EP0472957A1 - Process for improving the corrosion resistance of nitrocarbonized steel components - Google Patents

Process for improving the corrosion resistance of nitrocarbonized steel components Download PDF

Info

Publication number
EP0472957A1
EP0472957A1 EP91113185A EP91113185A EP0472957A1 EP 0472957 A1 EP0472957 A1 EP 0472957A1 EP 91113185 A EP91113185 A EP 91113185A EP 91113185 A EP91113185 A EP 91113185A EP 0472957 A1 EP0472957 A1 EP 0472957A1
Authority
EP
European Patent Office
Prior art keywords
und
components
corrosion resistance
die
wurden
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91113185A
Other languages
German (de)
French (fr)
Other versions
EP0472957B1 (en
Inventor
Ulrich Dr. Christ
Georg Ing. Wahl
Helmut Dr. Kunst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of EP0472957A1 publication Critical patent/EP0472957A1/en
Application granted granted Critical
Publication of EP0472957B1 publication Critical patent/EP0472957B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the invention relates to a method for improving the corrosion resistance of nitrocarburized components made of ferrous materials which, after the nitrocarburization, are subjected to one or more oxidation treatments and, if appropriate, to mechanical processing, by coating them with a thin layer of an organic material.
  • the corrosion resistance of components made of ferrous materials that have been nitrocarburized and quenched from the nitrocarburizing temperature in water or in oil is significantly improved compared to the untreated condition. It is irrelevant whether the nitrocarburizing treatment was carried out in a salt bath, in gas or in plasma.
  • a further increase in the corrosion resistance can be achieved if an oxidation treatment is carried out after the nitrocarburizing. This can e.g. done by steam treatment in the temperature range 500 to 580 ° C.
  • the oxidation after nitrocarburizing can also be carried out in an oxidizing salt bath, as described for example in DE-PS 29 34 113.
  • nitrocarburization is carried out in a salt bath, the oxidation process will be started immediately, i.e. Transfer the components directly from the nitrocarburizing to the oxidizing salt bath without intermediate cooling. If, on the other hand, nitrocarburization is carried out in the gas or plasma, it must generally first be cooled to room temperature and the oxidation then effected by hanging it in the salt bath. Although this procedure also results in a considerable increase in corrosion resistance, it is less than in salt bath nitrocarburization with direct oxidizing agents in the salt bath without intermediate cooling.
  • a further increase in corrosion resistance is possible if, after the oxidation treatment, mechanical surface treatment (e.g. polishing, lapping, surface grinding) and repeated oxidation are carried out.
  • the corrosion resistance values achieved with this method of operation are comparable to or better than those of high-quality galvanic layers.
  • This object is achieved in that the pretreated components are immersed in a 1-40% solution of a hardenable synthetic resin in water and / or organic solvents and then heat treated at 80 to 200 C for 2 to 30 minutes.
  • a solution is preferably used which contains 5 to 25% by weight of a thermosetting synthetic resin.
  • a thermosetting synthetic resin In addition to epoxy resins, melamine resins, polyester resins and polyurethane resins, alkyd resins, acrylate resins and phenolic resins have proven to be the most suitable for this purpose.
  • the temperature and time of the heat treatment depends on the type of synthetic resin used.
  • the synthetic resins can be used in pure or modified form.
  • the solution is advantageously chosen so that a synthetic resin layer with a thickness of 0.2 to 5 ⁇ m is formed.
  • the aftertreatment of the pretreated components according to the invention surprisingly increases their corrosion resistance quite considerably. Values are achieved that go far beyond the pure protective effect of a thin synthetic resin layer.
  • the corrosion resistance in the salt spray test according to DIN 50021 is increased several times. Even after 3000 hours, several samples in the salt spray test show no corrosion attack (see table). The fatigue strength and wear resistance of the component are retained, the color is not changed.
  • the surface treatment also reduces the surface roughness. This is generally desirable, but it can also be undesirable in individual cases (changed sliding properties, oil adhesion).
  • suitable additives for the immersion bath for the aftertreatment the roughness depth can be changed within wide limits.
  • the additive comes e.g. colloidal silica in question.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Paints Or Removers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

To improve the corrosion resistance, nitrocarburised components of ferrous materials are, after an oxidation treatment, dipped into a solution of a curable synthetic resin and heat-treated at 80 to 200 DEG C.

Description

Die Erfindung betrifft ein Verfahren zur Verbesserung der Korrosionsbeständigkeit nitrocarburierter Bauteile aus Eisenwerkstoffen, die nach der Nitrocarburierung einer oder mehrerer Oxidationsbehandlungen und gegebenenfalls einer mechanischen Bearbeitung unterworfen sind, durch Überziehen mit einer dünnen Schicht eines organischen Materials.The invention relates to a method for improving the corrosion resistance of nitrocarburized components made of ferrous materials which, after the nitrocarburization, are subjected to one or more oxidation treatments and, if appropriate, to mechanical processing, by coating them with a thin layer of an organic material.

Die Korrosionsbeständigkeit von Bauteilen aus Eisenwerkstoffen, die nitrocarburiert und von der Nitrocarburiertemperatur in Wasser oder in Öl abgeschreckt wurden, ist gegenüber dem unbehandelten Zustand erheblich verbessert. Dabei ist es unerheblich, ob die Nitrocarburierbehandlung im Salzbad, im Gas oder im Plasma durchgeführt worden ist.The corrosion resistance of components made of ferrous materials that have been nitrocarburized and quenched from the nitrocarburizing temperature in water or in oil is significantly improved compared to the untreated condition. It is irrelevant whether the nitrocarburizing treatment was carried out in a salt bath, in gas or in plasma.

Eine weitere Steigerung der Korrosionsbeständigkeit kann erzielt werden, wenn im Anschluß an das Nitrocarbuieren eine Oxidationsbehandlung erfolgt. Das kann z.B. geschehen durch eine Wasserdampfbehandlung im Temperaturbereich 500 bis 580° C. Die Oxidation im Anschluß an das Nitrocarburieren kann außerdem in einem oxidierenden Salzbad durchgeführt werden, wie dies beispielsweise in der DE-PS 29 34 113 beschrieben ist.A further increase in the corrosion resistance can be achieved if an oxidation treatment is carried out after the nitrocarburizing. This can e.g. done by steam treatment in the temperature range 500 to 580 ° C. The oxidation after nitrocarburizing can also be carried out in an oxidizing salt bath, as described for example in DE-PS 29 34 113.

Wird die Nitrocarburierung im Salzbad durchgeführt, so wird man den Oxidationsvorgang sofort anschließen, d.h. die Bauteile ohne Zwischenabkühlung direkt vom Nitrocarburier- in das Oxidationssalzbad umhängen. Wird dagegen im Gas oder im Plasma nitrocarburiert, muß im allgemeinen zunächst auf Raumtemperatur abgekühlt und die Oxidation anschließend durch Einhängen in das Salzbad bewirkt werden. Zwar resultiert auch bei dieser Verahrensweise eine erhebliche Steigerung der Korrosionsbeständigkeit, sie ist aber geringer als bei Salzbadnitrocarburierung mit direkter Oxidatikon im Salzbad ohne Zwischenkühlung.If the nitrocarburization is carried out in a salt bath, the oxidation process will be started immediately, i.e. Transfer the components directly from the nitrocarburizing to the oxidizing salt bath without intermediate cooling. If, on the other hand, nitrocarburization is carried out in the gas or plasma, it must generally first be cooled to room temperature and the oxidation then effected by hanging it in the salt bath. Although this procedure also results in a considerable increase in corrosion resistance, it is less than in salt bath nitrocarburization with direct oxidizing agents in the salt bath without intermediate cooling.

Eine weitere Steigerung der Korrosionsbeständigkeit ist möglich, wenn im Anschluß an die Oxidationsbehandlung eine mechanische Oberflächenbearbeitung (z.B. Polieren, Läppen, Gleitschleifen) und eine nochmalige Oxidation erfolgt. Die mit dieser Arbeitsweise erzielten Werte der Korrosionsbeständigkeit (z.B. im Salzsprühtest) sind vergleichbar mit denen qualitativ erstklassiger galvanischer Schichten oder besser als diese.A further increase in corrosion resistance is possible if, after the oxidation treatment, mechanical surface treatment (e.g. polishing, lapping, surface grinding) and repeated oxidation are carried out. The corrosion resistance values achieved with this method of operation (e.g. in the salt spray test) are comparable to or better than those of high-quality galvanic layers.

Aus der EP-PS 0 077 627 ist ein Verfahren bekannt, nitrocarburierte Bauteile aus Eisenwerkstoffen mit einer Oxidschicht zu versehen und sie dann abzuschrecken. Anschließend können die Bauteile mit einem dünnen Wachsüberzug ausgestattet werden. Dieser Wachsfilm bringt in der Praxis allerdings keinen nennenswerten Zuwachs an Korrosionsbeständigkeit.From EP-PS 0 077 627 a method is known for providing nitrocarburized components made of ferrous materials with an oxide layer and then quenching them. The components can then be coated with a thin wax coating. In practice, however, this wax film does not bring any significant increase in corrosion resistance.

Es war daher Aufgabe der vorliegenden Erfindung, ein Verfahren zur Verbesserung der Korrosionsbeständigkeit nitrocarburierter Bauteile aus Eisenwerkstoffen, die nach der Nitrocarburierung einer oder mehrerer Oxidationsbehandlungen und gegebenenfalls einer mechanischen Bearbeitung unterworfen sind, durch Überziehen mit einer dünnen Schicht eines organischen Materials zu entwickeln, das zu einer signifikanten Verbesserung der Korrosionsbeständigkeit führt, ohne die sonstigen mechanischen Eigenschaften und das optische Aussehen zu verändern.It was therefore an object of the present invention to develop a method for improving the corrosion resistance of nitrocarburized components made of ferrous materials which, after the nitrocarburization, are subjected to one or more oxidation treatments and, if appropriate, to mechanical processing, by coating them with a thin layer of an organic material which forms a leads to a significant improvement in corrosion resistance without changing the other mechanical properties and the visual appearance.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die vorbehandelten Bauteile in eine 1-40%ige Lösung eines aushärtbaren Kunstharzes in Wasser und/oder organischen Lösungsmitteln eingetaucht und anschließend 2 bis 30 Minuten bei 80 bis 200 C wärmebehandelt werden.This object is achieved in that the pretreated components are immersed in a 1-40% solution of a hardenable synthetic resin in water and / or organic solvents and then heat treated at 80 to 200 C for 2 to 30 minutes.

Vorzugsweise verwendet man eine Lösung, die 5 bis 25 Gew.% eines wärmeaushärtbaren Kunstharzes enthält. Neben Epoxidharzen, Melaminharzen, Polyesterharzen und Polyurethanharzen haben sich für diesen Anwendungszweck Alkydharze, Acrylatharze und Phenolharze als am geeignetsten erwiesen. Die Temperatur und die Zeit der Wärmebehandlung ist von der Art des verwendeten Kunstharzes abhängig. Die Kunstharze können dabei in reiner oder modifizierter Form angewendet werden. Die Lösung wird vorteilhafterweise so gewählt, daß eine Kunstharzschicht mit einer Dicke von 0,2 bis 5 um entsteht.A solution is preferably used which contains 5 to 25% by weight of a thermosetting synthetic resin. In addition to epoxy resins, melamine resins, polyester resins and polyurethane resins, alkyd resins, acrylate resins and phenolic resins have proven to be the most suitable for this purpose. The temperature and time of the heat treatment depends on the type of synthetic resin used. The synthetic resins can be used in pure or modified form. The solution is advantageously chosen so that a synthetic resin layer with a thickness of 0.2 to 5 µm is formed.

Durch die erfindungsgemäße Nachbehandlung der vorbehandelten Bauteile wird deren Korrosionsbeständigkeit überraschenderweise ganz erheblich gesteigert. Es werden Werte erreicht, die weit über die reine Schutzwirkung einer dünnen Kunstharzschicht hinausgehen. So wird die Korrosionsbeständigkeit im Salzsprühtest nach DIN 50021 um das mehrfache gesteigert. Selbst nach 3000 Stunden zeigen mehrere Proben im Salzsprühtest keinen Korrosionsangriff (siehe Tabelle). Die Dauerfestigkeit und der Verschleißwiderstand des Bauteils bleiben dabei erhalten, die Farbe wird nicht verändert. Durch die Nachbehandlung wird auch die Oberflächenrauhigkeit vermindert. Das ist im allgemeinen erwünscht, kann aber in Einzelfällen auch unerwünscht sein (veränderte Gleiteigenschaften, Ölhaftung). Durch Verwendung geeigneter Zusätze zum Tauchbad für die Nachbehandlung kann die Rauhtiefe innerhalb weiter Grenzen verändert werden. Als Zusatzstoff kommt z.B. hochdisperse Kieselsäure infrage.The aftertreatment of the pretreated components according to the invention surprisingly increases their corrosion resistance quite considerably. Values are achieved that go far beyond the pure protective effect of a thin synthetic resin layer. The corrosion resistance in the salt spray test according to DIN 50021 is increased several times. Even after 3000 hours, several samples in the salt spray test show no corrosion attack (see table). The fatigue strength and wear resistance of the component are retained, the color is not changed. The surface treatment also reduces the surface roughness. This is generally desirable, but it can also be undesirable in individual cases (changed sliding properties, oil adhesion). By using suitable additives for the immersion bath for the aftertreatment, the roughness depth can be changed within wide limits. The additive comes e.g. colloidal silica in question.

Folgende Beispiele sollen das erfindungsgemäße Verfahren näher erläutern:

  • Dabei wurden Proben aus dem Stahl Ck35 mit den Abmessungen 10 mm Durchmesser und einer Länge von 150 mm verwendet. Aus Gründen der statistischen Sicherung wurden pro Test 10 Proben verwendet, die völlig gleichartig behandelt wurden, und zwar jeweils gleichzeitig in einer Charge. Als Korrosionsprüfung diente der Salzsprühtest nach DIN50021, Ausfallkriterium war der erste sichtbare Korrosionspunkt. In der nachstehenden Tabelle ist jeweils der Mittelwert der zehn Proben, die Standardabweichung und der niedrigste und höchste Wert angegeben. Die Prüfung wurde generell nach 3000 Stunden abgebrochen. Proben, die sich nach diesem Zeitpunkt noch korrosionsfrei im Test befanden, wurden bei der Berechnung von Mittelwert und Standardabweichung mit 3000 Stunden angenommen.
    • 1. Die Bauteile wurden ohne Nitrocarburierbehandlung und ohne organischen Überzug dem Salzsprühtest unterzogen.
    • 2. Die nicht vorbehandelten Bauteile wurden 1 Minute in die wässrige Lösung eines Alkydharzes getaucht, 10 Minuten bei 80° getrocknet und 10 Minuten bei 160° C behandelt. Die Alkydharzlösung bestand aus 25 Gewichtsteilen eines epoxidharzmodifizierten Alkydharzes in 280 Gewichtsteilen eines Wasser-Methoxipropoxipropanolgemisches (Verhältnis 20:1).
    • 3. Die nicht vorbehandelten Bauteile wurden 2 Minuten in eine Acrylatharzlösung getaucht, 30 Minuten bei 80° C getrocknet und 10 Minuten bei 100° C behandelt. Die Acrylatharzlösung bestand aus 10 Gewichtsteilen eines Acrylatharzes mit 1,4 % OH-Gruppen in 200 Gewichtsteilen Xylol-Butylacetat (Verhältnis 8:2).
    • 4. Die nicht vorbehandelten Bauteile wurden 5 Minuten in eine Phenolharzlösung aus 10 Gewichtsteilen eines Phenolharzes und 200 Gewichtsteilen Toluol getaucht, 10 Minuten bei 80° C getrocknet und 30 Minuten bei 180° C behandelt.
    • 5. Die Bauteile wurden 90 Minuten bei 580° C in einem Salzbad (37 % Cyanat, 1,3 % Cyanid, Rest Carbonat und Kationen) nitrocarburiert, nach dem Abkühlen 10 Minuten bei 370° C in einem Salzbad aus Alkalihydroxid mit 10 % Natriumnitrat oxidiert und in Wasser von 20 C abgeschreckt.
    • 6. Die nach Beispiel 5 nitrocarburierten Bauteile wurden nach Beispiel 2 in eine Alkydharzlösung getaucht und nachbehandelt.
    • 7. Die nach Beispiel 5 nitrocarburierten Bauteile wurden nach Beispiel 3 in eine Acrylatharzlösung getaucht und nachbehandelt.
    • 8. Die nach Beispiel 5 nitrocarburierten Bauteile wurden nach Beispiel 4 in eine Phenolharzlösung getaucht und nachbehandelt.
    • 9. Die Bauteile wurden wie in Beispiel 5 nitrocarburiert und oxidiert, anschließend durch Gleitschleifen mechanisch bearbeitet und nochmals 10 Minuten im Salzbad oxidiert und in Wasser von 20° C abgeschreckt.
    • 10.Die nach Beispiel 9 vorbehandelten Bauteile wurden nach Beispiel 2 in eine Alkydharzlösung getaucht und nachbehandelt.
    • 11.Die nach Beispiel 9 vorbehandelten Bauteile wurden in Beispiel 3 in eine Acrylatharzlösung getaucht und nachbehandlet.
    • 12.Die nach Beispiel 9 vorbehandelten Bauteile wurden nach Beispiel 4 in eine Phenolharzlösung getaucht und nachbehandelt.
    • 13.Die Bauteile wurden bei 580 in Gas (120 Minuten in einem Gasgemisch aus je 50 Vol.% Ammoniak und Exogas und 60 Minuten in einem Gasgemisch aus je 50 Vol.% Ammoniak und Endogas) nitrocarburiert. Das Abkühlen erfolgte in Reinststickstoff. Danach wurde 60 Minuten bei 550° C in Wasserdampf oxidiert und langsam abgekühlt.
    • 14.Die nach Beispiel 13 nitrocarburierten und oxidierten Bauteile wurden nach Beispiel 2 in eine Alkydharzlösung getaucht und nachbehandelt.
    • 15.Die nach Beispiel 13 vorbehandelten Bauteile wurden nach Beispiel 3 in eine Acrylatharzlösung getaucht und nachbehandelt.
    • 16.Die nach Beipiel 13 vorbehandelten Bauteile wurden nach Beispiel 4 in eine Phenolharzlösung getaucht und nachbehandelt.
    Figure imgb0001
The following examples are intended to explain the process according to the invention in more detail:
  • Samples from the steel Ck35 with the dimensions 10 mm diameter and a length of 150 mm were used. For statistical reasons, 10 samples were used per test, which were treated in exactly the same way, each simultaneously in one batch. As a corrosion test served the salt spray test according to DIN50021, failure criterion was the first visible corrosion point. The table below shows the mean of the ten samples, the standard deviation and the lowest and highest values. The test was generally canceled after 3000 hours. Samples that were still free of corrosion after this point in time were assumed to be 3000 hours when calculating the mean and standard deviation.
    • 1. The components were subjected to the salt spray test without nitrocarburizing treatment and without an organic coating.
    • 2. The non-pretreated components were immersed in the aqueous solution of an alkyd resin for 1 minute, dried at 80 ° for 10 minutes and treated at 160 ° C. for 10 minutes. The alkyd resin solution consisted of 25 parts by weight of an epoxy-modified alkyd resin in 280 parts by weight of a water-methoxy propoxy propanol mixture (ratio 20: 1).
    • 3. The non-pretreated components were immersed in an acrylic resin solution for 2 minutes, dried at 80 ° C for 30 minutes and treated at 100 ° C for 10 minutes. The acrylate resin solution consisted of 10 parts by weight of an acrylate resin with 1.4% OH groups in 200 parts by weight of xylene-butyl acetate (ratio 8: 2).
    • 4. The non-pretreated components were immersed in a phenolic resin solution consisting of 10 parts by weight of a phenolic resin and 200 parts by weight of toluene for 5 minutes, dried at 80 ° C. for 10 minutes and treated at 180 ° C. for 30 minutes.
    • 5. The components were nitrocarburized for 90 minutes at 580 ° C in a salt bath (37% cyanate, 1.3% cyanide, remainder carbonate and cations), after cooling for 10 minutes at 370 ° C in a salt bath made of alkali hydroxide with 10% sodium nitrate oxidized and quenched in water at 20 C.
    • 6. The components nitrocarburized according to Example 5 were immersed according to Example 2 in an alkyd resin solution and aftertreated.
    • 7. The components nitrocarburized according to Example 5 were immersed in Example 3 in an acrylic resin solution and aftertreated.
    • 8. The components that were nitrocarburized according to Example 5 were immersed in a phenolic resin solution according to Example 4 and aftertreated.
    • 9. The components were nitrocarburized and oxidized as in Example 5, then mechanically processed by slide grinding and oxidized for another 10 minutes in a salt bath and quenched in water at 20 ° C.
    • 10. The components pretreated according to Example 9 were immersed in an alkyd resin solution and post-treated according to Example 2.
    • 11. The components pretreated according to Example 9 were immersed in Example 3 in an acrylate resin solution and aftertreated.
    • 12. The components pretreated according to Example 9 were immersed in a phenolic resin solution and post-treated according to Example 4.
    • 13. The components were nitrocarburized at 580 in gas (120 minutes in a gas mixture of 50 vol.% Ammonia and exogas and 60 minutes in a gas mixture of 50 vol.% Ammonia and endogas). The cooling took place in pure nitrogen. The mixture was then oxidized in steam at 550 ° C. for 60 minutes and slowly cooled.
    • 14. The components which were nitrocarburized and oxidized according to Example 13 were immersed in an alkyd resin solution and post-treated according to Example 2.
    • 15. The components pretreated according to Example 13 were immersed in an acrylate resin solution and post-treated according to Example 3.
    • 16. The components pretreated according to Example 13 were immersed in a phenolic resin solution and aftertreated in accordance with Example 4.
    Figure imgb0001

Claims (3)

1. Verfahren zur Verbesserung der Korrosionsbeständigkeit nitrocarburierter Bauteile aus Eisenwerkstoffen, die nach der Nitrocarburierung einer oder mehrerer Oxidationsbehandlungen und gegebenenfalls einer mechanischen Bearbeitung unterworfen sind, durch Überziehen mit einer dünnen Schicht eines organischen Materials, dadurch gekennzeichnet, daß die vorbehandelten Bauteile in eine 1 bis 40%ige Lösung eines aushärtbaren Kunstharzes in Wasser und/oder organischen Lösungsmitteln eingetaucht und anschließend 2 bis 30 Minuten bei 80 bis 200 C wärmebehandelt werden.1. A method for improving the corrosion resistance of nitrocarburized components made of ferrous materials, which are subjected to one or more oxidation treatments and possibly mechanical processing after the nitrocarburization, by coating with a thin layer of an organic material, characterized in that the pretreated components in a 1 to 40 % solution of a curable synthetic resin immersed in water and / or organic solvents and then heat-treated at 80 to 200 C for 2 to 30 minutes. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Lösung 5 bis 25 Gew.% eines wärmeaushärtbaren Kunstharzes enthält.2. The method according to claim 1, characterized in that that the solution contains 5 to 25% by weight of a thermosetting synthetic resin. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Kunstharz Alkydharze, Acrylharze und Phenolharze verwendet werden.3. The method according to claim 1 or 2, characterized in that alkyd resins, acrylic resins and phenolic resins are used as synthetic resin.
EP91113185A 1990-08-27 1991-08-06 Process for improving the corrosion resistance of nitrocarbonized steel components Expired - Lifetime EP0472957B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4027011 1990-08-27
DE4027011A DE4027011A1 (en) 1990-08-27 1990-08-27 METHOD FOR IMPROVING THE CORROSION RESISTANCE OF NITROCARBURATED COMPONENTS MADE OF IRON MATERIALS

Publications (2)

Publication Number Publication Date
EP0472957A1 true EP0472957A1 (en) 1992-03-04
EP0472957B1 EP0472957B1 (en) 1995-10-11

Family

ID=6412980

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91113185A Expired - Lifetime EP0472957B1 (en) 1990-08-27 1991-08-06 Process for improving the corrosion resistance of nitrocarbonized steel components

Country Status (9)

Country Link
US (1) US5288340A (en)
EP (1) EP0472957B1 (en)
JP (1) JPH04244261A (en)
AT (1) ATE129024T1 (en)
BR (1) BR9103660A (en)
CA (1) CA2049829C (en)
DE (2) DE4027011A1 (en)
ES (1) ES2077741T3 (en)
HK (1) HK31297A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006054280A1 (en) * 2006-11-17 2008-05-29 Durferrit Gmbh Method for increasing corrosion resistance of nitrocarburized and oxidized surfaces of steel components, comprises degassing the surfaces of the components in a vacuum and applying corrosion protection agent on the component surface
DE102007060085A1 (en) * 2007-12-13 2009-06-18 Durferrit Gmbh Process for producing corrosion-resistant surfaces of nitrided or nitrocarburised steel components
FR2925524A1 (en) * 2007-12-21 2009-06-26 Durferrit Gmbh Increasing corrosion resistance of nitrocarbide surface/nitrocarbide and oxide of steel piece, by degassing surface of piece/construction element under vacuum, exposing piece to gaseous atmosphere, and applying protection agent on surface

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264317B1 (en) 1999-11-19 2001-07-24 Lexmark International, Inc. Corrosion resistant printhead body for ink jet pen
DE10126937C2 (en) * 2001-06-01 2003-11-27 Federal Mogul Burscheid Gmbh Mechanical seal with an oxide-nitride composite layer
US7622197B2 (en) * 2006-11-20 2009-11-24 Ferroxy-Aled, Llc Seasoned ferrous cookware
DE102013226091A1 (en) 2013-12-16 2015-06-18 Robert Bosch Gmbh Cylinder drum of a hydrostatic axial piston machine with a wear protection layer
FR3030578B1 (en) * 2014-12-23 2017-02-10 Hydromecanique & Frottement PROCESS FOR SUPERFICIAL TREATMENT OF A STEEL PART BY NITRURATION OR NITROCARBURING, OXIDATION THEN IMPREGNATION

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0053521A2 (en) * 1980-12-03 1982-06-09 LUCAS INDUSTRIES public limited company Improvements in metal components
EP0217421A2 (en) * 1983-04-14 1987-04-08 LUCAS INDUSTRIES public limited company Corrosion resistant steel components and method of manufacture thereof
WO1987005335A1 (en) * 1986-02-28 1987-09-11 Fox Patrick L Shallow case hardening and corrosion inhibition process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876453A (en) * 1971-12-25 1975-04-08 Riken Light Metal Ind Co Method for painting aluminium or aluminium-based alloy material
DE2934113C2 (en) * 1979-08-23 1985-05-09 Degussa Ag, 6000 Frankfurt Process for increasing the corrosion resistance of nitrided components made of ferrous materials
DE3123763C1 (en) * 1981-06-16 1982-12-09 Th. Goldschmidt Ag, 4300 Essen Method for applying a basecoat to metal surfaces
US4496401A (en) * 1981-10-15 1985-01-29 Lucas Industries Corrosion resistant steel components and method of manufacture thereof
US4748055A (en) * 1986-01-13 1988-05-31 Ashland Oil, Inc. Method for forming a self-healing corrosion preventative film
US5037491A (en) * 1986-02-28 1991-08-06 Fox Patrick L Shallow case hardening and corrosion inhibition process
US4950365A (en) * 1988-12-22 1990-08-21 Vac-Tec Systems, Inc. Corrosion free hard coated metal substrates
US5104742A (en) * 1989-05-10 1992-04-14 Ashland Oil, Inc. Water based coating for roughened metal surfaces

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0053521A2 (en) * 1980-12-03 1982-06-09 LUCAS INDUSTRIES public limited company Improvements in metal components
EP0217421A2 (en) * 1983-04-14 1987-04-08 LUCAS INDUSTRIES public limited company Corrosion resistant steel components and method of manufacture thereof
WO1987005335A1 (en) * 1986-02-28 1987-09-11 Fox Patrick L Shallow case hardening and corrosion inhibition process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006054280A1 (en) * 2006-11-17 2008-05-29 Durferrit Gmbh Method for increasing corrosion resistance of nitrocarburized and oxidized surfaces of steel components, comprises degassing the surfaces of the components in a vacuum and applying corrosion protection agent on the component surface
DE102006054280B4 (en) * 2006-11-17 2011-01-05 Durferrit Gmbh Method and device for increasing the corrosion resistance of nitrocarburised or nitrocarburised and oxidized surfaces of steel components
DE102007060085A1 (en) * 2007-12-13 2009-06-18 Durferrit Gmbh Process for producing corrosion-resistant surfaces of nitrided or nitrocarburised steel components
DE102007060085B4 (en) * 2007-12-13 2012-03-15 Durferrit Gmbh Process for producing corrosion-resistant surfaces of nitrided or nitrocarburised steel components and nitrocarburised or nitrided steel components with oxidised surfaces
FR2925524A1 (en) * 2007-12-21 2009-06-26 Durferrit Gmbh Increasing corrosion resistance of nitrocarbide surface/nitrocarbide and oxide of steel piece, by degassing surface of piece/construction element under vacuum, exposing piece to gaseous atmosphere, and applying protection agent on surface

Also Published As

Publication number Publication date
JPH04244261A (en) 1992-09-01
ES2077741T3 (en) 1995-12-01
DE4027011A1 (en) 1992-03-05
HK31297A (en) 1997-03-21
CA2049829A1 (en) 1992-02-28
EP0472957B1 (en) 1995-10-11
BR9103660A (en) 1992-05-19
DE4027011C2 (en) 1992-10-29
DE59106662D1 (en) 1995-11-16
CA2049829C (en) 2001-01-16
US5288340A (en) 1994-02-22
ATE129024T1 (en) 1995-10-15

Similar Documents

Publication Publication Date Title
DE3004927C2 (en)
DE69737195T2 (en) Solution and method for the production of protective layers on metals
DE972727C (en) Process for treating metal surfaces prior to applying coatings
DE2325138B2 (en) Process for the formation of protective coatings on metal substrates
DE1259174B (en) Improved process and a surface treatment agent for the production of deep black copper oxide surfaces
DE2100021A1 (en) Process for applying phosphate layers to steel, iron and zinc surfaces
DE19706482B4 (en) A method of surface treating a metal body and composite produced by the method
EP0472957A1 (en) Process for improving the corrosion resistance of nitrocarbonized steel components
DE2218899C2 (en) Aqueous, chromate-depositing composition and its use
DE3244715A1 (en) METHOD FOR PHOSPHATING METAL SURFACES, AND BATH SOLUTIONS SUITABLE FOR THIS
DE809007C (en) Process for the treatment of surfaces of copper and copper alloys
EP0459549B1 (en) Production of conversion coatings on zinc or zinc alloy surfaces
DE1771924A1 (en) Process for applying a phosphate coating to steel
DE1521657A1 (en) Solutions for the chromating of zinc and its alloys
EP0126498B1 (en) Process for the corrosion protection of metals
DE2443885C3 (en) Process for the surface treatment of iron alloys by galvanic deposition of a copper-tin alloy and subsequent thermal diffusion treatment
DE3429279C2 (en)
DE2749476A1 (en) PROCESS FOR COATING METAL PARTS
DE1034450B (en) Process for preparing metal surfaces for the application of enamels
DE3222140C2 (en) Application of the dip galvanizing process to the production of corrosion-protected aluminum components and corrosion-protected aluminum components
DE2263038C3 (en) Process for coating aluminum or aluminum alloy material
DE976692C (en) Process for applying oxalate coatings to metals
DE706347C (en) Process for the treatment of unpainted coatings made of so-called white brass
DE2134412A1 (en) CHROMATE TREATED METAL SHEET AND METHOD FOR MANUFACTURING IT
DE896892C (en) Process for the refinement of iron and steel by chemical surface treatment and painting

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19920813

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 129024

Country of ref document: AT

Date of ref document: 19951015

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59106662

Country of ref document: DE

Date of ref document: 19951116

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077741

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960111

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960723

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980301

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DEGUSSA-HUELS AKTIENGESELLSCHAFT TRANSFER- HOUGHTO

Ref country code: CH

Ref legal event code: PFA

Free format text: DEGUSSA AKTIENGESELLSCHAFT TRANSFER- DEGUSSA-HUELS AKTIENGESELLSCHAFT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010713

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010716

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010802

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010803

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020807

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020806

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100901

Year of fee payment: 20

Ref country code: AT

Payment date: 20100812

Year of fee payment: 20

Ref country code: DE

Payment date: 20100823

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59106662

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59106662

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110807