EP0475834A1 - Magnetic minesweeping device - Google Patents

Magnetic minesweeping device Download PDF

Info

Publication number
EP0475834A1
EP0475834A1 EP91402405A EP91402405A EP0475834A1 EP 0475834 A1 EP0475834 A1 EP 0475834A1 EP 91402405 A EP91402405 A EP 91402405A EP 91402405 A EP91402405 A EP 91402405A EP 0475834 A1 EP0475834 A1 EP 0475834A1
Authority
EP
European Patent Office
Prior art keywords
magnetic
dredging system
vehicles
vehicle
induction coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91402405A
Other languages
German (de)
French (fr)
Other versions
EP0475834B1 (en
Inventor
Joel Certenais
Albert Tom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0475834A1 publication Critical patent/EP0475834A1/en
Application granted granted Critical
Publication of EP0475834B1 publication Critical patent/EP0475834B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G7/00Mine-sweeping; Vessels characterised thereby
    • B63G7/02Mine-sweeping means, Means for destroying mines
    • B63G7/06Mine-sweeping means, Means for destroying mines of electromagnetic type

Definitions

  • the field of the invention is that of magnetic dredging systems which make it possible to destroy underwater mines, the triggering of which is activated by variations in the magnetic field due to a sinking ship.
  • the invention relates to a magnetic dredging system comprising a dredger towing a device for simulating the magnetic field of a ship with determined characteristics.
  • a magnetic dredging system is already known for which the extent of dredging (INTERCEPT) is preferred.
  • the magnetic dredging system comprises a dredger towing by a rope a device for simulating the magnetic field of a ship of determined characteristics, the minesweeper being studied to bring a minimum of magnetic disturbances.
  • the simulation device comprises several vehicles distributed in parallel in the direction of advance of the dredger over the extent of the dredging. Each vehicle includes a solenoid and a flat horizontal coil to simulate the passage of a ship. The simulation of the magnetic field of the ship is facilitated by the fact that the solenoid and the coil are supplied by variable currents.
  • the object of the invention is to overcome this drawback and in particular an essential objective of the invention is to allow the simulation with very high precision of the magnetic field of most ships regardless of their dimensions and in particular their length.
  • the magnetic dredging system is characterized in that the simulation device comprises a set of vehicles for each providing orthogonal magnetic fields, the vehicles being arranged in line in the direction of advance of the dredger and supplied separately by electric currents, the intensities of which are determined automatically by a control means essentially on the basis of parameters representative of the characteristics of the aforementioned ship to be simulated.
  • a certain number of vehicles are deployed distributed along a line each simulating a portion of the magnetic field of the ship.
  • the magnetic dredging system comprises two induction coils arranged orthogonally.
  • the simulation device according to the invention takes into account not only the length of the ship but also its height.
  • the magnetic dredging system comprises a minesweeping vessel 100 towing at the end of a rope 110 a set of magnetic vehicles 110 arranged in line in the direction of advancement of the dredging vessel .
  • Magnetic vehicles are interconnected by cables with regular spacings between each of them.
  • the number of magnetic vehicles 110 connected in series depends, as has been specified previously, on the ship whose magnetic field or magnetic signature is to be simulated, this magnetic signature being a function of the length, speed and height of water of the last.
  • the length defined by the chain of magnetic vehicles is marked by buoyancy buoys 135 placed at the two ends of the chain of magnetic vehicles. The buoys 135 also make it possible to adjust the level of immersion of the magnetic vehicles 110.
  • the length of the rope connecting all of the magnetic vehicles 110 to the dredging vessel 100 is approximately 200 meters in order to avoid any confusion between the residual magnetic field of the dredger and that of vehicles and to prevent the dredger from being hit by the explosion mines when they are triggered by magnetic vehicles.
  • the magnetic vehicles 110 are supplied separately by electric currents, supplied by a power unit 126 supplied by a current supply 121 located on board the dredger 100, to each supply orthogonal magnetic fields.
  • the control electronics 120 determine, for each magnetic vehicle 110 considered, the intensity of the electric current to be applied thereto from a calibration made beforehand taking into account the speed of use of the simulation device and the distance between the magnetic vehicles 110. Also shown in this figure is a winch system 122 connected to the power supply 121 making it possible to electrically adjust the length of the rope 130.
  • a magnetic vehicle 110 comprises two induction coils 140, 150 arranged orthogonally supplied with current by the power unit 126 via the cord 130 and the cables.
  • the first vertical induction coil 140 is placed inside a circular ferrule 145 whose axis, in the position of use of the simulation device, is substantially parallel to the direction of advance of the dredger ship 100.
  • the circular ferrule 145 surrounds the second induction coil 150 whose shape is substantially rectangular.
  • the second induction coil 150 is placed in a fairing 155 so as to provide the magnetic vehicle 110 with a relatively low coefficient of penetration into water, for example less than 0.3.
  • the circular ferrule 145 is connected to the fairing 155 by radial fins and comprises a keel 160, disposed under the lower plane of the fairing 155, to stabilize the magnetic vehicle 110 by roll.
  • the magnetic vehicle 110 has, during its use as shown in FIG. 1, zero buoyancy obtained by the balancing of balloons 170 arranged inside the fairing 155. Provision is advantageously made on each magnetic vehicle 110 for generating means. underwater pulses called "PINGER" 180 to easily locate it in case it detaches from the rope 130.
  • the induction coils 140, 150 are formed from a wound conductor, for example an aluminum conductor and are placed in sealed containers filled with dielectric oil.
  • a wound conductor for example an aluminum conductor and are placed in sealed containers filled with dielectric oil.
  • the use of aluminum makes it possible to reduce the mass of the vehicle without appreciable reduction in the magnetic moment thereof.
  • the electrical signals establishing the intensities of the currents to be passed through the induction coils 140, 150 of each magnetic vehicle 110 are automatically supplied by the control electronics 120.
  • the control electronics 120 has in memory the values of the intensities for a certain number of ships whose magnetic signature is sought to simulate. These intensity values are obtained by varying all of these parameters until a good reproduction of the signature of the ship to be simulated is obtained by knowing the magnetic signature of each magnetic vehicle 110 and the magnetic signature of the ship considered.
  • the operator of the magnetic dredging system provides via a data entry terminal connected to the control electronics 120 shown in FIG. 2: target parameters, dredging speed, water height.
  • the target parameters are: its number from a given list, its speed, its magnetic state (demagnetized or non-demagnetized).
  • control electronics 120 automatically supply the minimum number of vehicles necessary and deliver the electrical control signals to the power unit 126.
  • each vehicle in a simulation device comprising six magnetic vehicles 110 25 meters apart, this example being non-limiting, are given below:
  • Second induction coil 150

Abstract

A magnetic minesweeping device comprising a minesweeper towing a device for simulating the magnetic field of a vessel of given characteristics, characterised in that the simulation device comprises a set of vehicles (110), each supplying orthogonal magnetic fields, the vehicles being arranged in line in the direction of advance of the minesweeper and supplied separately by electric currents, the intensities of which are determined automatically by a control means (120) essentially from parameters representative of the characteristics of said vessel to be simulated. <IMAGE>

Description

Le domaine de l'invention est celui des systèmes de dragage magnétique qui permettent de détruire les mines sous-marines dont le déclenchement est activé par les variations du champ magnétique dues à un navire à couler.The field of the invention is that of magnetic dredging systems which make it possible to destroy underwater mines, the triggering of which is activated by variations in the magnetic field due to a sinking ship.

Plus particulièrement l'invention concerne un système de dragage magnétique comportant un dragueur remorquant un dispositif de simulation du champ magnétique d'un navire de caractéristiques déterminées.More particularly, the invention relates to a magnetic dredging system comprising a dredger towing a device for simulating the magnetic field of a ship with determined characteristics.

L'efficacité d'un système de dragage magnétique est essentiellement liée à la complexité des mines sous-marines. Les mines sous-marines offensives sont généralement complexes du fait qu'elles sont mouillées en faible quantité et que leur petit nombre est compensé par leur grande efficacité. Ainsi, il existe des mines sous-marines capables de détecter la présence du dragage et de mettre la mise à feu en veille.The efficiency of a magnetic dredging system is essentially linked to the complexity of underwater mines. Offensive underwater mines are generally complex in that they are wet in small quantities and their small number is compensated by their high efficiency. Thus, there are underwater mines capable of detecting the presence of dredging and putting the ignition on standby.

Par conséquent, il est essentiel, pour combattre de telles mines sous-marines, que le champ magnétique du navire susceptible d'être coulé par celles-ci soit simulé avec la plus grande précision possible.Consequently, in order to combat such underwater mines, it is essential that the magnetic field of the ship liable to be sunk by them be simulated with the greatest possible accuracy.

On connaît déjà un système de dragage magnétique pour lequel l'étendue du dragage (INTERCEPT) est privilégiée. Le système de dragage magnétique comprend un dragueur remorquant par un filin un dispositif de simulation du champ magnétique d'un navire de caractéristiques déterminées, le dragueur de mines étant étudié pour apporter un minimum de perturbations magnétiques. Le dispositif de simulation comporte quant à lui, plusieurs véhicules répartis parallèlement dans la direction d'avancement du dragueur sur l'étendue du dragage. Chaque véhicule comprend un solénoïde et une bobine plate horizontale pour simuler le passage d'un navire. La simulation du champ magnétique du navire se trouve facilitée par le fait que le solénoïde et la bobine sont alimentés par des courants variables.A magnetic dredging system is already known for which the extent of dredging (INTERCEPT) is preferred. The magnetic dredging system comprises a dredger towing by a rope a device for simulating the magnetic field of a ship of determined characteristics, the minesweeper being studied to bring a minimum of magnetic disturbances. The simulation device comprises several vehicles distributed in parallel in the direction of advance of the dredger over the extent of the dredging. Each vehicle includes a solenoid and a flat horizontal coil to simulate the passage of a ship. The simulation of the magnetic field of the ship is facilitated by the fact that the solenoid and the coil are supplied by variable currents.

Toutefois, la longueur de chaque véhicule étant limitée, par exemple à environ 4 mètres, cette simulation reste très imparfaite dès que le navire dont on cherche à simuler le champ magnétique a une longueur nettement supérieure à celle du véhicule.However, the length of each vehicle being limited, for example to around 4 meters, this simulation remains very imperfect as soon as the ship whose magnetic field is sought to be simulated has a length significantly greater than that of the vehicle.

L'objet de l'invention est de pallier cet inconvénient et notamment un objectif essentiel de l'invention est de permettre la simulation avec une très grande précision du champ magnétique de la majeure partie des navires indépendamment de leurs dimensions et notamment de leur longueur.The object of the invention is to overcome this drawback and in particular an essential objective of the invention is to allow the simulation with very high precision of the magnetic field of most ships regardless of their dimensions and in particular their length.

Selon l'invention, le système de dragage magnétique est caractérisé en ce que le dispositif de simulation comprend un ensemble de véhicules pour fournir chacun des champs magnétiques orthogonaux, les véhicules étant disposés en ligne dans la direction d'avancement du dragueur et alimentés séparément par des courants électriques dont les intensités sont déterminées automatiquement par un moyen de commande essentiellement à partir de paramètres représentatifs des caractéristiques du navire précité à simuler.According to the invention, the magnetic dredging system is characterized in that the simulation device comprises a set of vehicles for each providing orthogonal magnetic fields, the vehicles being arranged in line in the direction of advance of the dredger and supplied separately by electric currents, the intensities of which are determined automatically by a control means essentially on the basis of parameters representative of the characteristics of the aforementioned ship to be simulated.

Ainsi, suivant les dimensions du navire et en particulier sa longueur, on déploie un certain nombre de véhicules répartis selon une ligne simulant chacun une portion du champ magnétique du navire.Thus, depending on the dimensions of the ship and in particular its length, a certain number of vehicles are deployed distributed along a line each simulating a portion of the magnetic field of the ship.

Selon une autre caractéristique de l'invention, le système de dragage magnétique comporte deux bobines d'induction disposées orthogonalement.According to another characteristic of the invention, the magnetic dredging system comprises two induction coils arranged orthogonally.

De cette manière, le dispositif de simulation selon l'invention prend en compte non seulement la longueur du navire mais aussi sa hauteur.In this way, the simulation device according to the invention takes into account not only the length of the ship but also its height.

D'autres caractéristiques et avantages de l'invention apparaîtront encore mieux à la lecture de la description qui va suivre accompagnée des dessins annexés dans lesquels :

  • la figure 1 représente de façon schématique le système de dragage magnétique selon l'invention,
  • la figure 2 représente de façon schématique plus particulièrement le dispositif électronique de commande et d'alimentation en courant des véhicules du dispositif de simulation selon l'invention.
  • la figure 3 est une représentation en détail d'un véhicule du dispositif de simulation d'un champ magnétique d'un navire selon l'invention.
Other characteristics and advantages of the invention will appear even better on reading the following description accompanied by the accompanying drawings in which:
  • FIG. 1 schematically represents the magnetic dredging system according to the invention,
  • FIG. 2 schematically represents more particularly the electronic device for controlling and supplying current to vehicles of the simulation device according to the invention.
  • FIG. 3 is a detailed representation of a vehicle of the device for simulating a magnetic field of a ship according to the invention.

En se reportant à la figure 1, le système de dragage magnétique selon l'invention comporte un navire dragueur de mines 100 remorquant au bout d'un filin 110 un ensemble de véhicules 110 magnétiques disposés en ligne dans la direction d'avancement du navire dragueur. Les véhicules magnétiques sont reliés entre eux par des câbles avec des espacements réguliers entre chacun d'eux. Le nombre de véhicules magnétiques 110 reliés en série dépend, comme cela a été précisé précédemment, du navire dont on veut simuler le champ magnétique ou signature magnétique, cette signature magnétique étant fonction de la longueur, de la vitesse et de la hauteur d'eau de ce dernier. Comme représenté sur cette figure, la longueur définie par la chaîne des véhicules magnétiques est repérée par des bouées de flottaison 135 disposées aux deux extrémités de la chaîne des véhicules magnétiques. Les bouées de flottaison 135 permettent par ailleurs de régler le niveau d'immersion des véhicules magnétiques 110. Dans l'exemple représenté sur cette figure, la longueur du filin reliant l'ensemble des véhicules magnétiques 110 au navire dragueur 100 est d'environ 200 mètres afin d'éviter toute confusion entre le champ magnétique résiduel du dragueur et celui des véhicules et d'empêcher le dragueur d'être atteint par l'explosion des mines lorsqu'elles se déclenchent sous l'action des véhicules magnétiques.Referring to FIG. 1, the magnetic dredging system according to the invention comprises a minesweeping vessel 100 towing at the end of a rope 110 a set of magnetic vehicles 110 arranged in line in the direction of advancement of the dredging vessel . Magnetic vehicles are interconnected by cables with regular spacings between each of them. The number of magnetic vehicles 110 connected in series depends, as has been specified previously, on the ship whose magnetic field or magnetic signature is to be simulated, this magnetic signature being a function of the length, speed and height of water of the last. As shown in this figure, the length defined by the chain of magnetic vehicles is marked by buoyancy buoys 135 placed at the two ends of the chain of magnetic vehicles. The buoys 135 also make it possible to adjust the level of immersion of the magnetic vehicles 110. In the example shown in this figure, the length of the rope connecting all of the magnetic vehicles 110 to the dredging vessel 100 is approximately 200 meters in order to avoid any confusion between the residual magnetic field of the dredger and that of vehicles and to prevent the dredger from being hit by the explosion mines when they are triggered by magnetic vehicles.

En se reportant maintenant à la figure 2, les véhicules magnétiques 110 sont alimentés séparément par des courants électriques, fournis par une unité de puissance 126 alimentée par une alimentation en courant 121 situées à bord du dragueur 100, pour fournir chacun des champs magnétiques orthogonaux. L'électronique de commande 120 détermine, pour chaque véhicule magnétique 110 considéré, l'intensité du courant électrique à appliquer à celui-ci à partir d'un étalonnage fait préalablement en tenant compte de la vitesse d'utilisation du dispositif de simulation et de la distance entre les véhicules magnétiques 110. On a représenté aussi sur cette figure un système de treuil 122 relié à l'alimentation en courant 121 permettant de régler électriquement la longueur du filin 130.Referring now to FIG. 2, the magnetic vehicles 110 are supplied separately by electric currents, supplied by a power unit 126 supplied by a current supply 121 located on board the dredger 100, to each supply orthogonal magnetic fields. The control electronics 120 determine, for each magnetic vehicle 110 considered, the intensity of the electric current to be applied thereto from a calibration made beforehand taking into account the speed of use of the simulation device and the distance between the magnetic vehicles 110. Also shown in this figure is a winch system 122 connected to the power supply 121 making it possible to electrically adjust the length of the rope 130.

En se reportant maintenant à la figure 3, un véhicule magnétique 110 comporte deux bobines d'induction 140, 150 disposées orthogonalement alimentées en courant par l'unité de puissance 126 par l'intermédiaire du filin 130 et des câbles. La première bobine d'induction 140 verticale est placée à l'intérieur d'une virole circulaire 145 dont l'axe, en position d'utilisation du dispositif de simulation, est sensiblement parallèle à la direction d'avancement du navire dragueur 100. La virole circulaire 145 entoure la seconde bobine d'induction 150 dont la forme est sensiblement rectangulaire. La seconde bobine d'induction 150 est placée dans un carénage 155 de manière à fournir au véhicule magnétique 110 un coefficient de pénétration dans l'eau relativement faible, par exemple inférieur à 0,3. Comme visible sur cette figure, la virole circulaire 145 est reliée au carénage 155 par des ailettes radiales et comporte une quille 160, disposée sous le plan inférieur du carénage 155, pour stabiliser le véhicule magnétique 110 en roulis. Le véhicule magnétique 110 a, pendant son utilisation comme représenté en figure 1, une flottabilité nulle obtenue par l'équilibrage de ballons 170 disposés à l'intérieur du carénage 155. On prévoit avantageusement, sur chaque véhicule magnétique 110, un moyen générateur d'impulsions sous-marines dit "PINGER" 180 pour localiser facilement celui-ci au cas où il se détacherait du filin 130.Referring now to FIG. 3, a magnetic vehicle 110 comprises two induction coils 140, 150 arranged orthogonally supplied with current by the power unit 126 via the cord 130 and the cables. The first vertical induction coil 140 is placed inside a circular ferrule 145 whose axis, in the position of use of the simulation device, is substantially parallel to the direction of advance of the dredger ship 100. The circular ferrule 145 surrounds the second induction coil 150 whose shape is substantially rectangular. The second induction coil 150 is placed in a fairing 155 so as to provide the magnetic vehicle 110 with a relatively low coefficient of penetration into water, for example less than 0.3. As visible in this figure, the circular ferrule 145 is connected to the fairing 155 by radial fins and comprises a keel 160, disposed under the lower plane of the fairing 155, to stabilize the magnetic vehicle 110 by roll. The magnetic vehicle 110 has, during its use as shown in FIG. 1, zero buoyancy obtained by the balancing of balloons 170 arranged inside the fairing 155. Provision is advantageously made on each magnetic vehicle 110 for generating means. underwater pulses called "PINGER" 180 to easily locate it in case it detaches from the rope 130.

De façon préférentielle, les bobines d'induction 140, 150 sont formées à partir d'un conducteur enroulé, par exemple un conducteur en aluminium et sont placées dans des conteneurs étanches remplis d'huile diélectrique. L'utilisation de l'aluminium permet de réduire la masse du véhicule sans diminution sensible du moment magnétique de celui-ci.Preferably, the induction coils 140, 150 are formed from a wound conductor, for example an aluminum conductor and are placed in sealed containers filled with dielectric oil. The use of aluminum makes it possible to reduce the mass of the vehicle without appreciable reduction in the magnetic moment thereof.

Nous allons maintenant décrire en détail le fonctionnement du dispositif de simulation du champ magnétique d'un navire selon la présente invention. Les signaux électriques établissant les intensités des courants à faire passer dans les bobines d'induction 140, 150 de chaque véhicule magnétique 110 (ces intensités de courant étant variables par véhicule) sont automatiquement fournis par l'électronique de commande 120. Pour ce faire, l'électronique de commande 120 comporte en mémoire les valeurs des intensités pour un certain nombre de navires dont on cherche à simuler la signature magnétique. Ces valeurs des intensités sont obtenues en faisant varier l'ensemble de ces paramètres jusqu'à obtenir une bonne reproduction de la signature du navire à simuler en connaissant la signature magnétique de chaque véhicule magnétique 110 et la signature magnétique du navire considéré.We will now describe in detail the operation of the device for simulating the magnetic field of a ship according to the present invention. The electrical signals establishing the intensities of the currents to be passed through the induction coils 140, 150 of each magnetic vehicle 110 (these current intensities being variable per vehicle) are automatically supplied by the control electronics 120. To do this, the control electronics 120 has in memory the values of the intensities for a certain number of ships whose magnetic signature is sought to simulate. These intensity values are obtained by varying all of these parameters until a good reproduction of the signature of the ship to be simulated is obtained by knowing the magnetic signature of each magnetic vehicle 110 and the magnetic signature of the ship considered.

L'opérateur du système de dragage magnétique selon l'invention fournit par l'intermédiaire d'un terminal de saisie de données relié à l'électronique de commande 120 représenté sur la figure 2 : les paramètres de la cible, la vitesse de dragage, la hauteur d'eau.The operator of the magnetic dredging system according to the invention provides via a data entry terminal connected to the control electronics 120 shown in FIG. 2: target parameters, dredging speed, water height.

Les paramètres de la cible sont : son numéro parmi une liste donnée, sa vitesse, son état magnétique (démagnétisé ou non démagnétisé).The target parameters are: its number from a given list, its speed, its magnetic state (demagnetized or non-demagnetized).

En réponse à ces différents paramètres, l'électronique de commande 120 fournit automatiquement le nombre minimum de véhicules nécessaires et délivre les signaux électriques de commande à l'unité de puissance 126.In response to these various parameters, the control electronics 120 automatically supply the minimum number of vehicles necessary and deliver the electrical control signals to the power unit 126.

A titre d'exemple, les caractéristiques magnétiques de chaque véhicule dans un dispositif de simulation comportant six véhicules magnétiques 110 distants de 25 mètres, cet exemple étant non limitatif, sont données ci-dessous :By way of example, the magnetic characteristics of each vehicle in a simulation device comprising six magnetic vehicles 110 25 meters apart, this example being non-limiting, are given below:

Première bobine 140 : First coil 140 :

  • diamètre 1,8 m,diameter 1.8 m,
  • largeur 0,5 m,width 0.5 m,
  • épaisseur <= 0,075 m.thickness <= 0.075 m.
  • nombre de spires du conducteur enroulé : 5250number of turns of the coiled conductor: 5250
  • section du conducteur : 4 mm²conductor cross section: 4 mm²
  • tension de pointe : 7,5 Apeak voltage: 7.5 A
  • moment magnétique : 100.000 A.m²magnetic moment: 100,000 A.m²
  • puissance maximum : 15 kWattsmaximum power: 15 kWatts
Seconde bobine d'induction 150 : Second induction coil 150 :

  • longueur : 2,7 mlength: 2.7 m
  • largeur : 1,2 mwidth: 1.2 m
  • hauteur : 0,21 mheight: 0.21 m
  • nombre de spires du conducteur enroulé : 4370number of turns of the coiled conductor: 4370
  • section du conducteur : 4 mm²conductor cross section: 4 mm²
  • tension de pointe : 7,5 Apeak voltage: 7.5 A
  • moment magnétique : 100.000 A.m²magnetic moment: 100,000 A.m²
  • puissance maximum : 15 kWatts.maximum power: 15 kWatts.

Claims (9)

Système de dragage magnétique comportant un dragueur (100) remorquant un dispositif de simulation du champ magnétique d'un navire de caractéristiques déterminées, caractérisé en ce que le dispositif de simulation comprend un ensemble de véhicules (110) pour fournir chacun des champs magnétiques orthogonaux, les véhicules étant disposés en ligne dans la direction d'avancement du dragueur et alimentés séparément par des courants électriques dont les intensités sont déterminées automatiquement par un moyen de commande (120) essentiellement à partir de paramètres représentatifs des caractéristiques du navire précité à simuler.Magnetic dredging system comprising a dredger (100) towing a device for simulating the magnetic field of a ship of determined characteristics, characterized in that the simulation device comprises a set of vehicles (110) for supplying each of the orthogonal magnetic fields, the vehicles being arranged in line in the direction of advance of the dredger and supplied separately by electric currents, the intensities of which are determined automatically by a control means (120) essentially on the basis of parameters representative of the characteristics of the aforementioned ship to be simulated. Système de dragage magnétique selon la revendication 1, dans lequel chaque véhicule (110) comporte deux bobines d'induction (140,150) disposées orthogonalement.The magnetic dredging system according to claim 1, wherein each vehicle (110) has two induction coils (140,150) arranged orthogonally. Système de dragage magnétique selon la revendication 2, dans lequel une première (140) bobine d'induction est placée dans une virole circulaire (145) entourant la seconde (150) bobine d'induction, l'axe de la virole circulaire (145) étant sensiblement parallèle à la direction d'avancement du dragueur.The magnetic dredging system of claim 2, wherein a first (140) induction coil is placed in a circular ferrule (145) surrounding the second (150) induction coil, the axis of the circular ferrule (145) being substantially parallel to the direction of advance of the dredger. Système de dragage magnétique selon la revendication 3, dans lequel la seconde bobine d'induction (150) est placée dans un carénage (155)Magnetic dredging system according to claim 3, wherein the second induction coil (150) is placed in a fairing (155) Système de dragage magnétique selon la revendication 4, dans lequel le véhicule (110) comporte une quille (160) disposée dans la virole circulaire (145) et des ballons (170) disposés dans le carénage (155).The magnetic dredging system of claim 4, wherein the vehicle (110) comprises a keel (160) arranged in the circular ferrule (145) and balloons (170) arranged in the fairing (155). Système de dragage magnétique selon la revendication 2, dans lequel les bobines d'induction (140,150) sont formées par un conducteur enroulé en aluminium.Magnetic dredging system according to claim 2, wherein the induction coils (140,150) are formed by a conductor wound in aluminum. Système de dragage magnétique selon la revendication 2, dans lequel les bobines d'induction (140,150) sont placées dans des conteneurs étanches remplis d'huile diélectrique.Magnetic dredging system according to claim 2, wherein the induction coils (140,150) are placed in sealed containers filled with dielectric oil. Système de dragage magnétique selon la revendication 3, dans lequel
   la première (140) bobine d'induction a un diamètre de 1.8m, une largeur de 0.5m et une épaisseur inférieure ou égale à 0.075m;
   la seconde (150) bobine d'induction a une longueur de 2.7m, une largeur de 1.2m et une épaisseur de 0.21 m;
   les deux bobines d'induction sont formées à partir d'un conducteur enroulé dont la section est de 4 mm² et présentent chacune un moment magnétique sensiblement égal à 100000 A.m ;
The magnetic dredging system of claim 3, wherein
the first (140) induction coil has a diameter of 1.8m, a width of 0.5m and a thickness less than or equal to 0.075m;
the second (150) induction coil has a length of 2.7m, a width of 1.2m and a thickness of 0.21m;
the two induction coils are formed from a wound conductor whose section is 4 mm² and each have a magnetic moment substantially equal to 100,000 Am;
Système de dragage magnétique selon l'une quelconque des revendications précédentes dans lequel chaque véhicule (110) comporte un moyen générateur d'impulsions sous-marines.Magnetic dredging system according to any one of the preceding claims, in which each vehicle (110) comprises means for generating underwater pulses.
EP19910402405 1990-09-11 1991-09-10 Magnetic minesweeping device Expired - Lifetime EP0475834B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9011203A FR2666559B1 (en) 1990-09-11 1990-09-11 MAGNETIC DREDGING SYSTEM.
FR9011203 1990-09-11

Publications (2)

Publication Number Publication Date
EP0475834A1 true EP0475834A1 (en) 1992-03-18
EP0475834B1 EP0475834B1 (en) 1994-12-21

Family

ID=9400220

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910402405 Expired - Lifetime EP0475834B1 (en) 1990-09-11 1991-09-10 Magnetic minesweeping device

Country Status (4)

Country Link
EP (1) EP0475834B1 (en)
JP (1) JPH0624381A (en)
DE (1) DE69106090T2 (en)
FR (1) FR2666559B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658149B2 (en) 2002-12-18 2010-02-09 Commonwealth Of Australia Minesweeping device
WO2014060185A1 (en) * 2012-10-18 2014-04-24 Thales Device for winding and unwinding a cable around a drum

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297735A (en) * 1994-04-27 1995-11-10 Pioneer Electron Corp Multiplex broadcasting reception method and receiver
JPH09172705A (en) 1995-12-15 1997-06-30 Denso Corp Driver for vehicle
JP5597421B2 (en) * 2010-03-23 2014-10-01 東芝三菱電機産業システム株式会社 Magnetic control apparatus and method
GB2550376B (en) * 2016-05-17 2018-07-11 Thales Holdings Uk Plc Magnetic phase transition exploitation for enhancement of electromagnets
DE102018217211A1 (en) * 2018-10-09 2020-04-09 Siemens Aktiengesellschaft Drone for triggering sea mines with an electric drive
DE102019212105A1 (en) * 2019-08-13 2021-02-18 Siemens Aktiengesellschaft Operating procedures for a mine clearance system and a mine clearance system for triggering sea mines

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266833A (en) * 1960-11-30 1966-08-16 Harold J Mack Release mechanism
WO1985000335A1 (en) * 1983-07-04 1985-01-31 The Secretary Of State For Defence In Her Britanni Improvements in or relating to magnetic assemblies
EP0338901A1 (en) * 1988-04-19 1989-10-25 Thomson-Csf Magnetic minesweeping system
US4917946A (en) * 1987-02-27 1990-04-17 Her Majesty the Queen as represented by the Minister of National Defence in Her Majesty's Canadian Governmenmt Low magnetic signature products and method
EP0364126A1 (en) * 1988-10-13 1990-04-18 The Marconi Company Limited Magnetic signature simulation apparatus
EP0366522A1 (en) * 1988-10-24 1990-05-02 Thomson-Csf Magnetic mine-sweeping system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266833A (en) * 1960-11-30 1966-08-16 Harold J Mack Release mechanism
WO1985000335A1 (en) * 1983-07-04 1985-01-31 The Secretary Of State For Defence In Her Britanni Improvements in or relating to magnetic assemblies
US4917946A (en) * 1987-02-27 1990-04-17 Her Majesty the Queen as represented by the Minister of National Defence in Her Majesty's Canadian Governmenmt Low magnetic signature products and method
EP0338901A1 (en) * 1988-04-19 1989-10-25 Thomson-Csf Magnetic minesweeping system
EP0364126A1 (en) * 1988-10-13 1990-04-18 The Marconi Company Limited Magnetic signature simulation apparatus
EP0366522A1 (en) * 1988-10-24 1990-05-02 Thomson-Csf Magnetic mine-sweeping system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658149B2 (en) 2002-12-18 2010-02-09 Commonwealth Of Australia Minesweeping device
US8006620B2 (en) 2002-12-18 2011-08-30 The Commonwealth Of Australia Minesweeping device
WO2014060185A1 (en) * 2012-10-18 2014-04-24 Thales Device for winding and unwinding a cable around a drum
FR2997063A1 (en) * 2012-10-18 2014-04-25 Thales Sa DEVICE FOR WINDING AND DEROUTING A CABLE AROUND A DRUM
US10023280B2 (en) 2012-10-18 2018-07-17 Thales Device for winding and unwinding a cable around a drum

Also Published As

Publication number Publication date
JPH0624381A (en) 1994-02-01
FR2666559B1 (en) 1995-07-21
FR2666559A1 (en) 1992-03-13
EP0475834B1 (en) 1994-12-21
DE69106090T2 (en) 1995-05-04
DE69106090D1 (en) 1995-02-02

Similar Documents

Publication Publication Date Title
FR2586301A1 (en) SEISMIC LEVE FORMATION SYSTEM AND SHOOTING CONTROL DEVICE FOR SEISMIC AIR CANNONS
FR2654521A1 (en) ELECTROMAGNETIC SOURCE OF REMAINING WELLS.
EP0475834A1 (en) Magnetic minesweeping device
EP1373933B1 (en) Towed low-frequency underwater detection system
EP0217712B1 (en) Demagnetizing device, particularly for ships
EP2187163B1 (en) Method for programming a projectile fuse and programming device allowing the implementation of such a method
FR2569847A1 (en) DEVICE FOR DETECTING AND LOCATING WATER INTAKE FOR A MARINE FLUTE
EP0125180B1 (en) Remote mine-sweeping apparatus for mines with magnetic firing means
FR2635378A1 (en) INDUCTION CONTROL PROJECTILES
WO1993001971A1 (en) Portable station for the measurement and adjustment of the magnetic signature of a naval vessel
EP0338901A1 (en) Magnetic minesweeping system
FR2689249A1 (en) Deception system for use with tracking radar - has radar transmitter introducing variable time delay into transmitted radar signal to confuse receiving radar
US5175712A (en) Underwater sound source with timed actuator
EP0366522B1 (en) Magnetic mine-sweeping system
FR2498337A1 (en) METHOD FOR ILLUMINATING SOIL AND CALCULATING DIELECTRIC CONSTANT AND CONDUCTIVITY THEREOF USING ELECTROMAGNETIC PULSE, AND SIMULATOR FOR CARRYING OUT SAID METHOD
FR2611917A1 (en) Device for temporary interruption of the movement of geophysical prospecting equipment in a submarine environment, this equipment being moved by a continuously moving naval support
EP0623506B1 (en) Method for the automatic compensation of the residual magnetism of a ferromagnetic tow
FR2902194A1 (en) Boat e.g. naval vessel, magnetic signature measuring device for controlling e.g. acoustic indiscretion, has measurement sensor measuring magnetic signature of boat and constituted by three axle magnetometer, and signal acquisition unit
EP0206879B1 (en) Broad frequency band magnetic field detector
EP0901959A1 (en) Method to minimize the magnetic signature of a naval vessel
FR2468889A1 (en) Fluid level limit value electrical transducer - has Wiegand wire attached to float with excitation and sensing coils
FR2464480A1 (en) IMPEDANCE MEASURING DEVICE FOR AN ELECTRIC POWER TRANSMISSION LINE
FR2704065A1 (en) Device for measuring the magnetic signature of a naval vessel and its application to setting up the magnetic immunisation
EP0699614B1 (en) Method and device for monitoring the unwinding of a bobbin
FR2702278A1 (en) Predominantly electric field simulator, and its application to equipment testing.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL

17P Request for examination filed

Effective date: 19920624

17Q First examination report despatched

Effective date: 19931118

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69106090

Country of ref document: DE

Date of ref document: 19950202

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950112

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020828

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030910

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030918

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20031203

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

BERE Be: lapsed

Owner name: *THOMSON-CSF

Effective date: 20040930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050910

BERE Be: lapsed

Owner name: *THOMSON-CSF

Effective date: 20040930