modulation or fluid injection systems
FR2960948B1 (fr) 2010-06-02 2015-08-14 Danfoss Commercial Compressors Compresseur frigorifique a spirales
US8932036B2 (en) * 2010-10-28 2015-01-13 Emerson Climate Technologies, Inc. Compressor seal assembly
US9121276B2 (en) * 2012-07-23 2015-09-01 Emerson Climate Technologies, Inc. Injection molded seals for compressors
WO2014018530A1 (en) 2012-07-23 2014-01-30 Emerson Climate Technologies, Inc. Anti-wear coatings for compressor wear surfaces
CN103939338B (zh) * 2013-01-21 2017-03-15 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
US9222475B2 (en) * 2013-03-18 2015-12-29 Lg Electronics Inc. Scroll compressor with back pressure discharge
JP6578504B2 (ja) * 2013-04-30 2019-09-25 パナソニックIpマネジメント株式会社 スクロール圧縮機
JP6147605B2 (ja) * 2013-08-02 2017-06-14 三菱重工業株式会社 圧縮機
KR102166421B1 (ko) 2014-05-02 2020-10-15 엘지전자 주식회사 스크롤 압축기
KR102199570B1 (ko) * 2014-05-02 2021-01-07 엘지전자 주식회사 스크롤 압축기
US10975868B2 (en) 2017-07-07 2021-04-13 Emerson Climate Technologies, Inc. Compressor with floating seal
CN109779908A (zh) * 2019-02-20 2019-05-21 珠海格力节能环保制冷技术研究中心有限公司 柔性连接的流体喷射装置、具有该装置的涡旋压缩机及空调器
US11692548B2 (en) 2020-05-01 2023-07-04 Emerson Climate Technologies, Inc. Compressor having floating seal assembly
US11578725B2 (en) 2020-05-13 2023-02-14 Emerson Climate Technologies, Inc. Compressor having muffler plate
US11655818B2 (en) 2020-05-26 2023-05-23 Emerson Climate Technologies, Inc. Compressor with compliant seal
US11767846B2 (en) 2021-01-21 2023-09-26 Copeland Lp Compressor having seal assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2044873A (en) * 1933-11-21 1936-06-23 Cecil J Beust Rotary compressor
DE3522854A1 (de) * 1984-06-27 1986-01-09 Kabushiki Kaisha Toshiba, Kawasaki, Kanagawa Spiralverdichter
US4877382A (en) * 1986-08-22 1989-10-31 Copeland Corporation Scroll-type machine with axially compliant mounting

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1935621A1 (de) * 1968-07-22 1970-01-29 Leybold Heraeus Gmbh & Co Kg Verdraengerpumpe
JPS6179884A (ja) * 1984-09-27 1986-04-23 Toshiba Corp スクロ−ル形圧縮機
US4767293A (en) * 1986-08-22 1988-08-30 Copeland Corporation Scroll-type machine with axially compliant mounting
US4993928A (en) * 1989-10-10 1991-02-19 Carrier Corporation Scroll compressor with dual pocket axial compliance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2044873A (en) * 1933-11-21 1936-06-23 Cecil J Beust Rotary compressor
DE3522854A1 (de) * 1984-06-27 1986-01-09 Kabushiki Kaisha Toshiba, Kawasaki, Kanagawa Spiralverdichter
US4877382A (en) * 1986-08-22 1989-10-31 Copeland Corporation Scroll-type machine with axially compliant mounting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 4, no. 88 (M-17)(570) 24 June 1980 & JP-A-55 046 046 ( HITACHI ) 31 March 1980 *

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0579374A1 (de) * 1992-07-13 1994-01-19 Copeland Corporation Spiralverdichter mit Flüssigkeitseinspritzung
EP0843098A1 (de) * 1996-05-28 1998-05-20 Daikin Industries, Limited Spiralverdichter
EP0843098A4 (de) * 1996-05-28 1998-09-16 Daikin Ind Ltd Spiralverdichter
US6095764A (en) * 1996-05-28 2000-08-01 Daikin Industries, Ltd. Reverse rotation protection for a scroll compressor using a valve means
EP0844398A1 (de) * 1996-11-21 1998-05-27 Copeland Corporation Spiralmaschine mit Schutz gegen Drehrichtungsumkehr
CN1079915C (zh) * 1996-11-21 2002-02-27 科普兰公司 带反转保护的涡卷机械
US10041713B1 (en) 1999-08-20 2018-08-07 Hudson Technologies, Inc. Method and apparatus for measuring and improving efficiency in refrigeration systems
US8065886B2 (en) 2001-05-03 2011-11-29 Emerson Retail Services, Inc. Refrigeration system energy monitoring and diagnostics
US8316658B2 (en) 2001-05-03 2012-11-27 Emerson Climate Technologies Retail Solutions, Inc. Refrigeration system energy monitoring and diagnostics
US8495886B2 (en) 2001-05-03 2013-07-30 Emerson Climate Technologies Retail Solutions, Inc. Model-based alarming
US8700444B2 (en) 2002-10-31 2014-04-15 Emerson Retail Services Inc. System for monitoring optimal equipment operating parameters
US9121407B2 (en) 2004-04-27 2015-09-01 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US10335906B2 (en) 2004-04-27 2019-07-02 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US9669498B2 (en) 2004-04-27 2017-06-06 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system and method
US8974573B2 (en) 2004-08-11 2015-03-10 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9017461B2 (en) 2004-08-11 2015-04-28 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9023136B2 (en) 2004-08-11 2015-05-05 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9021819B2 (en) 2004-08-11 2015-05-05 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9046900B2 (en) 2004-08-11 2015-06-02 Emerson Climate Technologies, Inc. Method and apparatus for monitoring refrigeration-cycle systems
US9081394B2 (en) 2004-08-11 2015-07-14 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US9086704B2 (en) 2004-08-11 2015-07-21 Emerson Climate Technologies, Inc. Method and apparatus for monitoring a refrigeration-cycle system
US10558229B2 (en) 2004-08-11 2020-02-11 Emerson Climate Technologies Inc. Method and apparatus for monitoring refrigeration-cycle systems
US9304521B2 (en) 2004-08-11 2016-04-05 Emerson Climate Technologies, Inc. Air filter monitoring system
US9690307B2 (en) 2004-08-11 2017-06-27 Emerson Climate Technologies, Inc. Method and apparatus for monitoring refrigeration-cycle systems
US9885507B2 (en) 2006-07-19 2018-02-06 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US9823632B2 (en) 2006-09-07 2017-11-21 Emerson Climate Technologies, Inc. Compressor data module
US10352602B2 (en) 2007-07-30 2019-07-16 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US9310094B2 (en) 2007-07-30 2016-04-12 Emerson Climate Technologies, Inc. Portable method and apparatus for monitoring refrigerant-cycle systems
US10458404B2 (en) 2007-11-02 2019-10-29 Emerson Climate Technologies, Inc. Compressor sensor module
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
US9194894B2 (en) 2007-11-02 2015-11-24 Emerson Climate Technologies, Inc. Compressor sensor module
US8473106B2 (en) 2009-05-29 2013-06-25 Emerson Climate Technologies Retail Solutions, Inc. System and method for monitoring and evaluating equipment operating parameter modifications
US9395711B2 (en) 2009-05-29 2016-07-19 Emerson Climate Technologies Retail Solutions, Inc. System and method for monitoring and evaluating equipment operating parameter modifications
US8761908B2 (en) 2009-05-29 2014-06-24 Emerson Climate Technologies Retail Solutions, Inc. System and method for monitoring and evaluating equipment operating parameter modifications
US9703287B2 (en) 2011-02-28 2017-07-11 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US10234854B2 (en) 2011-02-28 2019-03-19 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US10884403B2 (en) 2011-02-28 2021-01-05 Emerson Electric Co. Remote HVAC monitoring and diagnosis
US9285802B2 (en) 2011-02-28 2016-03-15 Emerson Electric Co. Residential solutions HVAC monitoring and diagnosis
US9590413B2 (en) 2012-01-11 2017-03-07 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9876346B2 (en) 2012-01-11 2018-01-23 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9762168B2 (en) 2012-09-25 2017-09-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9897088B2 (en) 2013-01-21 2018-02-20 Emerson Climate Technologies (Suzhou) Co., Ltd. Scroll compressor with back pressure chamber having leakage channel
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US10775084B2 (en) 2013-03-15 2020-09-15 Emerson Climate Technologies, Inc. System for refrigerant charge verification
US10274945B2 (en) 2013-03-15 2019-04-30 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
US10488090B2 (en) 2013-03-15 2019-11-26 Emerson Climate Technologies, Inc. System for refrigerant charge verification
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US10443863B2 (en) 2013-04-05 2019-10-15 Emerson Climate Technologies, Inc. Method of monitoring charge condition of heat pump system
US10060636B2 (en) 2013-04-05 2018-08-28 Emerson Climate Technologies, Inc. Heat pump system with refrigerant charge diagnostics
US9765979B2 (en) 2013-04-05 2017-09-19 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics
EP3159542A4 (de) * 2014-06-20 2017-09-13 Panasonic Intellectual Property Management Co., Ltd. Spiralverdichter
US10655625B2 (en) 2014-06-20 2020-05-19 Panasonic Intellectual Property Management Co., Ltd. Scroll compressor
EP3205882A4 (de) * 2014-10-07 2017-11-15 Panasonic Intellectual Property Management Co., Ltd. Spiralverdichter
EP3575602B1 (de) * 2017-01-27 2023-01-04 Panasonic Intellectual Property Management Co., Ltd. Spiralverdichter
US11656003B2 (en) 2019-03-11 2023-05-23 Emerson Climate Technologies, Inc. Climate-control system having valve assembly
US11371504B2 (en) 2019-09-29 2022-06-28 Danfoss (Tianjin) Ltd. Scroll compressor

Also Published As

Publication number Publication date
DE69115422D1 (de) 1996-01-25
EP0479421B1 (de) 1995-12-13
JP2922343B2 (ja) 1999-07-19
AU8153991A (en) 1992-04-02
CA2046548A1 (en) 1992-04-02
AU651606B2 (en) 1994-07-28
DE69115422T2 (de) 1996-05-02
CA2046548C (en) 2002-01-15
BR9103456A (pt) 1992-06-16
CN1028379C (zh) 1995-05-10
KR920008353A (ko) 1992-05-27
KR100188324B1 (ko) 1999-06-01
CN1060699A (zh) 1992-04-29
JPH06341387A (ja) 1994-12-13
MX9100629A (es) 1992-06-05

Similar Documents

Publication Publication Date Title
US5156539A (en) Scroll machine with floating seal
EP0479421B1 (de) Spiralverdichter mit schwimmender Abdichtung
US5141407A (en) Scroll machine with overheating protection
US7771178B2 (en) Vapor injection system for a scroll compressor
US8475140B2 (en) Dual volume-ratio scroll machine
US8043078B2 (en) Compressor sealing arrangement
US5707210A (en) Scroll machine with overheating protection
EP1772630B1 (de) Spiralmaschine
CA2275813C (en) Stepped annular intermediate pressure chamber for axial compliance in a scroll compressor
EP1327779A1 (de) Rotierender Flügelzellenkompressor mit Auslassventil
US7967584B2 (en) Scroll machine using floating seal with backer
US6439867B1 (en) Scroll compressor having a clearance for the oldham coupling
US20110211983A1 (en) Scroll Compressor Bodies with Scroll Tip Seals and Extended Thrust Region
EP0464970A1 (de) Verdrängermaschine nach dem Spiralprinzip
US7997883B2 (en) Scroll compressor with scroll deflection compensation
US5582511A (en) Scroll machine having discharge port inserts
US6179591B1 (en) Conical hub bearing for scroll machine
EP0743454B1 (de) Spiralverdrängungsanlage für Fluid
US5848883A (en) Scroll compressor having a back pressure partitioning member
AU2010212403B2 (en) Dual volume-ratio scroll machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT

17P Request for examination filed

Effective date: 19920924

17Q First examination report despatched

Effective date: 19930716

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19951213

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19951213

Ref country code: BE

Effective date: 19951213

REF Corresponds to:

Ref document number: 69115422

Country of ref document: DE

Date of ref document: 19960125

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960805

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100827

Year of fee payment: 20

Ref country code: FR

Payment date: 20100831

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69115422

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69115422

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110806