EP0466874A1 - Electrostatic radial field micromotor obtained by photolithographic micromanufacture and method of manufacture thereof - Google Patents

Electrostatic radial field micromotor obtained by photolithographic micromanufacture and method of manufacture thereof

Info

Publication number
EP0466874A1
EP0466874A1 EP91903142A EP91903142A EP0466874A1 EP 0466874 A1 EP0466874 A1 EP 0466874A1 EP 91903142 A EP91903142 A EP 91903142A EP 91903142 A EP91903142 A EP 91903142A EP 0466874 A1 EP0466874 A1 EP 0466874A1
Authority
EP
European Patent Office
Prior art keywords
electrodes
counter
rotor
micromotor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP91903142A
Other languages
German (de)
French (fr)
Inventor
Lionel Paratte
Etienne Bornand
Georges-André RACINE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asulab AG
Original Assignee
Asulab AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH42690A external-priority patent/CH680962A5/en
Priority claimed from FR9002385A external-priority patent/FR2658960A1/en
Application filed by Asulab AG filed Critical Asulab AG
Publication of EP0466874A1 publication Critical patent/EP0466874A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/004Electrostatic motors in which a body is moved along a path due to interaction with an electric field travelling along the path

Definitions

  • the invention relates to an electrostatic micromotor with radial field, produced by a photolithographic microfabrication technique.
  • This type of motor is called a micromotor because of the very small dimensions of some of its components, which are close to a micron (1 • 10 "6 meter).
  • This micromotor is similar to that used in the production of integrated electronic circuits. This technique consists in forming by chemical vapor deposition different layers which are then structured by means of masks of appropriate shape, associated with chemical attacks or with plasma.
  • micromotors thanks to their dimensions, can be used in very diverse applications where force transducers controlled by an electrical signal must be extremely miniaturized.
  • watchmaking robotics, IT, electronic equipment for the reproduction of sound and image, aeronautics and aerospace, but also biomedical engineering .
  • An engine of this type is described in the publication of the minutes of the IEEE conference of the group “Micro Electro Mechanical Systems” which was held from February 20 to 22, 1989 in Sait Lake City, USA.
  • This motor comprises, on the one hand, a stator provided with several electrodes angularly offset around an axis of rotation of the micromotor, and on the other hand, an electrically conductive rotor comprising four arms, one end of which forms a counter-electrode is suitable coming to evolve next to each stator electrode.
  • the stator electrodes which are made of polysilicon are structured on a wafer formed of a substrate coated with dielectric layers, and they are electrically connected to a control circuit.
  • the rotor which is also made of polysilicon has a guide part from which extend four arms. One of the counter electrodes is formed at the end of each arm.
  • the guide part, the arms and the counter-electrodes are made in the same median plane which is perpendicular to the axis of rotation of the rotor and which coincides with the median plane of the stator electrodes.
  • This plane therefore forms an electrostatic field plane in which the rotor pivots which, for this purpose, is engaged with a slight radial clearance via its guide portion, on a central ring forming a bearing likewise made of polysilicon and capable of to be supplied electrically by a ground plane formed between this ring and one of the insulating layers of the substrate.
  • this micromotor has no arrangement allowing it to both drive a mechanism, that is to say to transmit this torque.
  • the object of the present invention is to remedy these drawbacks by proposing an electrostatic micromotor produced by photolithographic microfabrication comprising means making it possible both to transmit the driving torque to an external mechanism and to raise this torque to a sufficient level.
  • an electrostatic micromotor with a radial field of the type comprising: a stator comprising at least one group of several electrodes angularly displaced around an axis of rotation of the micromotor, these electrodes which are electrically connected to a control circuit being supported by a substrate, a rotor, preferably made at least in part of an electrically conductive material, comprising at least one counter electrode capable of coming to evolve opposite each electrode of the stator, substantially in the same plane called the electrostatic field plane, the clearance left between said counter-electrode and the corresponding electrodes forming an air gap, a ring forming a bearing which is capable of being electrically supplied and which is integral with said substrate, said rotor being guided in rotation, and optionally in translation, around this ring by means of a guide part of which said counter-electrode is integral, characterized in that said rotor comprises at least one bridge element which is disposed at- above the electrostatic field plane, this element which constitutes a raised arm of
  • this bridge element formed at a higher level with respect to the stator electrodes makes it possible to have on the same rotor arm several counter-electrodes arranged in a comb and cooperating interdigitatively with other groups of electrodes provided on the stator. This increases the number of air gaps and substantially corresponds to the useful torque.
  • this bridge element makes it possible to provide on the rotor a torque transmission element constituted by a pinion or by a toothed wheel.
  • this bridge-forming element allows the combination of the aforementioned characteristics, which makes it possible to respond simultaneously to the two problems posed (transmission and increase in torque), without increasing the thickness of the micromotor and at lower cost thanks to a limited number of steps in the photolithographic manufacturing process.
  • the present invention also relates to a process for photolithographic realization of an electrostatic motor, characterized in that it consists: a) - preferably to provide substantially over the entire surface of a substrate, a first electrically conductive layer intended to supply a central ring capable of guiding and contacting a guide part of a rotor of the micromotor, b) - providing at least one first electrically insulating layer on this conductive layer, c) - structuring conductive tracks on the first insulating layer, these tracks being intended to supply stator electrodes via a micromotor control circuit, d) - to deposit at least partially on the preceding layers preferably a layer having a protective function and a function of reducing friction and electrical insulation , e) - to structure, with the interposition of a first sacrificial layer, at least one group of angular electrodes ent deca ⁇ lated around an axis of rotation of the micromotor, as well as simultaneously the guide portion of the rotor and at least one counter electrode of the
  • FIG. 1 is a top view of a first embodiment of the micromotor according to the invention equipped with power supply terminals;
  • Figure 2 is a half sectional view taken along line II-II of Figure 1;
  • Figure 3 is a partial top view of a second embodiment of the micromotor according to the invention;
  • Figure 4 is a top view of the micromotor according to the invention, according to a third embodiment;
  • Figure -5 is a half-section view taken along line VV of Figure 4;
  • - Figures 6 and 7 are respectively half-views in section of a fourth and a fifth embodiment of the invention;
  • Figure 8 is a top view of a sixth embodiment of the micromotor according to the invention;
  • Figure 9 is a half-sectional view taken along line IX-IX of Figure 8;
  • Figures 10, 11 and 12 are respectively half-views in section of a seventh, an eighth and a ninth embodiment of the invention;
  • Figure 9 is a half-sectional view taken along line IX-IX of Figure 8;
  • This radial field electrostatic micromotor comprises a stator 1 which is provided with several electrodes 4 supported by a plane substrate 2 of substantially rectangular shape.
  • Each group of electrodes G1, £ 2 and G3 comprises several electrodes 4 in the form of a circular sector which are arranged one next to the other in a concentric manner substantially at the same distance from an axis of rotation A of the rotor.
  • the three groups of electrodes G1, G2, and G3 are arranged coaxially, their common axis being coincident with the axis of rotation A of the micromotor. It will also be observed that this motor comprises several sets of electrodes E1 to E6, formed by neighboring electrodes but which belong to different groups and which are arranged opposite one another and coincidentally, in the same geometric sector of the stator.
  • the micromotor shown in FIG. 1 comprises three groups of electrodes G1, G2 and G3 while it comprises six sets of electrodes E1 to E6 respectively.
  • All the electrodes 4 within the same set E are n electrically connected to each other by a common supply track 6 which is connected to a supply terminal 8 capable of being connected to an electronic control circuit, not shown ⁇ smelled.
  • the feed tracks 6 comprise two characteristic parts 6a and 6b, the part 6a on which the corresponding supply terminal 8 rests having in plan a substantially rectangular shape, while the part 6b, which allows the connection between the electrodes 4 and the part 6a, has a segment shape of a width much smaller than that of the part 6a.
  • the width of the part 6b directly placed under the sets of electrodes E1 to E6 is much smaller than the arc length of each electrode 4.
  • the electrodes 4 are connected to the segment 6b of their supply track 6 by means of a support 10 in the form of a circular sector rising in a direction normal to the substrate 2.
  • This support 10 has a width and a length arc infé ⁇ laughing at the electrode 4 which it supports, the pairs of supports 10 - electrodes 4 as well as the segment 6b of the corresponding supply track 6 being substantially centered on the same radius of the rotor.
  • the supports 10 of the same set of electrodes E are thus arranged on the same geometric sector.
  • a rotor 20 which consists of a guide part 22 forming a hub which has substantially the shape of an annular disc from which extend, in a co nary manner and towards the 'outside the axis of rotation A, four arms 2 ' 4 angularly offset from each other by an angle of 90 °.
  • Each arm 24 comprises in the vicinity of its free end 24a a number of counter-electrodes 26 having a configuration identical to that of the electrodes 4, namely in the circular sector.
  • each group gl to g4 comprises several counter-electrodes 26 arranged on the same circumference but angularly offset from one another, while the assemblies el to e4 respectively comprise the counter-electrodes 26 formed inside the same geometric sector, that is to say the counter-electrodes 26 of different groups which are substantially centered on the same radius and which are therefore arranged opposite one another, substantially coincidentally.
  • this rotor comprises four groups gl to g4 and four sets el to e4 of counter-electrodes 26.
  • the rotor 20, which is shaped to be able to rotate relative to the stator 1, is guided in rotation by a ring or button 30 which forms a bearing and whose free end carries a collar 32 which traps the rotor 20 by limiting the axial displacement of the guide portion 22 which is mounted with a slight clearance ⁇ on the outer cylindrical periphery 34 of this ring.
  • the ring 30 is integral with the substrate 2 and is anchored securely thereon. Being made of an electrically conductive material, it can be supplied electrically via a ground plane 36 which is connected to a supply terminal 38 externally accessible to be connected to the electronic control circuit, not shown.
  • the guide portion 22 of the rotor 20 comprises, on its face 22b disposed opposite the stator 1, protruding elements 23 suscep ⁇ tible to come into contact on one of the face FI of the stator 1.
  • the stator 1 is made up of a stack of several layers, called thin layers, which are either conductive or insulating, these layers as well as all the other constituent elements tifs of the micromotor being produced by a photolithographic microfabrica ⁇ tion process called surface micromachining, the steps of which will be explained in more detail below.
  • this stator 1 can be defined as a pellet (since its dimensions are extremely small) laminated in its thickness. Its dimensions
  • the electrodes 4 of the stator 1 are all supported by a support 10 projecting from the pellet P in a direction parallel to the axis of rotation A of the micromotor, these electrodes 4 are all located at a distance D from the face FI, in a same plane called the PCE electrostatic field plane.
  • the counter-electrodes 26 of the rotor 20 are connected to the arm 24 which supports them respectively by means of a connecting lug 28 extending from the corresponding arm 24 towards the face FI of the pellet P.
  • the counter-electrodes 26 are therefore formed on the rotor 20 so that they can come to be placed in the electrostatic field plane PCE, in particular during the excitation of the electrodes 4 by the electronic circuit of micromotor control.
  • FIGS. 1 and 2 it will be noted that the radial space 37 which is left between two adjacent electrodes 4 of the same assembly E is such that it makes it possible to accommodate a counter-electrode 26 of the rotor 20.
  • the counter electrodes 26 of the rotor 20 are engaged on either side of the electrodes 4 of the rotor and are able to come to evolve opposite each electrode 4 of one or more groups G1 to G3, to allow the rotor 20 to be driven in rotation. It will therefore be noted that, thanks to this construction, a structure in the form of an interdigitated fine comb has been constituted.
  • each arm 24 is made up of several elements forming a bridge 40 which are arranged above the PCE elec ⁇ trostatic field plane.
  • each arm 24 is formed over its entire length essentially by four elements forming a bridge 40a, 40b, 40c and 40d formed one in the extension of the other substantially on the same geometric axis corresponding to the one of the radius of the rotor 20.
  • the first elements 40a connect the guide part 22 to the counter-electrodes 26 of the first group of counter-electrodes gl which is located inside the circle formed by the first group of electrodes Gl.
  • first elements 40a are connected to the periphery of the guide part 22 by the intermediary of connecting lugs 28 which are anchored on the face 22a of the guide part 22, opposite the pellet P which forms the stator.
  • the other end of these first bridge elements 40a supports under it the counter electrode 26 of the first group of counter electrodes gl, while it is extended radially to the rotor by a second bridge element 40 b at the end of which s 'extends normally another connecting tab 28 which is anchored solid ⁇ ment on one of the counter electrodes 26 of the second group g2.
  • each arm 24 two other elements forming bridge 40c and 40d which respectively support the counter-electrodes 26 of the third and fourth groups of counter-electrodes g3 and g4.
  • the four arms 24 are in this embodiment arranged completely outside the electrostatic field plane PCE in part in a raised plane PS substantially parallel to the latter.
  • the raised plane PS substantially coincides with the plane in which the collar 32 of the ring 30 is formed.
  • Each arm 24 therefore consists of two types of bridge elements 40, the first type 40a consisting of a transverse beam 42 which is located in the upper plane PS and at the two ends of which extend two connecting lugs respectively. 28.
  • the second type of bridge element represented by elements 40b to 40d, consists of a beam 42 made integrally with the previous one and comprising only one connecting lug 28.
  • the connecting lugs 28 of these two types of bridge elements also all come in one piece with their corresponding beam 42, while they are anchored to the underlying element (to the guide part 22 or to a counter-electrode 26) during the photolithographic production process which will be explained below.
  • the bridge elements 40a to 40d, the guide portion 22, the counter electrodes 26, the electrodes 4 with their support 10, the electrical supply tracks 6, the supply terminals 8, 38 and the ring forming a bearing 30 are made of a polycrystal such as polysilicon.
  • These elements could be made of another conductive material or a metallic material such as tungsten, chromium, aluminum or another alloy.
  • the substrate 2 it is preferably made of semiconductor silicon, but it can also be made of another crystalline semiconductor material such as quartz, diamond or gallium arsenide.
  • the ground plane 36 which is formed substantially over the entire surface of the substrate 2 consists of a portion of the silicon of the substrate which is electrically doped. Above this ground plane 36, substantially over the entire substrate 2, a layer 50 of silicon dioxide (SiO) is formed, forming an electrically insulating layer, on the one hand between the rotor 20 and the substrate 2, and d on the other hand, between the electrodes 4 and the substrate 2. Above this this layer 50 is formed a first layer 52 of silicon nitride (S ⁇ ' 3 N 4 ) on which the electrical supply tracks are structured 6.
  • a second layer of silicon nitride 54 allowing inter alia to protect the layer of silicon dioxide 50 during chemical attacks, but also to prevent electrical breakdown between the rotor 20 and the substrate 2.
  • the supply terminals 8 and 38 are moreover covered with an ine layer aluminum 56.
  • FIG. 3 represents a second embodiment of the micromotor according to the invention
  • the rotor 60 has only one arm 24 in the vicinity of the free end of which are provided as a "set" four counter-electrodes 26.
  • This rotor 60 therefore comprises only one set ell of counter-electrodes 26, this micromotor also comprising several groups and several sets of electrodes 4, namely three groups G1, G2, G3 and six assemblies El to E6 partially shown as shaped as in the first embodiment.
  • the electrical supply of the ring 30 via the ground plane 36 and the power supply terminal 38 is optional, it is however essential in this second embodiment to allow the micromotor operation.
  • the rotor 70 of this micromotor has four arms 74 but it could consist of a single arm, as shown in FIG. 3.
  • the micromotor according to this third embodiment only comprises one group of counter-electrodes g31 and only two groups of electrodes G31 and G32 respectively. It also includes six sets of electrodes E31 to E36 respectively. However, the rotor 70 does not have a characteristic counter electrode assembly since each arm 74 has only one counter electrode 26. In this embodiment, each set of electrodes E31 to E36 respectively comprises two electrodes 4.
  • the arms 74 are formed .respectively of a single element forming a bridge 40a, one end of which is connected to the guide part 22 by a connecting lug 28, while the other opposite end which is located at the outside the first group of electrodes G31, between the latter and the second group G32, carries a counter-electrode 26 by means of another connecting lug 28.
  • each element forming a bridge 40a partially overlaps the first group ⁇ 'electrode G31.
  • the arrangement of the first and second groups of electrodes G31 and G32 arranged coaxially and between which the counter-electrode 26 formed at the end of each arm 74 moves makes it possible to obtain, for each arm 74, a second air gap EF32 (in addition to an air gap EF31) which already increases the transmissible mechanical torque of the micromotor.
  • the arm 84 has two bridge elements 40a, 40b respectively, the second bridge element 40b being formed in the extension of the first 40a, as if it were attached to the element forming bridge 40a of the embodiment described above.
  • each arm 84 has two counter electrodes 26, so that this micromotor comprises two groups of electrodes G41 and G42 associated with two groups of counter electrodes g41 and g42 to constitute, per arm 84, three air gaps EF41 to EF43.
  • K arms K x (2 n-1) air gaps.
  • the micromotor according to this fifth embodiment comprises n + 1 groups of electrodes G51 to G53 which form two by two an annular electrostatic field zone in which the counter-electrodes 26 of one of the two groups g51 and g52 move.
  • one or more bridge elements 40a, 40b are provided for each arm, each associated with a single counter-electrode 26 cooperating electrostatically, sometimes with two groups of electrodes between which it operates, sometimes with a single (G43) outside of which it is arranged relative to the axis of rotation A of the rotor.
  • the rotor comprises at least one bridge element which is disposed above the PCE electrostatic field plane to form a raised arm of the rotor able to overlap at least one group of electrodes in s extending beyond it.
  • each element forming a bridge brings the counter-electrode which it carries outside the circle formed by this group.
  • each bridge-forming element constituting a raised arm is capable of carrying an electrically functional member, namely a counter-electrode, capable of cooperating with one or more complementary members, namely one or more electrodes, situated in the plane PCE electrostatic field sensor.
  • each arm 104 is constituted by an extension 105 of the guide part 22, which comes integrally with the latter and which is formed in the same plane as the latter.
  • a counter-electrode 26 also coming in one piece with this extension 105 and also made in the same plane.
  • This arm 104 comprises a single bridge element 40a, the first end of which is anchored on the counter-electrode 26 of the first group g61 by means of a connecting lug 28, and the second end of which is anchored on a counter - additional electrode, said second counter electrode.
  • This second counter electrode belongs to a second group of g62 counter electrodes, the connection between the beam 42 of the bridge element 40a and this second counter-electrode being produced by means of a connecting tab 28.
  • These two groups of counter-electrodes g61 and g62 are arranged on either side other of a single group of electrodes G61, so that two air gaps EF61 and EF62 have been formed per arm 104.
  • n bridge element (s) 40a comprising n respectively are provided +1 counter-electrodes 26 cooperating with n group (s) of electrodes G61 to form 2 xn air gaps. More particularly for the entire engine which comprises K arms 104, for n element (s) forming a bridge, there are K x 2 x air gaps.
  • a seventh embodiment of the micromotor according to the invention shown in FIG. 10 as in the previous embodiment, only one bridge element 40a per arm 114 of the rotor 110 has been provided.
  • This element 40a has two counter electrodes 26, arranged at each of its ends.
  • the micromotor also comprises two groups of counter electrodes g71 and g72, but which are here associated with two groups of electrodes G71 and G72.
  • three air gaps EF71 to EF73 were formed per arm.
  • n bridge elements comprising respectively n + 1 counter-electrodes cooperating with n + 1 groups of electrodes to form 2 x n + 1 air gaps.
  • K x (2 x n + 1) air gaps for the micromotor, we obtain K x (2 x n + 1) air gaps.
  • a second bridge element 40b is provided for each arm 124 which has at its end a third counter-electrode 26.
  • a third is arranged group of g83 counter electrodes.
  • two bridge elements 40a and 40b are provided, associated with three counter-electrodes 26 forming on the whole micromo ⁇ tor three groups of counter-electrodes g ⁇ l to g83.
  • these three counter-electrodes 26 cooperate with two groups of electrodes G ⁇ l and G82, which forms four air gaps.
  • each arm 124 there are provided n bridge elements associated with n + 1 counter-electrodes cooperating with n groups of electrodes which form per arm 2 xn air gaps and for the micromotor K x 2 xn air gaps.
  • the terminal counter electrode of the group g83 which is formed at the free end of the second bridge element 40b is arranged outside the second group of electrodes G82.
  • This design is analogous to that of the embodiment of FIGS. 8 and 9 in which the additional counter electrode of the second group g62 is arranged outside the single group of electrodes G61.
  • each arm 134 comprises two bridge elements 40a and 40b associated with three counter electrodes 26 which cooperate here with three groups of electrodes G91, G92 and G93 respectively.
  • n bridge elements have been arranged which respectively have n + 1 counter-electrodes cooperating with n + 1 groups of electrodes to form 2 x n + 1 entre ⁇ irons.
  • the rotor 140 comprises a pinion 151 shaped to be able to mesh with a wheel 152 of a drive mechanism, not shown.
  • the pinion 151 is made integral with the guide portion 22 of the rotor 150 by means of four bridge elements 40e angularly offset from each other by approximately 90 °.
  • the bridge element 40e consists of a portion of beam 42a of very short length extending transversely to the axis A and secured to a connecting lug 28 anchored on the upper face of the guide portion 22.
  • the pinion 151 and the beam portion 42a of which it is integral, as well as the connecting lug 28, are made of material and can be structured , as will be understood below, during the same manufacturing step.
  • the bridge element 40e which rises above the electrostatic field plane PCE carries the pinion 151 which forms a mechanically functional element capable of cooperating with a complementary member constituted by the wheel 152 of the mechanism to be driven, this complementary member 152 being located outside the electrostatic field plane PCE, inside the three groups of electrodes 5 G101 to G103 and of the four groups of counter electrodes glOl to gl04.
  • the connecting lug 28 is formed directly under the pinion 151, in line with the latter, the beam part 42a being omitted.
  • FIGS. 15 and 15a represent an eleventh embodiment of the micromotor according to the invention, in which each arm 154 has at its free end, beyond the counter-electrodes 26, an additional bridge element 40f which comprises at its end a wheel 161 intended to mesh with a pinion 162 of a mechanism to be driven.
  • the bridge element 40f has a length approximately three times greater than the bridge element 40a which supports the two counter-electrodes 26 of the first and second groups of counter-electrodes glll and gll2 (the configuration of this motor being close to that of the embodiment of Figures 8 and 9).
  • the wheel 161 which is arranged outside the group of electrodes Q Glll and groups of counter-electrodes glll and gll2 is spaced laterally from the electrodes 4 and does not interfere electrostatically with the latter. As best seen in FIG. 15a, this wheel 161 is formed outside of the electrostatic field plane since it is supported by a beam 42b of the bridge element 40f, which is formed in the extension of the beam 42 of the bridge element 40a. It will be specified here that the bridge elements 40a and 40f as well as the wheel 161 are made of material and are produced during the same manufacturing step.
  • each group of counter-electrodes 26 comprises four counter-electrodes whose respective median axes Xce are offset from each other by an angle XI of approximately 90 °, while each group of electrodes comprises six electrodes whose axes Xe are respectively offset by an angle X2 of about 60 e .
  • FIGS. 16 to 46 a method of photolithographic microfabrication of an electrostatic micromotor will be described below, such as that of the first embodiment described with reference to FIGS. 1 and 2.
  • phase 1 a layer 200 of silicon dioxide (SiO 2) is cleaned by thermal oxidation on the substrate 2 which is preferably made of silicon (Si).
  • the layer of silicon dioxide 200 is used to structure, using an appropriate mask M1 and by chemical attack using an acid, such as buffered hydrofluoric acid called BHF. a large opening to the substrate 2 and per ⁇ put access to its upper face.
  • BHF buffered hydrofluoric acid
  • phase 3 two layers 202 and 204 of Si0 2 are deposited over the entire surface of the pellet P by chemical vapor deposition, the layer 202 comprising doping impurities, of type (n), hereinafter referred to as "dopant ".
  • the pellet P is subjected to annealing in order to diffuse the doping oxide layer 202 in order to dop a large part of the substrate 2, except for its peripheral edge located under the layer 200.
  • phase 5 we attack the layers 202 and 204 of Si0 pursuto leave only the peripheral layer of silicon dioxide 200 as well as a doped region of the substrate 2.
  • the doped region of the substrate 2 forms the ground plane 36, while the peripheral layer 200 forms part of the insulating layer 50 of the stator 1.
  • a new layer 206 of SiO is deposited on the doped region 36 and on the peripheral layer 50 by chemical vapor deposition , which forms a diffusion barrier towards the outside of the pellet P.
  • an approximately electrically conductive layer 36 which, as can be seen in FIG. 2, is intended to supply the ring, substantially over the entire surface of the substrate 2. central 30.
  • This layer 36 will supply the rotor and its counter-electrodes. 19
  • FIGS. 21 to 22 represent the following phases of the method according to the invention.
  • a layer 208 of SiO intended to allow electrical insulation between the ground plane 36 and the electrodes 4 which will be deposited and structured subsequently is formed by thermal oxidation over the entire surface of the pellet P.
  • phase 7 a layer 210 of silicon nitride (Si ⁇ ⁇ ) is deposited by chemical vapor deposition at low pressure.
  • a first electrically insulating layer 208 has been provided which corresponds to the layer 50 shown in FIG. 2.
  • the layer 210 will form the layer 52 (FIG. 2).
  • FIGS. 23 to 28 respectively represent the eighth to the thirteenth phases of the method according to the invention.
  • a first layer of polysilicon 212 is deposited by chemical vapor deposition at low pressure over the entire surface of the pellet P, that is to say on the layer 210 of Si 3 N "previously deposited. .
  • this layer of polysilicon 212 “PolySi I”.
  • this layer of poly ⁇ silicon is electrically doped by depositing on it, by chemical vapor deposition, a layer of dopant oxide 214 by then subjecting the pellet P to an annealing allowing diffusion of the doping towards the PolySi I layer.
  • phase 10 a layer of dopant oxide deposited in phase 9 is structured by a set of mask M2 and with BHF acid.
  • the layer 212 of polysilicon I is structured by plasma photolithography with the mask set M2, which reveals the layer 210 of silicon nitride deposited in phase 7.
  • phase 12 the residue of doping oxide from layer 214 is attacked with BHF acid in order to completely release the layer 212 of polysilicon I which has been structured.
  • conductive tracks 6 made of polysilicon, intended to supply the electrodes 4 of the stator, have been structured using the mask set M2.
  • phase 13 a second layer of silicon nitride Si 3 N £ is deposited over the entire pellet P by chemical vapor deposition at low pressure.
  • This second layer of silicon nitride protects the underlying layers during subsequent chemical attacks and has, during the operation of the engine, a role of reducing the coefficient of friction (the rotor 22 can come to bear by the protruding elements 23 on the rotor 1, see figure 2).
  • This layer 216 also has a function of improving the mechanical characteristics of the micro-motor by providing protection against wear. It corresponds to layer 54 of FIG. 2.
  • phase 14 a layer 218 of phosphorus-doped glass, generally referred to by the British abbreviation "PSG", is deposited on the pellet P.
  • PSG phosphorus-doped glass
  • phase 15 the pellet P is subjected to annealing in order to flatten the outer face of the layer 218.
  • This layer 218 will be called the "PSG I" layer.
  • openings in the PSG layer I are structured by means of a mask M3 to form, as will be explained below, the protruding elements 23 of the rotor 22.
  • This structuring in the layer PSG I is made by chemical attack with buffered hydrofluoric acid.
  • phase 17 a layer of doping oxide 219 is deposited by chemical vapor deposition allowing the recovery of the second layer 216 of silicon nitride which was discovered during the chemical attack.
  • phase 18 additional openings in the layer 218 of PSG I are structured by a set of masks M4 to allow the production of the supports 10 of the electrodes 4 of the stator, as will be seen in the following steps.
  • This photo! Ithographic structuring is done with plasma. It will therefore be noted that in this phase 18 we removed certain regions of the layer 218 in line with certain parts of the conductive tracks 6, but that we also attacked part of the layer of silicon nitride 216 lying above these parts of conductive tracks 6.
  • phase 19 a second layer 220 of p ⁇ lysil iciurr, called polysilicon II, is deposited on the pellet P p ⁇ r a chemical deposition in the vapor phase at low pressure.
  • this second layer of polysilicon II is structured by plasma photolithography by a set of masks M5, in order to define the guide part 22, the electrodes 4 of the stator, the counter-electrodes 26 of the rotor, as well as optionally the supply terminals 8 which are intended to allow the supply of the electrodes 4 of the stator.
  • the extensions 105 of FIGS. 9 to 15 can also be structured simultaneously.
  • phase 21 the part of the layer 218 of PSG I which is not located below the structural elements 22, 4, 26 and 8 is structured by the set of masks M5 and also with plasma.
  • layer 218 of PSGI which is under these structural elements constitutes a sacrificial layer which will be subsequently eliminated by chemical attack.
  • at least one group of electrodes 4 of the stator shaped around the axis of rotation of the micromotor has been structured with the interposition of a first sacrificial layer, angularly offset (FIG. 1) , as well as simultaneously the guide part 22 of the rotor, at least one counter-electrode 26 of the rotor and preferably the supply terminals 8 as well as possibly the extensions 105.
  • These phases 14 to 21 therefore constitute an essential additional step of the method according to the invention.
  • phase 22 (FIG. 37), a second layer 222 of phosphorus-doped glass (PSG II) is deposited by chemical vapor deposition on the functional elements which have just been structured in the preceding phases.
  • PSG II phosphorus-doped glass
  • phase 23 part of this second layer 222 of PSG II is attacked by plasma photolithographic structuring, as well as certain regions of the two layers of silicon nitride 216, 210 and of the layer of silicon dioxide 50.
  • this phase therefore, the production of the central ring 30 is prepared as well as that of the terminals 38 supplying the ground plane 36.
  • This structuring is done by a set of masks M6.
  • phase 24 certain parts of the second layer are again structured by plasma photolithography with an M7 mask. 222 of PSG II to allow the anchoring on the guide portion 22 and on the counter-electrodes 26 of the connecting lugs 28, as well as possibly the production of a supply terminal 39 (FIG. 31) allowing the supply tracks 6.
  • phase 25 a third layer 224 of polysilicon, called polysilicon III, is deposited by chemical vapor deposition at low pressure on the entire face of the pellet P.
  • phase 26 the third layer 224 of polysilicon III is structured by plasma photolithography with a mask M8 . the functional parts you want. Part of the second layer 222 of phosphorus-doped glass (PSG II) is thus released.
  • phase 27 a layer 226 of SiO doping oxide is deposited over the entire pellet P by vapor phase deposition, then annealing the pellet P allowing doping of the second and third layers of polysilicon II and III respectively. also making conductive.
  • phase 28 some of the most accessible sacrificial layers (that is to say the parts exposed on the surface) are attacked with acid to prepare an aluminum deposit on the supply terminals.
  • a counter-electrode 26 is shown only as a functional element, but of course, it could have been represented the pinion 151 or the wheel 161, respectively in FIGS. 14 and 15.
  • phase 29 an aluminum layer 228 is deposited by evaporation on the pellet P.
  • the aluminum layer 228 is structured using an M9 mask so as to leave only one film on the terminals 8 and 38 and allow connection with an electronic control circuit, not shown.
  • phase 31 the remaining sacrificial layers formed respectively by the two layers of phosphorus doped glass PSG I and PSG II are attacked using buffered hydrofluoric acid (BHF) for a relatively long time.
  • BHF buffered hydrofluoric acid
  • the guide portion 22 of the rotor has suitably distributed through axial openings 25 (for example made in phase 20) allowing better irrigation of the acid. attack.
  • a group of electrodes 4 can be formed by eliminating the aluminum layer thereon.
  • the bridge elements 40a to 40d are also produced simultaneously. They are made with another layer of polysilicon (inter alia the layer of polysilicon III) than the electrodes and the counter-electrodes.
  • the bridge elements being arranged one in the extension of the other, their connecting tab 26 is anchored on the guide part 22 or on the corresponding counter-electrode (s) which are formed by underlying layers.

Landscapes

  • Micromachines (AREA)

Abstract

L'invention concerne un micromoteur électrostatique à champ radial, réalisé par microfabrication photoligraphique. Ce moteur comporte un stator pourvu de plusieurs groupes (Gn) d'électrodes angulairement décalées les unes par rapport aux autres autour d'un axe de rotation du micromoteur, un rotor électriquement conducteur dont au moins un bras porte une contre-électrode apte à venir coopérer avec les électrodes du stator pour former entre celle-ci un entrefer, et une bague de guidage destinée à entraîner en rotation et éventuellement en translation le rotor, ce micromoteur étant caractérisé en ce que le rotor comporte au moins un élément formant pont (40a-f) qui est disposé au moins en partie au-dessus d'un plan de champ électrostatique (PCE) du micromoteur, cet élément qui constitue un bras surélevé du rotor portant un ou plusieurs organes mécaniquement ou électriquement fonctionnels (26, 151, 161) aptes à coopérer avec un ou plusieurs organes complémentaires (4, 152, 162) situés dans ou en dehors du plan de champ électrostatique et à l'intérieur ou à l'extérieur du groupe d'électrodes du stator. Ce micromoteur s'applique à l'entraînement pas à pas, en rotation continue ou en rotation bi-directionnelle d'un mécanisme extrêmement miniaturisé.The invention relates to a radial field electrostatic micromotor, produced by photolithographic microfabrication. This motor comprises a stator provided with several groups (Gn) of electrodes angularly offset from each other around an axis of rotation of the micromotor, an electrically conductive rotor, at least one arm of which carries a counter-electrode able to come cooperate with the electrodes of the stator to form between the latter an air gap, and a guide ring intended to drive the rotor in rotation and possibly in translation, this micromotor being characterized in that the rotor comprises at least one element forming a bridge (40a -f) which is arranged at least partly above an electrostatic field plane (PCE) of the micromotor, this element which constitutes a raised arm of the rotor carrying one or more mechanically or electrically functional members (26, 151, 161 ) capable of cooperating with one or more complementary members (4, 152, 162) located in or outside the electrostatic field plane and inside or outside the group of electrodes of the stator. This micromotor can be used to drive step by step, in continuous rotation or in bi-directional rotation of an extremely miniaturized mechanism.

Description

KICROHOTEL'R ELECTROSTATIQUE A CHAMP RADIAL ELECTROSTATIC KICROHOTEL'R WITH RADIAL FIELD
REALISE PAR MICRQFABRICATION PHOTOLITHOGRAPHIQUEPERFORMED BY PHOTOLITHOGRAPHIC MICRQFABRICATION
ET PROCEDE DE REALISATION D'UN TEL MICROMOTEURAND METHOD FOR PRODUCING SUCH A MICROMOTOR
L'invention concerne un micromoteur électrostatique à champ radial, réalisé par une technique de microfabrication photolitho¬ graphique.The invention relates to an electrostatic micromotor with radial field, produced by a photolithographic microfabrication technique.
Ce type de moteur est appelé micromoteur à cause des dimensions très faibles de certains de ses composants, qui avoisinent le micron (1 • 10"6 mètre).This type of motor is called a micromotor because of the very small dimensions of some of its components, which are close to a micron (1 • 10 "6 meter).
La technique de fabrication de ce micromoteur est semblable à celle utilisée dans la réalisation des circuits électroniques intégrés. Cette technique consiste à former par des dépôts chimiques en phase vapeur différentes couches que l'on structure ensuite par l'intermédiaire de masques de forme appropriée, associés à des attaques chimiques ou au plasma.The manufacturing technique of this micromotor is similar to that used in the production of integrated electronic circuits. This technique consists in forming by chemical vapor deposition different layers which are then structured by means of masks of appropriate shape, associated with chemical attacks or with plasma.
Ces micromoteurs, grâce à leurs dimensions, peuvent être utili¬ sés dans des applications très diverses où des transducteurs de force commandés par un signal électrique doivent être extrêmement miniaturisés. Parmi ces nombreuses applications, on compte notam¬ ment : l'horlogerie, la robotique, l'informatique, l'appareillage électronique de reproduction du son et de l'image, l'aéronautique et l'aérospatial, mais aussi l'ingénierie biomédicale. Un moteur de ce type est décrit dans la publication du compte rendu de la conférence IEEE du groupe "Micro Electro Mechanical Systems" qui s'est tenue du 20 au 22 février 1989 à Sait Lake City, USA. Ce moteur comporte, d'une part, un stator pourvu de plusieurs électrodes angulairement décalées autour d'un axe de rotation du micromoteur, et d'autre part, un rotor électriquement conducteur comprenant quatre bras dont une extrémité qui forme contre-électrode est apte à venir évoluer en regard de chaque électrode du stator.These micromotors, thanks to their dimensions, can be used in very diverse applications where force transducers controlled by an electrical signal must be extremely miniaturized. Among these numerous applications, one counts in particular: watchmaking, robotics, IT, electronic equipment for the reproduction of sound and image, aeronautics and aerospace, but also biomedical engineering . An engine of this type is described in the publication of the minutes of the IEEE conference of the group "Micro Electro Mechanical Systems" which was held from February 20 to 22, 1989 in Sait Lake City, USA. This motor comprises, on the one hand, a stator provided with several electrodes angularly offset around an axis of rotation of the micromotor, and on the other hand, an electrically conductive rotor comprising four arms, one end of which forms a counter-electrode is suitable coming to evolve next to each stator electrode.
Les électrodes du stator qui sont réalisées en polysilicium sont structurées sur une pastille formée d'un substrat revêtu de couches diélectriques, et elles sont connectées électriquement à un circuit de commande. Le rotor qui est aussi réalisé en polysilicium comporte une partie de guidage à partir de laquelle s'étendent quatre bras. A l'extrémité de chaque bras est formée l'une des contre-électrodes. La partie de guidage, les bras et les contre-électrodes sont réali¬ sés dans un même plan médian qui est perpendiculaire à l'axe de rotation du rotor et qui coïncide avec le plan médian des électrodes du stator. Ce plan forme donc un plan de champ électrostatique dans lequel pivote le rotor qui, à cet effet, est engagé avec un léger jeu radial par l'intermédiaire de sa partie de guidage, sur une bague centrale formant palier réalisée de même en polysilicium et susceptible d'être alimentée électriquement par un plan de masse ménagé entre cette bague et l'une des couches isolantes du substrat.The stator electrodes which are made of polysilicon are structured on a wafer formed of a substrate coated with dielectric layers, and they are electrically connected to a control circuit. The rotor which is also made of polysilicon has a guide part from which extend four arms. One of the counter electrodes is formed at the end of each arm. The guide part, the arms and the counter-electrodes are made in the same median plane which is perpendicular to the axis of rotation of the rotor and which coincides with the median plane of the stator electrodes. This plane therefore forms an electrostatic field plane in which the rotor pivots which, for this purpose, is engaged with a slight radial clearance via its guide portion, on a central ring forming a bearing likewise made of polysilicon and capable of to be supplied electrically by a ground plane formed between this ring and one of the insulating layers of the substrate.
Le problème essentiel que l'on rencontre avec ce type de micro- moteur est le niveau du couple moteur fourni ou couple utile qui est insuffisant.The essential problem encountered with this type of micro-motor is the level of the supplied motor torque or useful torque which is insufficient.
De plus, ce micromoteur ne comporte aucun agencement lui permet¬ tant d'entraîner un mécanisme, c'est-à-dire de transmettre ce couple.In addition, this micromotor has no arrangement allowing it to both drive a mechanism, that is to say to transmit this torque.
Ainsi, la présente invention a-t-elle pour but de remédier à ces inconvénients en proposant un micromoteur électrostatique réalisé par microfabrication photolithographique comportant des moyens permettant à la fois de transmettre le couple moteur à un mécanisme extérieur et d'élever ce couple à un niveau suffisant.Thus, the object of the present invention is to remedy these drawbacks by proposing an electrostatic micromotor produced by photolithographic microfabrication comprising means making it possible both to transmit the driving torque to an external mechanism and to raise this torque to a sufficient level.
A cet effet, l'invention a pour objet un micromoteur électrosta¬ tique à champ radial du type comprenant : un stator comportant au moins un groupe de plusieurs élec¬ trodes angulairement dëclalées autour d'un axe de rotation du micromoteur, ces électrodes qui sont connectées électriquement à un circuit de commande étant supportées par un substrat, un rotor, de préférence réalisé au moins en partie en un matériau électriquement conducteur, comportant au moins une contre- électrode apte à venir évoluer en regard de chaque électrode du stator, sensiblement dans un même plan dit plan de champ électro¬ statique, le jeu laissé entre ladite contre-électrode et les ëlec- trodes correspondantes formant un entrefer, une bague formant palier qui est susceptible d'être électri¬ quement alimentée et qui est solidaire dudit substrat, ledit rotor étant guidé en rotation, et éventuellement en translation, autour de cette bague par l'intermédiaire d'une partie de guidage dont est solidaire ladite contre-électrode, caractérisé en ce que ledit rotor comporte au moins un élément formant pont qui est disposé au-dessus du plan de champ électrostatique, cet élément qui constitue un bras surélevé du rotor portant un ou plusieurs organes mécaniquement ou électriquement fonctionnels," aptes à coopérer avec un ou plusieurs organes complémentaires situés dans ou en dehors du plan de champ électrostatique et à l'intérieur ou à l'extérieur dudit groupe d'électrodes du stator.To this end, the invention relates to an electrostatic micromotor with a radial field of the type comprising: a stator comprising at least one group of several electrodes angularly displaced around an axis of rotation of the micromotor, these electrodes which are electrically connected to a control circuit being supported by a substrate, a rotor, preferably made at least in part of an electrically conductive material, comprising at least one counter electrode capable of coming to evolve opposite each electrode of the stator, substantially in the same plane called the electrostatic field plane, the clearance left between said counter-electrode and the corresponding electrodes forming an air gap, a ring forming a bearing which is capable of being electrically supplied and which is integral with said substrate, said rotor being guided in rotation, and optionally in translation, around this ring by means of a guide part of which said counter-electrode is integral, characterized in that said rotor comprises at least one bridge element which is disposed at- above the electrostatic field plane, this element which constitutes a raised arm of the rotor carrying one or more mechanically or electrically functional organs, " capable of cooperating with one or more complementary organs situated in or outside the electrostatic field plane and inside or outside of said stator electrode group.
On comprend donc que la disposition de cet élément formant pont ménagé à un niveau supérieur par rapport aux électrodes du stator permet de disposer sur un même bras du rotor plusieurs contre- électrodes disposées en peigne et coopérant de façon interdigitëe avec d'autres groupes d'électrodes ménagés sur le stator. On augmen¬ te ainsi le nombre d'entrefers et de façon sensiblement correspon¬ dante le couple utile. De plus, cet élément formant pont permet de prévoir sur le rotor un élément de transmission du couple constitué par un pignon ou par une roue dentée. On observera que la disposi- tion de cet élément formant pont permet l'association des caracté¬ ristiques précitées, ce qui permet de répondre simultanément aux deux problèmes posés (transmission et élévation du couple), et ce sans augmenter l'épaisseur du micromoteur et à moindre coût grâce à un nombre limité d'étapes dans le procédé de fabrication photolitho- graphique.It is therefore understood that the arrangement of this bridge element formed at a higher level with respect to the stator electrodes makes it possible to have on the same rotor arm several counter-electrodes arranged in a comb and cooperating interdigitatively with other groups of electrodes provided on the stator. This increases the number of air gaps and substantially corresponds to the useful torque. In addition, this bridge element makes it possible to provide on the rotor a torque transmission element constituted by a pinion or by a toothed wheel. It will be observed that the arrangement of this bridge-forming element allows the combination of the aforementioned characteristics, which makes it possible to respond simultaneously to the two problems posed (transmission and increase in torque), without increasing the thickness of the micromotor and at lower cost thanks to a limited number of steps in the photolithographic manufacturing process.
La présente invention a aussi pour objet un procédé de réalisa¬ tion photolithographique d'un moteur électrostatique, caractérisé en ce qu'il consiste : a) - de préférence à ménager sensiblement sur toute la surface d'un substrat, une première couche électriquement conductrice destinée à alimenter une bague centrale apte â guider et à contacter une partie de guidage d'un rotor du micromoteur, b) - à ménager au moins une première couche électriquement isolante sur cette couche conductrice, c) - à structurer des pistes conductrices sur la première couche isolante, ces pistes étant destinées à alimenter des électrodes du stator par l'intermédiaire d'un circuit de commande du micromoteur, d) - à déposer au moins partiellement sur les couches précéden¬ tes de préférence une couche présentant une fonction protectrice et une fonction de diminution du frottement et d'isolation électrique, e) - à structurer, avec interposition d'une première couche sacrificielle, au moins un groupe d'électrodes angulaire ent déca¬ lées autour d'un axe de rotation du micromoteur, ainsi que simul¬ tanément la partie de guidage du rotor et au moins une contre-électrode du rotor, f) - à structurer au-dessus de ces électrodes et de ces contre- électrodes ainsi qu'au-dessus de cette partie de guidage, avec interposition d'une deuxième couche sacrificielle, ladite bague centrale ainsi qu'au moins un élément formant pont constituant un bras surélevé du rotor destiné à être associé à au moins un organe mécaniquement ou électriquement fonctionnel, tel qu'un pignon ou une roue, g) - puis à éliminer par attaque chimique les couches sacrifi¬ cielles.The present invention also relates to a process for photolithographic realization of an electrostatic motor, characterized in that it consists: a) - preferably to provide substantially over the entire surface of a substrate, a first electrically conductive layer intended to supply a central ring capable of guiding and contacting a guide part of a rotor of the micromotor, b) - providing at least one first electrically insulating layer on this conductive layer, c) - structuring conductive tracks on the first insulating layer, these tracks being intended to supply stator electrodes via a micromotor control circuit, d) - to deposit at least partially on the preceding layers preferably a layer having a protective function and a function of reducing friction and electrical insulation , e) - to structure, with the interposition of a first sacrificial layer, at least one group of angular electrodes ent deca¬ lated around an axis of rotation of the micromotor, as well as simultaneously the guide portion of the rotor and at least one counter electrode of the rotor, f) - to be structured above these electrodes and these counter electrodes as well as above this guide portion, with the interposition of a second sacrificial layer, said central ring as well as at least one bridge element constituting a raised arm of the rotor intended to be associated with at least one mechanically or electrically functional member, such as a pinion or a wheel, g) - then eliminating the sacrificial layers by chemical attack.
Mais d'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit, faite en référence aux dessins annexés qui sont donnés uniquement à titre d'exemple, et dans lesquels : la figure 1 est une vue de dessus d'un premier mode de réalisation du micromoteur selon l'invention équipé de bornes d'alimentation; la figure 2 est une demi-vue en section faite selon la ligne II-II de la figure 1; la figure 3 est une vue de dessus partielle d'un deuxième mode de réalisation du micromoteur selon l'invention; la figure 4 est une vue de dessus du micromoteur selon l'invention, suivant un troisième mode de réalisation; la figure -5 est une demi-vue en section faite suivant la ligne V-V de la figure 4; - les figures 6 et 7 sont respectivement des demi-vues en section d'un quatrième et d'un cinquième mode de réalisation de l 'invention; la figure 8 est une vue de dessus d'un sixième mode de réalisation du micromoteur selon l'invention; la figure 9 est une demi-vue en section faite suivant la ligne IX-IX de la figure 8; les figures 10, 11 et 12 sont respectivement des demi-vues en section d'un septième, d'un huitième et d'un neuvième mode de réalisation de l'invention; la figure 13 est une demi-vue en section d'un dixième mode de réalisation de l'invention, faite suivant la ligne XIII-XIII de la figure 14; la figure 14 est une vue de dessus partiellement arrachée du mode de réalisation de la figure 13; la figure 14a est une vue agrandie d'un élément formant pont et d'un pignon de la figure 14; la figure 15 est une vue de dessus d'un onzième mode de réalisation du micromoteur selon l'invention; la figure 15a est une vue en section partielle faite selon la ligne XV-XV A de la figure 15; et les figures 16 à 45 représentent des demi-vues en section des étapes du procédé de réalisation du micromoteur selon l'inven¬ tion.However, other characteristics and advantages of the invention will appear on reading the detailed description which follows, given with reference to the appended drawings which are given solely by way of example, and in which: FIG. 1 is a top view of a first embodiment of the micromotor according to the invention equipped with power supply terminals; Figure 2 is a half sectional view taken along line II-II of Figure 1; Figure 3 is a partial top view of a second embodiment of the micromotor according to the invention; Figure 4 is a top view of the micromotor according to the invention, according to a third embodiment; Figure -5 is a half-section view taken along line VV of Figure 4; - Figures 6 and 7 are respectively half-views in section of a fourth and a fifth embodiment of the invention; Figure 8 is a top view of a sixth embodiment of the micromotor according to the invention; Figure 9 is a half-sectional view taken along line IX-IX of Figure 8; Figures 10, 11 and 12 are respectively half-views in section of a seventh, an eighth and a ninth embodiment of the invention; Figure 13 is a half-sectional view of a tenth embodiment of the invention, taken along the line XIII-XIII of Figure 14; Figure 14 is a partially broken away top view of the embodiment of Figure 13; Figure 14a is an enlarged view of a bridge member and a pinion of Figure 14; Figure 15 is a top view of an eleventh embodiment of the micromotor according to the invention; Figure 15a is a partial sectional view taken along the line XV-XV A of Figure 15; and FIGS. 16 to 45 show half-views in section of the steps of the process for producing the micromotor according to the invention.
En se référant tout d'abord aux figures 1 et 2, on décrira un premier mode de réalisation du micromoteur électrostatique selon l'invention. Ce micromoteur électrostatique à champ radial comporte un stator 1 qui est pourvu de plusieurs électrodes 4 supportées par un substrat plan 2 de forme sensiblement rectangulaire.Referring first to Figures 1 and 2, there will be described a first embodiment of the electrostatic micromotor according to the invention. This radial field electrostatic micromotor comprises a stator 1 which is provided with several electrodes 4 supported by a plane substrate 2 of substantially rectangular shape.
On définira ci-après comme un "groupe" d'électrodes G plusieurs électrodes 4 disposées sensiblement sur une même circonférence, tandis qu'on définira comme un "ensemble" d'électrodes E , plusieurs électrodes voisines disposées sur des circonférences différentes.We will define below as a "group" of electrodes G several electrodes 4 arranged substantially on the same circumference, while we will define as a "set" of electrodes E, several neighboring electrodes arranged on different circumferences.
Chaque groupe d'électrodes Gl, £2 et G3 comporte plusieurs électrodes 4 en forme de secteur circulaire qui sont ménagées les unes â côtés des autres de façon concentrique sensiblement à une même distance d'un axe de rotation A du rotor. Ainsi, chaque 'groupe d'électrodes Gl, G2 et G3 présente la forme d'un anneau discontinu convenablement divisé pour que chaque électrode 4 constitue un élément unitaire, électriquement indépendant de ses voisins du même groupe.Each group of electrodes G1, £ 2 and G3 comprises several electrodes 4 in the form of a circular sector which are arranged one next to the other in a concentric manner substantially at the same distance from an axis of rotation A of the rotor. Thus, each "group of electrodes Gl, G2 and G3 in the form of a discontinuous ring appropriately divided so that each electrode 4 constitutes a unitary element, electrically independent of its neighbors in the same group.
En se référant plus particulièrement à la figure 1, on remarque¬ ra que les trois groupes d'électrodes Gl, G2, et G3 sont disposés de façon coaxiale, leur axe commun étant confondu avec l'axe de rota¬ tion A du micromoteur. On observera aussi que ce moteur comporte plusieurs ensembles d'électrodes El à E6, formés par des électrodes voisines mais qui appartiennent à des groupes différents et qui sont ménagées en regard les unes des autres et en coïncidence, dans un même secteur géométrique du stator.With particular reference to FIG. 1, it can be seen that the three groups of electrodes G1, G2, and G3 are arranged coaxially, their common axis being coincident with the axis of rotation A of the micromotor. It will also be observed that this motor comprises several sets of electrodes E1 to E6, formed by neighboring electrodes but which belong to different groups and which are arranged opposite one another and coincidentally, in the same geometric sector of the stator.
Plus particulièrement, le micromoteur représenté sur la figure 1 comporte trois groupes d'électrodes Gl, G2 et G3 tandis ou'il comporte six ensembles d'électrodes respectivement El à E6.More particularly, the micromotor shown in FIG. 1 comprises three groups of electrodes G1, G2 and G3 while it comprises six sets of electrodes E1 to E6 respectively.
Toutes les électrodes 4 au sein d'un même ensemble E sont n reliées entre elles électriquement par une piste d'alimentation commune 6 qui est reliée à une borne d'alimentation 8 susceptible d'être connectée à un circuit électronique de commande, non repré¬ senté.All the electrodes 4 within the same set E are n electrically connected to each other by a common supply track 6 which is connected to a supply terminal 8 capable of being connected to an electronic control circuit, not shown ¬ smelled.
Les pistes d'alimentation 6 comportent deux parties caractéris¬ tiques 6a et 6b, la partie 6a sur laquelle repose la borne d'alimen¬ tation correspondante 8 ayant en plan une forme sensiblement rectan¬ gulaire, tandis que la partie 6b, qui permet la liaison entre les électrodes 4 et la partie 6a, présente une forme de segment d'une largeur beaucoup plus petite que celle de la partie 6a.The feed tracks 6 comprise two characteristic parts 6a and 6b, the part 6a on which the corresponding supply terminal 8 rests having in plan a substantially rectangular shape, while the part 6b, which allows the connection between the electrodes 4 and the part 6a, has a segment shape of a width much smaller than that of the part 6a.
A cet effet, on remarque que la largeur de la partie 6b directe¬ ment placée sous les ensembles d'électrodes El à E6 est beaucoup plus petite que la longueur d'arc de chaque électrode 4.For this purpose, it is noted that the width of the part 6b directly placed under the sets of electrodes E1 to E6 is much smaller than the arc length of each electrode 4.
Les électrodes 4 sont reliées au segment 6b de leur piste d'alimentation 6 par l'intermédiai e d'un support 10 en forme de secteur circulaire s 'élevant dans une direction normale au substrat 2. Ce support 10 présente une largeur et une longueur d'arc infé¬ rieures à l'électrode 4 qu'il soutient, les couples supports 10 - électrodes 4 ainsi que le segment 6b de la piste d'alimentation correspondante 6 étant sensiblement centrés sur un même rayon du rotor. Les supports 10 d'un même ensemble d'électrodes E sont ainsi disposés sur un même secteur géométrique. Le mcteur représenté aux figures 1 et 2 comporte de plus un rotor 20 qui est constitué d'une partie de guidage 22 formant moyeu qui a sensiblement la forme d'un disque annulaire à partir auquel s'étendent, de façon cop naire et vers l'extérieur de l'axe de rotation A, quatre bras 2'4 décalés angulairement l'un de l'autre d'un angle de 90°. Chaque bras 24 comporte au voisinage de son extrémité libre 24a un certain nombre de contre-électrodes 26 ayant une configuration identique à celle des électrodes 4, à savoir en secteur circulaire.The electrodes 4 are connected to the segment 6b of their supply track 6 by means of a support 10 in the form of a circular sector rising in a direction normal to the substrate 2. This support 10 has a width and a length arc infé¬ laughing at the electrode 4 which it supports, the pairs of supports 10 - electrodes 4 as well as the segment 6b of the corresponding supply track 6 being substantially centered on the same radius of the rotor. The supports 10 of the same set of electrodes E are thus arranged on the same geometric sector. The motor represented in FIGS. 1 and 2 further comprises a rotor 20 which consists of a guide part 22 forming a hub which has substantially the shape of an annular disc from which extend, in a co nary manner and towards the 'outside the axis of rotation A, four arms 2 ' 4 angularly offset from each other by an angle of 90 °. Each arm 24 comprises in the vicinity of its free end 24a a number of counter-electrodes 26 having a configuration identical to that of the electrodes 4, namely in the circular sector.
Ces contre-électrodes 26 sont aussi disposées en "groupes" et en "ensembles" comme définis cî-dessus. Dès lors, chaque groupe gl à g4 comprend plusieurs contre-électrodes 26 disposées sur une même circonférence mais décalées angulairement les unes des autres, tandis que les ensembles el à e4 comportent respectivement les contre-électrodes 26 ménagées à l'intérieur d'un même secteur géométrique, c'est-à-dire les contre-électrodes 26 de groupes différents qui sont sensiblement centrées sur un même rayon et qui sont donc disposées les unes en regard des autres, sensiblement en coïncidence.These counter-electrodes 26 are also arranged in "groups" and in "sets" as defined above. Consequently, each group gl to g4 comprises several counter-electrodes 26 arranged on the same circumference but angularly offset from one another, while the assemblies el to e4 respectively comprise the counter-electrodes 26 formed inside the same geometric sector, that is to say the counter-electrodes 26 of different groups which are substantially centered on the same radius and which are therefore arranged opposite one another, substantially coincidentally.
On remarquera donc que ce rotor comporte, dans ce mode de réali¬ sation, quatre groupes gl à g4 et quatre ensembles el à e4 de contre-électrodes 26.It will therefore be noted that, in this embodiment, this rotor comprises four groups gl to g4 and four sets el to e4 of counter-electrodes 26.
Le rotor 20, qui est conformé pour pouvoir tourner par rapport au stator 1, est guidé en rotation par une bague ou bouton 30 qui forme palier et dont l'extrémité libre porte un collet 32 qui emprisonne le rotor 20 en limitant le déplacement axial de la partie de guidage 22 qui est montée avec un léger jeu ^ sur le pourtour cylindrique extérieur 34 de cette bague. La bague 30 est solidaire du substrat 2 et est ancrée solidement sur celui-ci. Etant réalisée en un matériau électriquement conducteur, elle peut être alimentée électriquement par l 'intermédiaire d'un plan de masse 36 qui est connecté à une borne d'alimentation 38 extérieurement accessible pour être reliée au circuit électronique de commande, non représen¬ té. La partie de guidage 22 du rotor 20 comporte, sur sa face 22b disposée en regard du stator 1, des éléments protubérants 23 suscep¬ tibles de venir en contact sur l'une des face FI du stator 1. En se référant plus particulièrement à la figure 2, on remarque¬ ra que le stator 1 est constitué d'un empilement de plusieurs couches, dites couches minces, qui sont soit conductrices, soit isolantes, ces couches ainsi que tous les autres éléments constitu- tifs du micromoteur étant réalisés par un procédé de microfabrica¬ tion photolithographique dit micro-usinage de surface dont on expliquera ci-après les étapes de façon plus détaillée. Ainsi, ce stator 1 peut être défini comme une pastille (puisque ses dimensions sont extrêmement faibles) stratifiée dans son épaisseur. Ses dimen-The rotor 20, which is shaped to be able to rotate relative to the stator 1, is guided in rotation by a ring or button 30 which forms a bearing and whose free end carries a collar 32 which traps the rotor 20 by limiting the axial displacement of the guide portion 22 which is mounted with a slight clearance ^ on the outer cylindrical periphery 34 of this ring. The ring 30 is integral with the substrate 2 and is anchored securely thereon. Being made of an electrically conductive material, it can be supplied electrically via a ground plane 36 which is connected to a supply terminal 38 externally accessible to be connected to the electronic control circuit, not shown. The guide portion 22 of the rotor 20 comprises, on its face 22b disposed opposite the stator 1, protruding elements 23 suscep¬ tible to come into contact on one of the face FI of the stator 1. Referring more particularly to FIG. 2, it can be seen that the stator 1 is made up of a stack of several layers, called thin layers, which are either conductive or insulating, these layers as well as all the other constituent elements tifs of the micromotor being produced by a photolithographic microfabrica¬ tion process called surface micromachining, the steps of which will be explained in more detail below. Thus, this stator 1 can be defined as a pellet (since its dimensions are extremely small) laminated in its thickness. Its dimensions
-3 -3 sions sont environ 1 • 10 mètre (1mm) de côté et 0,4 • 10 mètre-3 -3 sions are approximately 1 • 10 meter (1mm) side and 0.4 • 10 meter
(0,4 mm) d'épaisseur. Les électrodes 4 du stator 1 étant toutes supportées par un support 10 faisant saillie de la pastille P dans une direction parallèle à l'axe de rotation A du micromoteur, ces électrodes 4 se situent toutes à une distance D de la face FI, dans un même plan appelé plan de champ électrostatique PCE.(0.4 mm) thick. The electrodes 4 of the stator 1 are all supported by a support 10 projecting from the pellet P in a direction parallel to the axis of rotation A of the micromotor, these electrodes 4 are all located at a distance D from the face FI, in a same plane called the PCE electrostatic field plane.
Par ailleurs, dans ce mode de réalisation, les contre-électrodes 26 du rotor 20 sont reliées au bras 24 qui les supporte respective¬ ment par l'intermédiaire d'une patte de liaison 28 s'étendant à partir du bras 24 correspondant vers la face FI de la pastille P. Les contre-électrodes 26 sont donc ménagées sur le rotor 20 de sorte qu'elles puissent venir se placer dans le plan de champ électrostatique PCE, notamment lors de l'excitation des électrodes 4 par le circuit électronique de commande du micromoteur. En observant particulièrement les figures 1 et 2, on remarquera que l'espace radial 37 qui est laissé entre deux électrodes 4 voisines d'un même ensemble E est tel qu'il permet de loger une contre-électrode 26 du rotor 20. De plus, grâce à la forme des électrodes 4 et des contre- électrodes 26 en segment circulaire, et â la disposition coaxiale des différents groupes d'électrodes Gl à G3 et des groupes de contre-électrodes gl à g4, les contre-électrodes 26 du rotor 20 viennent s'engager de part et d'autre des électrodes 4 du rotor et sont aptes à venir évoluer en regard de chaque électrode 4 d'un ou de plusieurs groupes Gl à G3, pour permettre l'entraînement en rotation du rotor 20. On remarquera donc qu'on a constitué grâce à cette construction une structure en forme de peigne fin interdigi- tée. Furthermore, in this embodiment, the counter-electrodes 26 of the rotor 20 are connected to the arm 24 which supports them respectively by means of a connecting lug 28 extending from the corresponding arm 24 towards the face FI of the pellet P. The counter-electrodes 26 are therefore formed on the rotor 20 so that they can come to be placed in the electrostatic field plane PCE, in particular during the excitation of the electrodes 4 by the electronic circuit of micromotor control. By particularly observing FIGS. 1 and 2, it will be noted that the radial space 37 which is left between two adjacent electrodes 4 of the same assembly E is such that it makes it possible to accommodate a counter-electrode 26 of the rotor 20. In addition , thanks to the shape of the electrodes 4 and the counter electrodes 26 in a circular segment, and to the coaxial arrangement of the different groups of electrodes Gl to G3 and of the groups of counter electrodes gl to g4, the counter electrodes 26 of the rotor 20 are engaged on either side of the electrodes 4 of the rotor and are able to come to evolve opposite each electrode 4 of one or more groups G1 to G3, to allow the rotor 20 to be driven in rotation. It will therefore be noted that, thanks to this construction, a structure in the form of an interdigitated fine comb has been constituted.
Le jeu J laissé entre chaque contre-électrode 26 et les électro¬ des 4 en coïncidence forme un entrefer EF. On a ainsi réalisé une structure dans laquelle le nombre d'entrefers est multiplié, et cela sans augmentation de l'épaisseur du micromoteur.The clearance J left between each counter-electrode 26 and the electro¬ of the 4 in coincidence forms an air gap EF. A structure has thus been produced in which the number of air gaps is multiplied, and this without increasing the thickness of the micromotor.
Pour chaque bras 24, on a ménagé six entrefers EF1 à EF6, ce qui donne pour le micromoteur 4 (bras) x 6 soit 24 entrefers (seuls les six premiers étant référencés).For each arm 24, six air gaps EF1 to EF6 have been provided, which gives for the micromotor 4 (arms) x 6, ie 24 air gaps (only the first six being referenced).
On a pu déterminer que l'augmentation de ce nombre d'entrefers par rapport à un moteur classique permettait, sensiblement dans les mêmes proportions, l'augmentation du couple moteur transmissible.It has been determined that the increase in this number of air gaps compared to a conventional motor allows, in substantially the same proportions, the increase in the transmissible motor torque.
Cette caractéristique très avantageuse de l'invention a été permise entre autres par une structure particulière du rotor 20, et notamment des bras 24.This very advantageous characteristic of the invention was made possible inter alia by a particular structure of the rotor 20, and in particular of the arms 24.
En effet, chaque bras 24 est constitué de plusieurs éléments formant pont 40 qui sont disposés au-dessus du plan de champ élec¬ trostatique PCE. Dans ce mode de réalisation, chaque bras 24 est constitué sur toute sa longueur essentiellement par quatre éléments formant pont 40a, 40b, 40c et 40d ménagés les uns dans le prolonge¬ ment des autres sensiblement sur un même axe géométrique correspon¬ dant à l'un des rayon du rotor 20. Les premiers éléments 40a relient la partie de guidage 22 aux contre-électrodes 26 du premier groupe de contre-électrodes gl qui est situé à l'intérieur du cercle formé par le premier groupe d'électrodes Gl. Ces premiers éléments 40a sont reliés à la périphérie de la partie de guidage 22 par l'inter¬ médiaire de pattes de liaison 28 qui sont ancrées sur la face 22a de la partie de guidage 22, opposée à la pastille P qui forme stator. L'autre extrémité de ces premiers éléments formant pont 40a supporte sous elle la contre-électrode 26 du premier groupe de contre- électrodes gl, tandis qu'elle est prolongée radialement au rotor par un deuxième élément formant pont 40b à l'extrémité duquel s'étend de façon normale une autre patte de liaison 28 qui est ancrée solide¬ ment sur une des contre-électrodes 26 du deuxième groupe g2. Ainsi se succèdent sur chaque bras 24 deux autres éléments formant pont 40c et 40d qui supportent respectivement les contre-électrodes 26 des troisième et quatrième groupes de contre-électrodes g3 et g4. Ainsi, les quatre bras 24 sont dans ce mode de réalisation ménagés complètement en dehors du 'plan de champ électrostatique PCE, en partie dans un plan surélevé PS sensiblement parallèle à ce dernier. Le plan surélevé PS coïncide sensiblement avec le plan dans lequel est ménagé le collet 32 de la bague 30.Indeed, each arm 24 is made up of several elements forming a bridge 40 which are arranged above the PCE elec¬ trostatic field plane. In this embodiment, each arm 24 is formed over its entire length essentially by four elements forming a bridge 40a, 40b, 40c and 40d formed one in the extension of the other substantially on the same geometric axis corresponding to the one of the radius of the rotor 20. The first elements 40a connect the guide part 22 to the counter-electrodes 26 of the first group of counter-electrodes gl which is located inside the circle formed by the first group of electrodes Gl. These first elements 40a are connected to the periphery of the guide part 22 by the intermediary of connecting lugs 28 which are anchored on the face 22a of the guide part 22, opposite the pellet P which forms the stator. The other end of these first bridge elements 40a supports under it the counter electrode 26 of the first group of counter electrodes gl, while it is extended radially to the rotor by a second bridge element 40 b at the end of which s 'extends normally another connecting tab 28 which is anchored solid¬ ment on one of the counter electrodes 26 of the second group g2. Thus follow each other on each arm 24 two other elements forming bridge 40c and 40d which respectively support the counter-electrodes 26 of the third and fourth groups of counter-electrodes g3 and g4. Thus, the four arms 24 are in this embodiment arranged completely outside the electrostatic field plane PCE in part in a raised plane PS substantially parallel to the latter. The raised plane PS substantially coincides with the plane in which the collar 32 of the ring 30 is formed.
Chaque bras 24 est donc constitué de deux types d'éléments formant pont 40, le premier type 40a étant constitué d'une poutre transversale 42 qui est située dans le plan supérieur PS et aux deux extrémités de laquelle s'étendent respectivement deux pattes de liaison 28. Le deuxième type d'élément formant pont, représenté par les éléments 40b à 40d, est constitué d'une poutre 42 venant de matière avec la précédente et ne comportant qu'une patte de liaison 28. Les pattes de liaison 28 de ces deux types d'éléments formant pont viennent aussi toutes de matière avec leur poutre correspondan¬ te 42, tandis qu'elles sont ancrées à l'élément sous-jacent (à la partie de guidage 22 ou à une contre-électrode 26) lors du procédé de réalisation photolithographique que l'on expliquera ci-après.Each arm 24 therefore consists of two types of bridge elements 40, the first type 40a consisting of a transverse beam 42 which is located in the upper plane PS and at the two ends of which extend two connecting lugs respectively. 28. The second type of bridge element, represented by elements 40b to 40d, consists of a beam 42 made integrally with the previous one and comprising only one connecting lug 28. The connecting lugs 28 of these two types of bridge elements also all come in one piece with their corresponding beam 42, while they are anchored to the underlying element (to the guide part 22 or to a counter-electrode 26) during the photolithographic production process which will be explained below.
De préférence, les éléments formant pont 40a à 40d, la partie de guidage 22, les contre-électrodes 26, les électrodes 4 avec leur support 10, les pistes d'alimentation électrique 6, les bornes d'alimentation 8, 38 et la bague formant palier 30 sont réalisés en un polycristal tel que du polysilicium. Ces éléments pourraient être réalisés dans un autre matériau conducteur ou dans un matériau métallique tel que du tungstène, du chrome, de l'aluminium ou dans un autre alliage. Le substrat 2 quant à lui est de préférence réalisé en silicium semi-conducteur mais il peut être aussi fabriqué en un autre matériau semi-conducteur cristallin tel que du quartz, du diamant ou de l'arséniure de gallium.Preferably, the bridge elements 40a to 40d, the guide portion 22, the counter electrodes 26, the electrodes 4 with their support 10, the electrical supply tracks 6, the supply terminals 8, 38 and the ring forming a bearing 30 are made of a polycrystal such as polysilicon. These elements could be made of another conductive material or a metallic material such as tungsten, chromium, aluminum or another alloy. As for the substrate 2, it is preferably made of semiconductor silicon, but it can also be made of another crystalline semiconductor material such as quartz, diamond or gallium arsenide.
Le plan de masse 36 qui est ménagé sensiblement sur toute la surface du substrat 2 est constitué par une partie du silicium du substrat qui est électriquement dopée. Au-dessus de ce plan de masse 36, sensiblement sur tout le substrat 2, est ménagée une couche 50 de dioxyde de silicium (SiO ) formant une couche électriquement isolante, d'une part entre le rotor 20 et le substrat 2, et d'autre part, entre les électrodes 4 et le substrat 2. Au-dessus ce cette couche 50 est ménagée une première couche 52 de nitrure de silicium (Sι' 3N4) sur laquelle sont structurées les pistes d'alimentation électrique 6. Sur ces pistes et sur la première couche 52 est déposée une deuxième couche de nitrure de silicium 54 permettant entre autres de protéger la couche de dioxyde de silicium 50 lors des attaques chimiques, mais aussi d'empêcher le claquage électrique entre le rotor 20 et le substrat 2. Les bornes d'alimentation 8 et 38 sont par ailleurs recouvertes d'une ine couche d'aluminium 56.The ground plane 36 which is formed substantially over the entire surface of the substrate 2 consists of a portion of the silicon of the substrate which is electrically doped. Above this ground plane 36, substantially over the entire substrate 2, a layer 50 of silicon dioxide (SiO) is formed, forming an electrically insulating layer, on the one hand between the rotor 20 and the substrate 2, and d on the other hand, between the electrodes 4 and the substrate 2. Above this this layer 50 is formed a first layer 52 of silicon nitride (Sι ' 3 N 4 ) on which the electrical supply tracks are structured 6. On these tracks and on the first layer 52 is deposited a second layer of silicon nitride 54 allowing inter alia to protect the layer of silicon dioxide 50 during chemical attacks, but also to prevent electrical breakdown between the rotor 20 and the substrate 2. The supply terminals 8 and 38 are moreover covered with an ine layer aluminum 56.
En se référant désormais à la figure 3 qui représente un deu¬ xième mode de réalisation du micromoteur selon l'invention, on remarquera que le rotor 60 ne comporte qu'un seul bras 24 au voisi¬ nage de l'extrémité libre duquel sont ménagées en "ensemble" quatre contre-électrodes 26. Ce rotor 60 ne comporte donc qu'un seul ensemble ell de contre-électrodes 26, ce micromoteur comportant aussi plusieurs groupes et plusieurs ensembles d'électrodes 4, â savoir trois groupes Gl, G2, G3 et six ensembles El à E6 partielle¬ ment représentés conformés comme dans le premier mode de réalisa¬ tion. Si dans le premier mode de réalisation des figures 1 et 2 l'alimentation électrique de la bague 30 via le plan de masse 36 et la borne d'alimentation 38, est facultative, elle est toutefois indispensable dans ce deuxième mode de réalisation pour permettre le fonctionnement du micromoteur.Referring now to FIG. 3 which represents a second embodiment of the micromotor according to the invention, it will be noted that the rotor 60 has only one arm 24 in the vicinity of the free end of which are provided as a "set" four counter-electrodes 26. This rotor 60 therefore comprises only one set ell of counter-electrodes 26, this micromotor also comprising several groups and several sets of electrodes 4, namely three groups G1, G2, G3 and six assemblies El to E6 partially shown as shaped as in the first embodiment. If in the first embodiment of Figures 1 and 2 the electrical supply of the ring 30 via the ground plane 36 and the power supply terminal 38 is optional, it is however essential in this second embodiment to allow the micromotor operation.
En se référant désormais aux figures 4 et 5, il est représenté un troisième mode de réalisation du micromoteur électrostatique selon l 'invention.Referring now to Figures 4 and 5, there is shown a third embodiment of the electrostatic micromotor according to the invention.
Le rotor 70 de ce micromoteur comporte quatre bras 74 mais il pourrait être constitué d'un bras unique, comme cela est représenté à le figure 3.The rotor 70 of this micromotor has four arms 74 but it could consist of a single arm, as shown in FIG. 3.
Le micromoteur selon ce troisième mode de réalisation ne compor¬ te qu'un seul groupe de contre-électrodes g31 et uniquement deux groupes d'électrodes respectivement G31 et G32. Il comporte aussi six ensembles d'électrodes respectivement E31 â E36. Toutefois, le rotor 70 ne comporte pas d'ensemble caractéristique de contre- électrode puisque chaque bras 74 ne comporte qu'une seule contre- électrode 26. Dans ce mode de réalisation, chaque ensemble d'élec¬ trodes E31 à E36 comporte respectivement deux électrodes 4. Les bras 74 ne sont formés .respectivement que d'un seul élément formant pont 40a dont une extrémité est reliée à la partie de guidage 22 par une patte de liaison 28, tandis que l'autre extrémité opposée qui est située à l'extérieur du premier groupe d'électrodes G31, entre celui-ci et le deuxième groupe G32, porte une contre-électrode 26 par l'intermédiaire d'une autre patte de liaison 28. La poutre 42 de chaque élément formant pont 40a chevauche partiellement le premier groupe α'électrode G31. Ainsi, dans ce mode de réalisation, la disposition des premier et deuxième groupes d'électrodes G31 et G32 disposés de façon coaxiale et entre lesquels vient évoluer la contre-électode 26 ménagée à l'extrémité de chaque bras 74 permet d'obtenir, pour chaque bras 74, un deuxième entrefer EF32 (en plus d'un entrefer EF31) qui augmente déjà le couple mécanique transmis- sible du micromoteur.The micromotor according to this third embodiment only comprises one group of counter-electrodes g31 and only two groups of electrodes G31 and G32 respectively. It also includes six sets of electrodes E31 to E36 respectively. However, the rotor 70 does not have a characteristic counter electrode assembly since each arm 74 has only one counter electrode 26. In this embodiment, each set of electrodes E31 to E36 respectively comprises two electrodes 4. The arms 74 are formed .respectively of a single element forming a bridge 40a, one end of which is connected to the guide part 22 by a connecting lug 28, while the other opposite end which is located at the outside the first group of electrodes G31, between the latter and the second group G32, carries a counter-electrode 26 by means of another connecting lug 28. The beam 42 of each element forming a bridge 40a partially overlaps the first group α'electrode G31. Thus, in this embodiment, the arrangement of the first and second groups of electrodes G31 and G32 arranged coaxially and between which the counter-electrode 26 formed at the end of each arm 74 moves, makes it possible to obtain, for each arm 74, a second air gap EF32 (in addition to an air gap EF31) which already increases the transmissible mechanical torque of the micromotor.
Ainsi, dans ce mode de réalisation, sur chaque bras, pour n élément formant pont (n = 1 dans ce cas) associé à n contre- électrode qui coopère avec n+1 groupes d'électrodes, on obtient 2 x n entrefers. Avec K bras, on obtient 2 x n x K entrefers.Thus, in this embodiment, on each arm, for n bridge element (n = 1 in this case) associated with n counter electrode which cooperates with n + 1 groups of electrodes, 2 x n air gaps are obtained. With K arms, we get 2 x n x K air gaps.
Dans le quatrième mode de réalisation représenté sur la figure 6, le bras 84 comporte deux éléments formant pont respectivement 40a, 40b, le deuxième élément formant pont 40b étant ménagé dans le prolongement du premier 40a, comme s'il était accolé à l'élément formant pont 40a du mode de réalisation précédemment décrit. Dans ce quatrième mode de réalisation, chaque bras 84 comporte deux contre- électrodes 26, si bien que ce micromoteur comporte deux groupes d'électrodes G41 et G42 associés à deux groupes de contre-électrodes g41 et g42 pour constituer, par bras 84, trois entrefers EF41 â EF43. Ainsi, dans ce mode de réalisation, chaque bras comporte n (dans ce cas n = 2) éléments formant pont ménagés les uns dans le prolongement des autres, associés â n contre-électrodes coopérant avec n groupes de contre-électrodes pour former 2 n-1 entrefers par bras. Pour le moteur complet, on obtient avec K bras, K x (2 n-1) entrefers.In the fourth embodiment shown in FIG. 6, the arm 84 has two bridge elements 40a, 40b respectively, the second bridge element 40b being formed in the extension of the first 40a, as if it were attached to the element forming bridge 40a of the embodiment described above. In this fourth embodiment, each arm 84 has two counter electrodes 26, so that this micromotor comprises two groups of electrodes G41 and G42 associated with two groups of counter electrodes g41 and g42 to constitute, per arm 84, three air gaps EF41 to EF43. Thus, in this embodiment, each arm comprises n (in this case n = 2) bridge elements arranged one in the extension of the other, associated with n counter-electrodes cooperating with n groups of counter-electrodes to form 2 n -1 air gaps per arm. For the complete motor, we obtain with K arms, K x (2 n-1) air gaps.
Dans le mode de réalisation de la figure 7, on a prévu trois groupes d'électrodes G51 à G53 coopérant avec uniquement deux groupes de contre-électrodes g51 et g52. On a formé par bras 94 quatre entrefers EF51 à 54, donc un de plus par rapport au mode de réalisation de la figure 6. Ainsi, pour n éléments formant pont par bras 94, le micromoteur selon ce cinquième mode de réalisation comporte n+1 groupes d'électrodes G51 à G53 qui forment deux à deux une zone de champ électrostatique annulaire dans laquelle se dépla¬ cent les contre-électrodes 26 de l'un des deux groupes g51 et g52. Ainsi, on observe que dans ce mode de réalisation on a prévu par bras 94 n éléments formant pont associés â n contre-électrodes coopérant avec n+1 groupes a 'électrodes pour former 2 x n entrefers, pour K bras 94, on obtient K x 2 x n entrefers.In the embodiment of FIG. 7, three groups of electrodes G51 to G53 are provided, cooperating with only two groups of counter-electrodes g51 and g52. Four air gaps EF51 to 54 have been formed by arm 94, therefore one more compared to the embodiment of FIG. 6. Thus, for n elements forming a bridge per arm 94, the micromotor according to this fifth embodiment comprises n + 1 groups of electrodes G51 to G53 which form two by two an annular electrostatic field zone in which the counter-electrodes 26 of one of the two groups g51 and g52 move. Thus, it is observed that in this embodiment, 94 arms have been provided per arm forming bridge elements associated with n counter-electrodes cooperating with n + 1 groups of electrodes to form 2 xn air gaps, for K arm 94, K x is obtained. 2 x air gaps.
Dans tous ces modes de réalisation, on a prévu pour chaque bras un ou plusieurs éléments formant pont 40a, 40b associés chacun à une seule contre-électrode 26 coopérant électrostatiquement, tantôt avec deux groupes d'électrodes entre lesquels elle évolue, tantôt avec un seul (G43) à l'extérieur duquel elle est disposée par rapport à l'axe de rotation A du rotor.In all of these embodiments, one or more bridge elements 40a, 40b are provided for each arm, each associated with a single counter-electrode 26 cooperating electrostatically, sometimes with two groups of electrodes between which it operates, sometimes with a single (G43) outside of which it is arranged relative to the axis of rotation A of the rotor.
Quoi qu'il en soit, on comprend que le rotor comporte au moins un élément formant pont qui est disposé au-dessus du plan de champ électrostatique PCE pour former un bras surélevé du rotor apte ε chevaucher au moins un groupe d'électrodes en s 'étendant au-delà de celui-ci .Anyway, it is understood that the rotor comprises at least one bridge element which is disposed above the PCE electrostatic field plane to form a raised arm of the rotor able to overlap at least one group of electrodes in s extending beyond it.
Dans ces modes de réalisation des figures 4 à 7, chaque élément formant pont en chevauchant un groupe d'électrodes vient amener la contre-électrode qu'il porte à l'extérieur du cercle formé par ce groupe. Ainsi, chaque élément formant pont en constituant un bras surélevé est apte à porter un organe électriquement fonctionnel, à savoir une contre-électrode, susceptible de coopérer avec un ou plusieurs organes complémentaires, à savoir une ou plusieurs élec¬ trodes, situés dans le plan de champ électrostatique PCE.In these embodiments of FIGS. 4 to 7, each element forming a bridge, overlapping a group of electrodes, brings the counter-electrode which it carries outside the circle formed by this group. Thus, each bridge-forming element constituting a raised arm is capable of carrying an electrically functional member, namely a counter-electrode, capable of cooperating with one or more complementary members, namely one or more electrodes, situated in the plane PCE electrostatic field sensor.
En se référant désormais aux figures 8 et 9, il est représenté un sixième mode de réalisation du micromoteur selon l'invention. Dans ce mode de réalisation, chaque bras 104 est constitué par une extension 105 de la partie de guidage 22, qui vient de matière avec cette dernière et qui est ménagée dans le même plan que celle-ci. A l'extrémité de cette extension 105 est ménagée une contre-électrode 26 venant aussi de matière avec cette extension 105 et aussi réali¬ sée dans le même plan.Referring now to Figures 8 and 9, there is shown a sixth embodiment of the micromotor according to the invention. In this embodiment, each arm 104 is constituted by an extension 105 of the guide part 22, which comes integrally with the latter and which is formed in the same plane as the latter. At the end of this extension 105 is formed a counter-electrode 26 also coming in one piece with this extension 105 and also made in the same plane.
Ce bras 104 comporte un seul élément formant pont 40a dont la première extrémité est ancrée sur la contre-électrode 26 du premier groupe g61 par l'intermédiaire d'une.-patte de liaison 28, et dont la deuxième extrémité est ancrée sur une contre-électrode supplémen¬ taire, dite deuxième contre-électrode. Cette deuxième contre- électrode appartient à un deuxième groupe de contre-électrodes g62, la liaison entre la poutre 42 de l'élément formant pont 40a et cette deuxième contre-électrode étant réalisée par l'intermédiaire d'une patte de liaison 28. Ces deux groupes de contre-électrodes g61 et g62 sont disposés de part et d'autre d'un seul groupe d'électrodes G61, si bien qu'on a formé deux entrefers EF61 et EF62 par bras 104. Dans ce mode de réalisation pour chaque bras 104 on a prévu n élément(s) formant pont 40a comportant respectivement n+1 contre-électrodes 26 coopérant avec n groupe(s) d'électrodes G61 pour former 2 x n entrefers. Plus particulièrement pour le moteur dans son intégralité qui comporte K bras 104, pour n élément(s) formant pont, on a K x 2 x n entrefers.This arm 104 comprises a single bridge element 40a, the first end of which is anchored on the counter-electrode 26 of the first group g61 by means of a connecting lug 28, and the second end of which is anchored on a counter - additional electrode, said second counter electrode. This second counter electrode belongs to a second group of g62 counter electrodes, the connection between the beam 42 of the bridge element 40a and this second counter-electrode being produced by means of a connecting tab 28. These two groups of counter-electrodes g61 and g62 are arranged on either side other of a single group of electrodes G61, so that two air gaps EF61 and EF62 have been formed per arm 104. In this embodiment for each arm 104, n bridge element (s) 40a comprising n respectively are provided +1 counter-electrodes 26 cooperating with n group (s) of electrodes G61 to form 2 xn air gaps. More particularly for the entire engine which comprises K arms 104, for n element (s) forming a bridge, there are K x 2 x air gaps.
Dans un septième mode de réalisation du micromoteur selon l'invention représenté à la figure 10, on a prévu, comme dans le mode de réalisation précédent, uniquement un élément formant pont 40a par bras 114 du rotor 110. Cet élément 40a comporte deux contre-électrodes 26, disposées à chacune de ses extrémités. Ainsi, le micromoteur comporte aussi deux groupes de contre-électrodes g71 et g72, mais qui sont ici associés â deux groupes d'électrodes G71 et G72. On a formé dans ce mode de réalisation trois entrefers EF71 à EF73 par bras. Pour chaque bras du rotor, on a disposé n éléments formant pont comportant respectivement n+1 contre-électrodes coopé¬ rant avec n+1 groupes d'électrodes pour former 2 x n+1 entrefers. Pour le micromoteur, on obtient K x (2 x n+1) entrefers.In a seventh embodiment of the micromotor according to the invention shown in FIG. 10, as in the previous embodiment, only one bridge element 40a per arm 114 of the rotor 110 has been provided. This element 40a has two counter electrodes 26, arranged at each of its ends. Thus, the micromotor also comprises two groups of counter electrodes g71 and g72, but which are here associated with two groups of electrodes G71 and G72. In this embodiment, three air gaps EF71 to EF73 were formed per arm. For each arm of the rotor, there are arranged n bridge elements comprising respectively n + 1 counter-electrodes cooperating with n + 1 groups of electrodes to form 2 x n + 1 air gaps. For the micromotor, we obtain K x (2 x n + 1) air gaps.
Dans le mode de réalisation de la figure 11, on a prévu un deuxième élément formant pont 40b pour chaque bras 124 qui comporte â son extrémité une troisième contre-électrode 26. Ainsi, par rapport au mode de réalisation précédent, on a disposé un troisième groupe de contre-électrodes g83. Dans ce mode de réalisation pour chaque bras 124 on a prévu deux éléments formant pont 40a et 40b associés à trois contre-électrodes 26 formant sur tout le micromo¬ teur trois groupes de contre-électrodes gδl à g83. Pour chaque bras 124, ces trois contre-électrodes 26 coopèrent avec deux groupes d'électrodes Gδl e.t G82, ce qui forme quatre entrefers. Plus parti¬ culièrement, pour chaque bras 124, on a prévu n éléments formant pont associés à n+1 contre-électrodes coopérant avec n groupes d'électrodes ce qui forme par bras 2 x n entrefers et pour le micromoteur K x 2 x n entrefers. Dans ce mode de réalisation on remarquera que la contre- électrode terminale du groupe g83 qui est ménagée à l'extrémité libre du deuxième élément formant pont 40b est disposée à l'exté¬ rieur du deuxième groupe d'électrodes G82.In the embodiment of FIG. 11, a second bridge element 40b is provided for each arm 124 which has at its end a third counter-electrode 26. Thus, compared to the previous embodiment, a third is arranged group of g83 counter electrodes. In this embodiment, for each arm 124, two bridge elements 40a and 40b are provided, associated with three counter-electrodes 26 forming on the whole micromo¬ tor three groups of counter-electrodes gδl to g83. For each arm 124, these three counter-electrodes 26 cooperate with two groups of electrodes Gδl and G82, which forms four air gaps. More particularly, for each arm 124, there are provided n bridge elements associated with n + 1 counter-electrodes cooperating with n groups of electrodes which form per arm 2 xn air gaps and for the micromotor K x 2 xn air gaps. In this embodiment, it will be noted that the terminal counter electrode of the group g83 which is formed at the free end of the second bridge element 40b is arranged outside the second group of electrodes G82.
Cette conception est analogue â celle du mode de réalisation des figures 8 et 9 où la contre-électrode supplémentaire du second groupe g62 est disposé à l'extérieur du groupe d'électrodes unique G61.This design is analogous to that of the embodiment of FIGS. 8 and 9 in which the additional counter electrode of the second group g62 is arranged outside the single group of electrodes G61.
En se référant désormais à la figure 12, il est représenté un neuvième mode de réalisation du micromoteur selon l'invention. Dans ce mode de réalisation, chaque bras 134 comporte deux éléments formant pont 40a et 40b associés â trois contre-électrodes 26 qui coopèrent ici avec trois groupes d'électrodes respectivement G91, G92 et G93. Ainsi, pour chaque bras 134 on a disposé n éléments formant pont qui comportent respectivement n+1 contre-électrodes coopérant avec n+1 groupes d'électrodes pour former 2 x n+1 entre¬ fers. Pour le micromoteur, on obtient avec K bras 134, K x (2 x n+1) entrefers.Referring now to Figure 12, there is shown a ninth embodiment of the micromotor according to the invention. In this embodiment, each arm 134 comprises two bridge elements 40a and 40b associated with three counter electrodes 26 which cooperate here with three groups of electrodes G91, G92 and G93 respectively. Thus, for each arm 134, n bridge elements have been arranged which respectively have n + 1 counter-electrodes cooperating with n + 1 groups of electrodes to form 2 x n + 1 entre¬ irons. For the micromotor, we obtain with K arms 134, K x (2 x n + 1) air gaps.
En se référant désormais aux .figures 13, 14 et 14a il est représenté un dixième mode de réalisation du micromoteur selon l'invention, dans lequel le rotor 140 comporte un pignon 151 confor¬ mé pour pouvoir s'engrener avec une roue 152 d'un mécanisme à entraîner, non représenté. Le pignon 151 est rendu solidaire de la partie de guidage 22 du rotor 150 par l'intermédiaire de quatre éléments formant pont 40e décalés angulairement les uns des autres d'environ 90°.Referring now to .figures 13, 14 and 14a there is shown a tenth embodiment of the micromotor according to the invention, in which the rotor 140 comprises a pinion 151 shaped to be able to mesh with a wheel 152 of a drive mechanism, not shown. The pinion 151 is made integral with the guide portion 22 of the rotor 150 by means of four bridge elements 40e angularly offset from each other by approximately 90 °.
Dans cet exemple de réalisation, comme on le voit particulière¬ ment sur les figures 13 et 14a, l'élément formant pont 40e est constitué d'une partie de poutre 42a de très faible longueur s'éten¬ dant transversalement à l'axe A et solidaire d'une patte de liaison 28 ancrée sur la face supérieur de la partie de guidage 22. Le pignon 151 et la partie de poutre 42a dont il est solidaire, ainsi que la patte de liaison 28, viennent de matière et peuvent être structurés, comme on le comprendra ci-après, lors d'une même étape de fabrication.In this exemplary embodiment, as can be seen particularly in FIGS. 13 and 14a, the bridge element 40e consists of a portion of beam 42a of very short length extending transversely to the axis A and secured to a connecting lug 28 anchored on the upper face of the guide portion 22. The pinion 151 and the beam portion 42a of which it is integral, as well as the connecting lug 28, are made of material and can be structured , as will be understood below, during the same manufacturing step.
Ainsi, l'élément formant pont 40e qui s'élève au-dessus du plan de champ électrostatique PCE porte le pignon 151 qui forme un élément mécaniquement fonctionnel apte à coopérer avec un organe complémentaire constitué par la roue 152 du mécanisme à entraîner, cet organe complémentaire 152 étant situé en dehors du plan de champ électrostatique PCE, à l'intérieur des trois groupes d'électrodes 5 G101 à G103 et des quatre groupes de contre-électrodes glOl à gl04. Dans un autre exemple non représenté, la patte de liaison 28 est directement ménagée sous le pignon 151, au droit de celui-ci, la partie de poutre 42a étant omise.Thus, the bridge element 40e which rises above the electrostatic field plane PCE carries the pinion 151 which forms a mechanically functional element capable of cooperating with a complementary member constituted by the wheel 152 of the mechanism to be driven, this complementary member 152 being located outside the electrostatic field plane PCE, inside the three groups of electrodes 5 G101 to G103 and of the four groups of counter electrodes glOl to gl04. In another example not shown, the connecting lug 28 is formed directly under the pinion 151, in line with the latter, the beam part 42a being omitted.
Les figures 15 et 15a représentent un onzième mode de rëalîsa- Q tion du micromoteur selon l'invention, dans lequel chaque bras 154 comporte â son extrémité libre, au-delà des contre-électrodes 26, un élément formant pont supplémentaire 40f qui comporte à son extrémité une roue 161 destinée à engrener avec un pignon 162 d'un mécanisme à entraîner. L'élément formant pont 40f présente une longueur environ trois fois plus grande que l'élément formant pont 40a qui supporte les deux contre-électrodes 26 des premier et second groupes de contre-électrodes glll et gll2 (la configuration de ce moteur étant proche de celle du mode de réalisation des figures 8 et 9). Ainsi, la roue 161 qui est disposée à l'extérieur du groupe d'électrodes Q Glll et des groupes de contre-électrodes glll et gll2 est écartée latéralement des électrodes 4 et n'interfère pas électrostatique ent avec ces dernières. Comme on le voit mieux sur la figure 15a, cette roue 161 est ménagée en dehors du plan de champ électrostatique puisqu'elle est supportée par une poutre 42b de l'élément formant pont 40f, qui est ménagée dans le prolongement de la poutre 42 de l'élément formant pont 40a. On précisera ici que les éléments formant pont 40a et 40f ainsi que la roue 161 viennent de matière et sont réalisés lors de la même étape de fabrication.FIGS. 15 and 15a represent an eleventh embodiment of the micromotor according to the invention, in which each arm 154 has at its free end, beyond the counter-electrodes 26, an additional bridge element 40f which comprises at its end a wheel 161 intended to mesh with a pinion 162 of a mechanism to be driven. The bridge element 40f has a length approximately three times greater than the bridge element 40a which supports the two counter-electrodes 26 of the first and second groups of counter-electrodes glll and gll2 (the configuration of this motor being close to that of the embodiment of Figures 8 and 9). Thus, the wheel 161 which is arranged outside the group of electrodes Q Glll and groups of counter-electrodes glll and gll2 is spaced laterally from the electrodes 4 and does not interfere electrostatically with the latter. As best seen in FIG. 15a, this wheel 161 is formed outside of the electrostatic field plane since it is supported by a beam 42b of the bridge element 40f, which is formed in the extension of the beam 42 of the bridge element 40a. It will be specified here that the bridge elements 40a and 40f as well as the wheel 161 are made of material and are produced during the same manufacturing step.
On remarquera que dans tous ces modes de réalisation qui vien¬ 0 nent d'être décrits, d'une part les contre-électrodes 26 du rotor et d'autre part les éléments 4 du stator sont réalisë(e)s dans des secteurs géométriques présentant un angle au centre sensiblement égal. De plus, chaque groupe de contre-électrodes 26 comporte quatre contre-électrodes dont les axes médians respectifs Xce sont décalés 5 l'un de l'autre d'un angle XI d'environ 90°, tandis que chaque groupe d'électrodes comporte six électrodes dont les axes Xe sont respectivement décalés d'un angle X2 d'environ 60e. On peut donc constater que lorsque que la ou les contre-électrodes 26 de deux bras diamétralement opposés sont sensiblement en coïncidence avec un ensemble E d'électrodes 4, la ou les contre-électrodes 26 des deux autres bras chevauchent partiellement simultanément deux autres ensembles d'électrodes 4 du stator 1. Ainsi, lorsque la ou les contre-électrodes 26 de deux bras diamétralement opposés ont été attirées électrostatiquement par deux ensembles diamétralement opposés d'électrodes 4, la ou les autres contre-électrodes des autres bras sont déjà engagées dans l'ensemble d'électrodes 4 qui va pouvoir les attirer. On comprend donc que pour faire fonctionner ce moteur, on alimente simultanément deux bornes d'alimentation qui sont connectées à deux ensembles d'électrodes (ou à deux électrodes) diamétralement opposë(e)s, puis qu'on alimente ensuite les bornes d'alimentation qui sont reliées aux deux ensembles d'électrodes (ou aux électrodes) voisin(e)s des précédent(e)s. On réalise donc un champ tournant qui permet de faire fonctionner le micromoteur en rotation continue ou en rotation pas à pas, unidirectionnelles ou bidirectionnelles. On a donc construit un moteur électrostatique à champ radial, à capacité variable et du type anti-synchrone puisque le rotor tourne en sens inverse du champ appliqué.It will be noted that in all of these embodiments which have just been described, on the one hand the counter-electrodes 26 of the rotor and on the other hand the elements 4 of the stator are produced in geometric sectors having a substantially equal center angle. In addition, each group of counter-electrodes 26 comprises four counter-electrodes whose respective median axes Xce are offset from each other by an angle XI of approximately 90 °, while each group of electrodes comprises six electrodes whose axes Xe are respectively offset by an angle X2 of about 60 e . So we can note that when the counter-electrode (s) 26 of two diametrically opposite arms are substantially in coincidence with a set E of electrodes 4, the counter-electrode (s) 26 of the other two arms partially overlap two other sets of electrodes 4 simultaneously of the stator 1. Thus, when the counter-electrode (s) 26 of two diametrically opposite arms have been electrostatically attracted by two diametrically opposite sets of electrodes 4, the other counter-electrode (s) of the other arms are already engaged in the assembly of electrodes 4 which will be able to attract them. We therefore understand that to operate this motor, we simultaneously supply two supply terminals which are connected to two sets of electrodes (or two electrodes) diametrically opposite (s), then we then supply the terminals power supply which are connected to the two sets of electrodes (or to the electrodes) adjacent to the previous ones. A rotary field is therefore produced which makes it possible to operate the micromotor in continuous rotation or in step-by-step, unidirectional or bidirectional rotation. We therefore built an electrostatic motor with a radial field, with variable capacity and of the anti-synchronous type since the rotor turns in the opposite direction to the applied field.
En effet, en se référant à la figure 1, en supposant que ce sont les ensembles E2 et E5 d'électrodes qui viennent d'être alimentés, on remarque que le rotor va se déplacer dans le sens des aiguilles d'une montre (flèche R) puisque les ensembles e2 et e4 des contre- électrodes vont venir en coïncidence avec les ensembles E2 et E5 précités. En même temps, les ensembles de contre-électrodes el et e3 sont venus chevaucher les ensembles El et E4 d'électrodes. Ainsi, pour faire avancer le moteur d'un pas suivant, il va falloir alimen¬ ter simultanément les ensembles El et E4 d'électrodes (flèche S). On observe donc qu'on est passé d'une alimentation de l'ensemble E2 (et E5) à l'ensemble El (et E4), ce qui est donc un sens opposé au sens des aiguilles d'une montre (et au sens de la flèche R).Indeed, with reference to FIG. 1, assuming that it is the sets E2 and E5 of electrodes which have just been supplied, it is noted that the rotor will move in the clockwise direction (arrow R) since the sets e2 and e4 of the counter-electrodes will come to coincide with the above-mentioned sets E2 and E5. At the same time, the sets of counter electrodes el and e3 overlapped the sets El and E4 of electrodes. Thus, in order to advance the motor by a following step, it will be necessary to supply the sets El and E4 of electrodes simultaneously (arrow S). We therefore observe that we have moved from a supply of the set E2 (and E5) to the set El (and E4), which is therefore an opposite direction to the clockwise direction (and to the direction arrow R).
En se référant désormais aux figures 16 à 46, on décrira ci- après un procédé de microfabrication photolithographique d'un micromoteur électrostatique, tel que celui du premier mode de réalisation décrit en référence aux figures 1 et 2. 16Referring now to FIGS. 16 to 46, a method of photolithographic microfabrication of an electrostatic micromotor will be described below, such as that of the first embodiment described with reference to FIGS. 1 and 2. 16
On précisera que ces figures sont très schématiques et qu'elles ne correspondent pas exactement à l'échelle des figures précédentes. Les différents composant du micromoteur ne comportent pas dans ces figures les mêmes proportions dimensionnelles.Note that these figures are very schematic and that they do not correspond exactly to the scale of the previous figures. The different components of the micromotor do not have the same dimensional proportions in these figures.
Ces figures 16 à 46 correspondent respectivement à trente phases du procédé de fabrication.These Figures 16 to 46 correspond respectively to thirty phases of the manufacturing process.
Dans la phase 1, on ménage par oxydation thermique une couche 200 de dioxyde de silicium (SÎO2) sur le substrat 2 qui est de préférence réalisé en silicium (Si).In phase 1, a layer 200 of silicon dioxide (SiO 2) is cleaned by thermal oxidation on the substrate 2 which is preferably made of silicon (Si).
Dans la phase 2, on structure à l'aide d'un masque approprié Ml et par attaque chimique â l'aide d'un acide, tel que de l'acide fluorhydrique tamponné dit BHF, la couche de dioxyde de silicium 200 pour dégager une ouverture importante jusqu'au substrat 2 et per¬ mettre l'accès à sa face supérieure.In phase 2, the layer of silicon dioxide 200 is used to structure, using an appropriate mask M1 and by chemical attack using an acid, such as buffered hydrofluoric acid called BHF. a large opening to the substrate 2 and per¬ put access to its upper face.
Dans la phase 3, on dépose sur toute la surface de la pastille P deux couches 202 et 204 de Si02 par dépôt chimique en phase vapeur, la couche 202 comportant des impuretés dopantes, du type (n), désignées ci-après "dopant".In phase 3, two layers 202 and 204 of Si0 2 are deposited over the entire surface of the pellet P by chemical vapor deposition, the layer 202 comprising doping impurities, of type (n), hereinafter referred to as "dopant ".
Ensuite, dans la phase 4, on fait subir à la pastille P un recuit pour faire diffuser la couche d'oxyde dopant 202 afin de doper une grande partie du substrat 2, excepté son bord périphérique situé sous la couche 200.Then, in phase 4, the pellet P is subjected to annealing in order to diffuse the doping oxide layer 202 in order to dop a large part of the substrate 2, except for its peripheral edge located under the layer 200.
Ensuite, dans la phase 5, on attaque les couches 202 et 204 de Si0„ pour ne laisser que la couche périphérique de dioxyde de silicium 200 ainsi qu'une région dopée du substrat 2. La région dopée du substrat 2 forme le plan de masse 36, tandis que la couche périphérique 200 forme une partie de la couche isolante 50 du stator 1. Dans cette même phase, on dépose sur la région dopée 36 et sur la couche périphérique 50 une nouvelle couche 206 de SiO par dépôt chimique en phase vapeur, ce qui forme une barrière de diffusion vers l'extérieur de la pastille P.Then, in phase 5, we attack the layers 202 and 204 of Si0 „to leave only the peripheral layer of silicon dioxide 200 as well as a doped region of the substrate 2. The doped region of the substrate 2 forms the ground plane 36, while the peripheral layer 200 forms part of the insulating layer 50 of the stator 1. In this same phase, a new layer 206 of SiO is deposited on the doped region 36 and on the peripheral layer 50 by chemical vapor deposition , which forms a diffusion barrier towards the outside of the pellet P.
Ainsi, dans ces cinq phases de fabrication, on a entre autres ménagé, sensiblement sur toute la surface du substrat 2, une premiè¬ re couche électriquement conductrice 36 qui, comme on peut le voir sur la figure 2, est destinée à alimenter la bague centrale 30.Thus, in these five manufacturing phases, among other things, an approximately electrically conductive layer 36 which, as can be seen in FIG. 2, is intended to supply the ring, substantially over the entire surface of the substrate 2. central 30.
Cette couche 36 permettra d'alimenter le rotor et ses contre- ëlectrodes. 19This layer 36 will supply the rotor and its counter-electrodes. 19
On se référera désormais aux figures 21 â 22 qui représentent les phases suivantes du procédé selon l'invention.Reference will now be made to FIGS. 21 to 22 which represent the following phases of the method according to the invention.
Dans la sixième phase on ménage par oxydation thermique sur toute la surface de la pastille P une couche 208 de SiO destinée â permettre l'isolation électrique entre le plan de masse 36 et les électrodes 4 qui seront déposées et structurées ultérieurement.In the sixth phase, a layer 208 of SiO intended to allow electrical insulation between the ground plane 36 and the electrodes 4 which will be deposited and structured subsequently is formed by thermal oxidation over the entire surface of the pellet P.
Dans la phase 7, on dépose par dépôt chimique en phase vapeur à basse pression une couche 210 de nitrure de silicium (Si^ ^). Dans ces deux phases 6 et 7 qui forment une deuxième étape importante du procédé, on a ménagé une première couche électriquement isolante 208 qui correspond à la couche 50 représentée sur la figure 2. La couche 210 formera la couche 52 (figure 2).In phase 7, a layer 210 of silicon nitride (Si ^ ^) is deposited by chemical vapor deposition at low pressure. In these two phases 6 and 7 which form a second important step in the process, a first electrically insulating layer 208 has been provided which corresponds to the layer 50 shown in FIG. 2. The layer 210 will form the layer 52 (FIG. 2).
On se référera désormais aux figures 23 à 28 qui représentent respectivement les huitième au treizième phases du procédé selon 1 'invention.Reference will now be made to FIGS. 23 to 28 which respectively represent the eighth to the thirteenth phases of the method according to the invention.
Dans la phase 8, on dépose par un dépôt chimique en phase vapeur à faible pression une première couche de polysilicium 212 sur toute la surface de la pastille P, c'est-à-dire sur la couche 210 de Si3N» préalablement déposée. Pour une meilleure compréhension de ce procédé, on référencera cette couche de polysilicium 212 "PolySi I".In phase 8, a first layer of polysilicon 212 is deposited by chemical vapor deposition at low pressure over the entire surface of the pellet P, that is to say on the layer 210 of Si 3 N "previously deposited. . For a better understanding of this process, reference this layer of polysilicon 212 "PolySi I".
Dans la phase 9, on dope électriquement cette couche de poly¬ silicium en déposant sur celle-ci, par un dépôt chimique en phase vapeur, une couche d'oxyde dopant 214 en faisant ensuite subir à la pastille P un recuit permettant une diffusion du dopant vers la couche de PolySi I .In phase 9, this layer of poly¬ silicon is electrically doped by depositing on it, by chemical vapor deposition, a layer of dopant oxide 214 by then subjecting the pellet P to an annealing allowing diffusion of the doping towards the PolySi I layer.
Dans la phase 10, on structure, par un jeu de masque M2 et à l'acide BHF, la couche 214 d'oxyde dopant déposé dans la phase 9.In phase 10, a layer of dopant oxide deposited in phase 9 is structured by a set of mask M2 and with BHF acid.
Dans la phase 11, on structure par photolithographie au plasma avec le jeu de masque M2 la couche 212 de polysilicium I, ce qui fait apparaître la couche 210 de nitrure de silicium déposé dans la phase 7.In phase 11, the layer 212 of polysilicon I is structured by plasma photolithography with the mask set M2, which reveals the layer 210 of silicon nitride deposited in phase 7.
Ensuite, dans la phase 12, on attaque à l'acide BHF le reste d'oxyde dopant de la couche 214 pour complètement dégager la couche 212 de polysilicium I qui a été structurée. On a donc structuré dans cette étape (phases 8 à 12) par l'intermédiaire du jeu de masque M2 des pistes conductrices 6 (voir figure 1) en polysilicium, destinées â alimenter les électrodes 4 du stator. Dans la phase 13, on dépose sur toute la pastille P par un dépôt chimique en phase vapeur à basse pression, une deuxième couche de nitrure de siliciurr Si3N£. Cette deuxième couche de nitrure de silicium protège les couches sous-jacentes lors des attaques chimi¬ ques ultérieures et présente lors du fonctionnement du moteur un rôle de diminution du coefficient de frottement (le rotor 22 pouvant venir en appui par les éléments protubérants 23 sur le rotor 1, voir figure 2). Cette couche 216 présente aussi une fonction d'amélio¬ ration des caractéristiques mécaniques du mîcromoteur en offrant une protection â l'usure. Elle correspond â la couche 54 de la figure 2.Then, in phase 12, the residue of doping oxide from layer 214 is attacked with BHF acid in order to completely release the layer 212 of polysilicon I which has been structured. So in this step (phases 8 to 12), conductive tracks 6 (see FIG. 1) made of polysilicon, intended to supply the electrodes 4 of the stator, have been structured using the mask set M2. In phase 13, a second layer of silicon nitride Si 3 N £ is deposited over the entire pellet P by chemical vapor deposition at low pressure. This second layer of silicon nitride protects the underlying layers during subsequent chemical attacks and has, during the operation of the engine, a role of reducing the coefficient of friction (the rotor 22 can come to bear by the protruding elements 23 on the rotor 1, see figure 2). This layer 216 also has a function of improving the mechanical characteristics of the micro-motor by providing protection against wear. It corresponds to layer 54 of FIG. 2.
On précisera que d'autres matériaux, tels que le diamant, peuvent remplir cette fonction et être déposés à la place du Sι" 3N4.It will be noted that other materials, such as diamond, can fulfill this function and be deposited in place of the Sι " 3 N 4 .
Dans la phase 14, on dépose sur la pastille P une couche 218 de verre dopé au phosphore, généralement dénommé sous l'abréviation britannique "PSG".In phase 14, a layer 218 of phosphorus-doped glass, generally referred to by the British abbreviation "PSG", is deposited on the pellet P.
Dans la phase 15, on fait subir à la pastille P un recuit pour aplanir la face extérieur de la couche 218. On appellera cette couche 218, couche "PSG I".In phase 15, the pellet P is subjected to annealing in order to flatten the outer face of the layer 218. This layer 218 will be called the "PSG I" layer.
Dans la phase 16, on structure par l'intermédiaire d'un masque M3 des ouvertures dans la couche PSG I pour former, comme on l'ex¬ pliquera ci-après, les éléments protubérants 23 du rotor 22. Cette structuration dans la couche PSG I se fait par attaque chimique â l'acide fluorhydrique tamponné.In phase 16, openings in the PSG layer I are structured by means of a mask M3 to form, as will be explained below, the protruding elements 23 of the rotor 22. This structuring in the layer PSG I is made by chemical attack with buffered hydrofluoric acid.
Dans la phase 17, on dépose par dépôt chimique en phase vapeur une couche d'oxyde dopant 219 permettant le recouvrement de la seconde couche 216 de nitrure de silicium qui a été découverte lors de l'attaque chimique.In phase 17, a layer of doping oxide 219 is deposited by chemical vapor deposition allowing the recovery of the second layer 216 of silicon nitride which was discovered during the chemical attack.
Dans la phase 18, on structure par un jeu de masques M4 des ouvertures supplémentaires dans la couche 218 de PSG I pour per¬ mettre la réalisation des supports 10 des électrodes 4 du stator, comme on le verra dans les étapes suivantes. Cette structuration photo!ithographîque se fait au plasma. On remarquera donc que dans cette phase 18 on a ôté certaines régions de la couche 218 au droit de certaines parties des pistes conductrices 6, mais qu'on a aussi attaqué une partie de la couche de nitrure de silicium 216 se trouvant au-dessus de ces parties de pistes conductrices 6. Dans la phase 19, on dépose sur la pastille P pεr un dépôt chimique en phase vapeur à faible pression une deuxième couche 220 de pυlysil iciurr, dite polysilicium II.In phase 18, additional openings in the layer 218 of PSG I are structured by a set of masks M4 to allow the production of the supports 10 of the electrodes 4 of the stator, as will be seen in the following steps. This photo! Ithographic structuring is done with plasma. It will therefore be noted that in this phase 18 we removed certain regions of the layer 218 in line with certain parts of the conductive tracks 6, but that we also attacked part of the layer of silicon nitride 216 lying above these parts of conductive tracks 6. In phase 19, a second layer 220 of pυlysil iciurr, called polysilicon II, is deposited on the pellet P pεr a chemical deposition in the vapor phase at low pressure.
Dans la phase 20, on structure par photolithographie au plasma cette deuxième couche de polysilicium II par un jeu de masques M5, afin de définir la partie de guidage 22, les électrodes 4 du stator, les contre-électrodes 26 du rotor, ainsi qu'éventuellement les bornes d'alimentation 8 qui sont destinées à permettre l'alimenta¬ tion des électrodes 4 du stator. Dans cette phase, on peut aussi structurer simultanément les extensions 105 des figures 9 à 15.In phase 20, this second layer of polysilicon II is structured by plasma photolithography by a set of masks M5, in order to define the guide part 22, the electrodes 4 of the stator, the counter-electrodes 26 of the rotor, as well as optionally the supply terminals 8 which are intended to allow the supply of the electrodes 4 of the stator. In this phase, the extensions 105 of FIGS. 9 to 15 can also be structured simultaneously.
Dans la phase 21, on structure par le jeu de masques M5 et aussi au plasma la partie de la couche 218 de PSG I qui ne se trouve pas en dessous des éléments structurels 22, 4, 26 et 8. On précisera ici que la partie de la couche 218 de PSGI qui se trouve sous ces élé¬ ments structurels constitue une couche sacrificielle qui sera ultérieurement éliminée par attaque chimique. On remarquera donc que dans les étapes 14 à 21 on a structuré avec interposition d'une première couche sacrificielle au moins un groupe d'électrodes 4 du stator conformé autour de l'axe de rotation du micromoteur, de façon angulairement décalée (figure 1), ainsi que simultanément la partie de guidage 22 du rotor, au moins une contre-électrode 26 du rotor et de préférence les bornes d'alimentation 8 ainsi qu'éventuellement les extensions 105. Ces phases 14 à 21 constituent donc une étape supplémentaire essentielle du procédé selon l'invention.In phase 21, the part of the layer 218 of PSG I which is not located below the structural elements 22, 4, 26 and 8 is structured by the set of masks M5 and also with plasma. layer 218 of PSGI which is under these structural elements constitutes a sacrificial layer which will be subsequently eliminated by chemical attack. It will therefore be noted that in steps 14 to 21, at least one group of electrodes 4 of the stator shaped around the axis of rotation of the micromotor has been structured with the interposition of a first sacrificial layer, angularly offset (FIG. 1) , as well as simultaneously the guide part 22 of the rotor, at least one counter-electrode 26 of the rotor and preferably the supply terminals 8 as well as possibly the extensions 105. These phases 14 to 21 therefore constitute an essential additional step of the method according to the invention.
Dans la phase 22 (figure 37), on dépose par dépôt chimique en phase vapeur une deuxième couche 222 de verre dopé au phosphore (PSG II) sur les éléments fonctionnels qui viennent d'être structurés dans les phases précédentes.In phase 22 (FIG. 37), a second layer 222 of phosphorus-doped glass (PSG II) is deposited by chemical vapor deposition on the functional elements which have just been structured in the preceding phases.
Dans la phase 23, on attaque par ^structuration photolithogra¬ phique au plasma une partie de cette deuxième couche 222 de PSG II, ainsi que certaines régions des deux couches de nitrure de siliciurr 216, 210 et de la couche de dioxyde de silicium 50. Dans cette phase on prépare donc la réalisation de la bague centrale 30 ainsi que celle des bornes 38 d'alimentation du plan de masse 36. Cette structuration se fait par un jeu de masques M6.In phase 23, part of this second layer 222 of PSG II is attacked by plasma photolithographic structuring, as well as certain regions of the two layers of silicon nitride 216, 210 and of the layer of silicon dioxide 50. In this phase, therefore, the production of the central ring 30 is prepared as well as that of the terminals 38 supplying the ground plane 36. This structuring is done by a set of masks M6.
Dans la phase 24, on structure de nouveau par photolithographie au plasma par un masque M7 certaines parties de la seconde couche 222 de PSG II pour permettre l'ancrage sur la partie de guidage 22 et sur les contre-électrodes 26 des pattes de liaison 28, ainsi qu'éventuellement la réalisation d'une borne d'alimentation 39 (figure 31) permettant l'alimentation des pistes 6.In phase 24, certain parts of the second layer are again structured by plasma photolithography with an M7 mask. 222 of PSG II to allow the anchoring on the guide portion 22 and on the counter-electrodes 26 of the connecting lugs 28, as well as possibly the production of a supply terminal 39 (FIG. 31) allowing the supply tracks 6.
Dans la phase 25, on dépose par dépôt chimique en phase vapeur â faible pression une troisième couche 224 de polysilicium, appelée polysilicium III, et ce sur toute la face de la pastille P.In phase 25, a third layer 224 of polysilicon, called polysilicon III, is deposited by chemical vapor deposition at low pressure on the entire face of the pellet P.
Ensuite, dans la phase 26, on structure par photolithographie au plasma par un masque M8 la troisième couche 224 de polysilicium III pour ne laisser que.les parties fonctionnelles que l'on souhaite. On dégage ainsi une partie de la seconde couche 222 de verre dopé au phosphore (PSG II).Then, in phase 26, the third layer 224 of polysilicon III is structured by plasma photolithography with a mask M8 . the functional parts you want. Part of the second layer 222 of phosphorus-doped glass (PSG II) is thus released.
Dans la phase 27, on dépose sur toute la pastille P par dépôt en phase vapeur une couche 226 d'oxyde dopant SiO pour ensuite faire subir â la pastille P un recuit permettant le dopage des seconde et troisième couches de polysilicium II et III respectivement les rendant aussi conductrices.In phase 27, a layer 226 of SiO doping oxide is deposited over the entire pellet P by vapor phase deposition, then annealing the pellet P allowing doping of the second and third layers of polysilicon II and III respectively. also making conductive.
Dans la phase 28, on attaque â l'acide une partie des couches sacrificielles les plus accessibles (c'est-à-dire les parties exposées en surface) pour préparer un dépôt d'aluminium sur les bornes d'alimentation.In phase 28, some of the most accessible sacrificial layers (that is to say the parts exposed on the surface) are attacked with acid to prepare an aluminum deposit on the supply terminals.
On comprend donc que dans ces phases 22 à 28, on a structuré avec interposition d'une deuxième couche sacrificielle et au-dessus de la partie de guidage 22, des électrodes 4 du rotor et des bornes d'alimentation 8, d'une part la bague centrale de guidage 30, mais aussi plusieurs éléments formant pont 40 qui constituent, comme on l'a expliqué ci-avant, des bras surélevés du rotor associés â des organes mécaniquement ou électriquement fonctionnels.It is therefore understood that in these phases 22 to 28, there has been structured with the interposition of a second sacrificial layer and above the guide portion 22, electrodes 4 of the rotor and supply terminals 8, on the one hand the central guide ring 30, but also several bridge elements 40 which constitute, as explained above, raised arms of the rotor associated with mechanically or electrically functional members.
Dans ce procédé, on a représenté uniquement comme élément fonctionnel une contre-électrode 26, mais bien entendu, on aurait pu représenter le pignon 151 ou encore la roue 161, respectivement des figures 14 et 15.In this process, a counter-electrode 26 is shown only as a functional element, but of course, it could have been represented the pinion 151 or the wheel 161, respectively in FIGS. 14 and 15.
Dans la phase 29, on dépose par évaporation une couche d'alumi¬ nium 228 sur la pastille P. Dans la phase 30, on structure à l'aide d'un masque M9 la couche d'aluminium 228 pour ne laisser qu'une pellicule sur les bornes d'alimentation 8 et 38 et permettre la liaison avec un circuit électronique de commande, non représenté.In phase 29, an aluminum layer 228 is deposited by evaporation on the pellet P. In phase 30, the aluminum layer 228 is structured using an M9 mask so as to leave only one film on the terminals 8 and 38 and allow connection with an electronic control circuit, not shown.
Dans la phase 31, on attaque à l'aide de l'acide fluorhydrique tamponné (BHF) pendant un temps relativement long les couches sacrificielles restantes formées respectivement par les deux couches de verre dopé au phosphore PSG I et PSG II.In phase 31, the remaining sacrificial layers formed respectively by the two layers of phosphorus doped glass PSG I and PSG II are attacked using buffered hydrofluoric acid (BHF) for a relatively long time.
On remarquera que pour faciliter l'attaque chimique des couches sacrificielles sous-jacentes, la partie de guidage 22 du rotor comporte αes ouvertures axiales débouchantes 25 convenablement réparties (par exemple réalisées dans la phase 20) permettant une meilleure irrigation de l'acide d'attaque.It will be noted that to facilitate the chemical attack on the underlying sacrificial layers, the guide portion 22 of the rotor has suitably distributed through axial openings 25 (for example made in phase 20) allowing better irrigation of the acid. attack.
Par ailleurs, bien qu'on ait représenté une seule électrode 4 du rotor, il est bien évident qu'on peut réaliser simultanément plu¬ sieurs groupes d'électrodes coaxiaux, tels que les groupes Gl à G3 de la figure 1. A la place des bornes d'alimentation 8, on peut former un groupe d'électrodes 4 en éliminant sur celles-ci la couche d'aluminium.Furthermore, although only one electrode 4 of the rotor has been shown, it is obvious that several groups of coaxial electrodes can be produced simultaneously, such as the groups G1 to G3 of FIG. 1. Instead supply terminals 8, a group of electrodes 4 can be formed by eliminating the aluminum layer thereon.
De même, on peut réaliser simultanément et avec une même couche plusieurs groupes de contre-électrodes, tel que les groupes gl â g4 de la figure 1, disposés de part et d'autre des groupes d'électrodesLikewise, several groups of counter-electrodes can be produced simultaneously and with the same layer, such as the groups gl to g4 of FIG. 1, arranged on either side of the groups of electrodes.
G . Les éléments formant pont 40a à 40d sont aussi réalisé simulta¬ nément. Ils sont réalisés avec une autre couche de polysilicium (entre autre la couche de polysilicium III) que les électrodes et les contre-électrodes. Les éléments formant pont étant ménagés les uns dans le prolongement des autres, leur patte de liaison 26 vient s'ancrer sur la partie de guidage 22 ou sur la ou les contre- électrodes correspondantes qui sont formées par des couches sous- jacentes.G. The bridge elements 40a to 40d are also produced simultaneously. They are made with another layer of polysilicon (inter alia the layer of polysilicon III) than the electrodes and the counter-electrodes. The bridge elements being arranged one in the extension of the other, their connecting tab 26 is anchored on the guide part 22 or on the corresponding counter-electrode (s) which are formed by underlying layers.
On comprend donc que grâce à la disposition des éléments formant pont qui peuvent être avantageusement réalisés en même temps que la bague centrale 30, on a pu à la fois répondre au problème de la transmission du couple par une liaison mécanique judicieuse entre le rotor et un pignon ou une roue dentée, et au problème de l'augmenta¬ tion du couple moteur tranmîssible en multipliant le nombre d'entre- fer, et ce grâce à la construction d'une structure interdigitëe. It is therefore understood that thanks to the arrangement of the elements forming a bridge which can advantageously be produced at the same time as the central ring 30, it has been possible both to respond to the problem of the transmission of torque by a judicious mechanical connection between the rotor and a pinion or a toothed wheel, and to the problem of increasing the transferable engine torque by multiplying the number of air-gaps, thanks to the construction of an interdigitated structure.

Claims

REVENDICATIONS
1. Micromoteur électrostatique à champ radial, réalisé par microfabrication photolithographique, du type comprenant un stator (1) comportant au moins un groupe (G ) de plu¬ sieurs électrodes (4) angulairement décalées autour d'un axe de 5 rotation (A) du micromoteur, ces électrodes (4) qui sont connectées électriquement à un circuit de commande étant supportées par un substrat (2), un rotor (20, 60 - 160), de préférence réalisé au moins en partie en un matériau électriquement conducteur, comportant au moins une contre-électrode (26) apte à venir évoluer en regard de chaque électrode (4) du stator (1), sensiblement dans un même plan dit plan de champ électrostatique (PCE), le jeu laissé entre ladite contre- électrode (26) et les électrodes correspondantes (4) formant un entrefer, - une bague (30) formant palier qui est susceptible d'être électriquement alimentée et qui est solidaire dudit substrat (2), ledit rotor étant guidé en rotation, et éventuellement en transla¬ tion, autour de cette bague (30) par l'intermédiaire d'une partie de guidage (22) dont est solidaire ladite contre-électrode, caractérisé 0 en ce que ledit rotor comporte au moins un élément formant pont (40a-f) qui est disposé au moins en partie au-dessus du plan de champ électrostatique (PCE), cet élément qui constitue un bras surélevé du rotor portant un ou plusieurs organes mécaniquement ou électriquement fonctionnels (26, 151, 161) aptes à coopérer avec un 5 ou plusieurs organes complémentaires (4, 152, 162) situés dans ou en dehors du plan de champ électrostatique (PCE) et à l'intérieur ou à l'extérieur dudit groupe (G ) d'électrodes du stator (1).1. Electrostatic radial field micromotor, produced by photolithographic microfabrication, of the type comprising a stator (1) comprising at least one group (G) of several electrodes (4) angularly offset around an axis of rotation 5 (A) of the micromotor, these electrodes (4) which are electrically connected to a control circuit being supported by a substrate (2), a rotor (20, 60 - 160), preferably made at least in part from an electrically conductive material, comprising at least one counter-electrode (26) capable of coming to evolve opposite each electrode (4) of the stator (1), substantially in the same plane called the electrostatic field plane (PCE), the clearance left between said counter-electrode ( 26) and the corresponding electrodes (4) forming an air gap, - a ring (30) forming a bearing which is capable of being electrically supplied and which is integral with said substrate (2), said rotor being guided in rotation, and possibly ment in transla¬ tion, around this ring (30) via a guide portion (22) which is integral with said counter electrode, characterized 0 in that said rotor comprises at least one element forming a bridge (40a -f) which is arranged at least partially above the electrostatic field plane (PCE), this element which constitutes a raised arm of the rotor carrying one or more mechanically or electrically functional members (26, 151, 161) capable of cooperating with one or more complementary members (4, 152, 162) located in or outside the electrostatic field plane (PCE) and inside or outside said group (G) of stator electrodes (1) .
2. Micromoteur selon la revendication 1, caractérisé en ce que ledit organe est constitué par ladite contre-électrode (26) du rotor Q qui est ménagée entre ledit groupe d'électrodes formant un premier groupe (Gl) et un deuxième groupe d'électrodes (G2) ménagé de façon coaxiale au premier, le jeu laissé entre ladite contre-électrode (26) et le deuxième groupe d'électrodes (G2) formant un deuxième entrefer. 2. Micromotor according to claim 1, characterized in that said member is constituted by said counter-electrode (26) of the rotor Q which is formed between said group of electrodes forming a first group (Gl) and a second group of electrodes (G2) formed coaxially with the first, the clearance left between said counter electrode (26) and the second group of electrodes (G2) forming a second air gap.
3. Micromoteur selon la revendication 1, caractérisé en ce que chaque bras du roter (80) comporte n éléments formant pont ménagés les uns dans le prolongement des autres, ces n éléments formant pont (40a, 40b) comportant respectivement n contre-électrcdes (26) coopérant de façon interdigitée avec au moins n groupes (G41, G42) d'électrodes disposés -άe façon coaxiale (4), pour former au moins 2 x n-1 entrefers.3. Micromotor according to claim 1, characterized in that each arm of the roter (80) comprises n bridge elements arranged one in the extension of the other, these n bridge elements (40a, 40b) respectively comprising n counter-electrodes ( 26) cooperating interdigitally with at least n groups (G41, G42) of electrodes arranged -άe coaxially (4), to form at least 2 x n-1 air gaps.
4. Micromoteur selon la revendication 3, caractérisé en ce qu'il comporte n+1 groupes d'électrodes (Gδl, G52, G53) formant deux à deux une zone de champ électrostatique dans laquelle se déplace une des contre-électrodes (26) pour former 2 x n entrefers.4. Micromotor according to claim 3, characterized in that it comprises n + 1 groups of electrodes (Gδl, G52, G53) forming two by two an electrostatic field zone in which one of the counter-electrodes moves (26) to form 2 xn air gaps.
5. Micromoteur selon la revendication 1, caractérisé en ce que ledit organe est constitué par une contre-électrode supplémentaire (26), dite deuxième contre-électrode, cette deuxième contre-électro¬ de étant ménagée à l'extérieur du groupe d'électrodes du stator (G61), le jeu laissé entre cette deuxième contre-électrode et le groupes d'électrodes (Gδl) formant un entrefer supplémentaire.5. Micromotor according to claim 1, characterized in that said member is constituted by an additional counter-electrode (26), called second counter-electrode, this second counter-electro¬ being formed outside the group of electrodes of the stator (G61), the clearance left between this second counter-electrode and the group of electrodes (Gδl) forming an additional air gap.
6. Micromoteur selon la revendication 5, caractérisé en ce que chaque bras du rotor comporte n éléments formant pont ménagés les uns dans le prolongement des autres, ces n éléments formant pont comportant respectivement n+1 contre-électrodes coopérant avec au moins n groupes d'électrodes (Gδl, G82) pour former au moins 2 x n entrefers.6. Micromotor according to claim 5, characterized in that each arm of the rotor comprises n bridge elements formed one in the extension of the other, these n bridge elements respectively comprising n + 1 counter-electrodes cooperating with at least n groups of 'electrodes (Gδl, G82) to form at least 2 xn air gaps.
7. Micromoteur selon la revendication 6, caractérisé en ce qu'il comporte n+1 groupes (G91, G92 et G93) d'électrodes pour former, avec les n+1 contre-électrodes, 2 x n+1 entrefers.7. Micromotor according to claim 6, characterized in that it comprises n + 1 groups (G91, G92 and G93) of electrodes to form, with the n + 1 counter-electrodes, 2 x n + 1 air gaps.
8. Micromoteur selon la revendication 1, caractérisé en ce que l'organe de l'élément formant pont est constitué par un pignon (151) ou une roue (161) conformé peur venir s'engrener avec respectivement une roue ou un pignon d'un mécanisme à entraîner.8. Micromotor according to claim 1, characterized in that the member of the bridge-forming element consists of a pinion (151) or a wheel (161) shaped to come into gear with respectively a wheel or a pinion a mechanism to train.
9. Micromoteur selon la revendication 8, et l'une des revendi¬ cations 1, 2, ou 5, caractérisé en ce que l'élément formant pont comporte, en plus d'un organe électriquement fonctionnel constitué par une contre-électrode (26) du rotor, un pignon ou une roue.9. Micromotor according to claim 8, and one of claims 1, 2, or 5, characterized in that the bridge element comprises, in addition to an electrically functional member constituted by a counter-electrode (26 ) of the rotor, a pinion or a wheel.
10. Micromoteur selon la revendication 8, et selon l'une des revendications 3, 4, 6 ou 7, caractérisé en ce que le enième élément formant pont ou élément formant pont terminal comporte la roue (161).10. Micromotor according to claim 8, and according to one of claims 3, 4, 6 or 7, characterized in that the umpteenth element forming a bridge or element forming a terminal bridge comprises the wheel (161).
11. Micromoteur selon l'une des revendications précédentes, caractérisé en ce que ledit pignon (151) ou ladite roue (161) sont rendus solidaires du rotor par l'intermédiaire d'au moins deux éléments formant pont (40e, 40f) , de préférence disposés sur le rotor de façon diamétralement opposée.11. Micromotor according to one of the preceding claims, characterized in that said pinion (151) or said wheel (161) are made integral with the rotor by means of at least two bridge elements (40e, 40f), preferably arranged on the rotor diametrically opposite.
12. Micromoteur selon la revendication 11, caractérisé en ce que ledit pignon (151) ou ladite roue (161) est solidaire du rotor par l'intermédiaire de quatre bras décalés les uns par rapport aux autres d'environ 90e.12. Micromotor according to claim 11, characterized in that said pinion (151) or said wheel (161) is integral with the rotor by means of four arms offset from each other by about 90 e .
13. Procédé de réalisation photo!ithegraphique d'un moteur électrostatique, tel que celui des revendications 1 à 12, caractéri¬ sé en ce qu'il consiste : a) - de préférence â ménager sensiblement sur toute la surface d'un substrat (2), une première couche électriquement conductrice (36) destinée à alimenter une bague centrale (30) apte à guider et à contacter une partie de guidage (20) d'un rotor du micromoteur, b) - à ménager au moins une première couche électriquement isolante (50) sur cette couche conductrice, c) - à structurer des pistes conductrices (6) sur ladite première couche isolante (50), ces pistes étant destinées à alimen¬ ter des électrodes (4) du stator (1) par l'intermédiaire d'un circuit de commande du micromoteur, d) - â déposer au moins partiellement sur les couches précéden¬ tes de préférence une couche présentant une fonction protectrice et une fonction de diminution du frottement et d'isolation électrique, e) - â structurer, avec interposition d'une première couche sacrificielle (218), au moins un groupe (Gl) d'électrodes (4) angulairement décalées autour d'un axe A de rotation du micromoteur, ainsi que simultanément ladite partie de guidage (22) du rotor et au moins une contre-électrode (26) du rotor (20), f) - à structurer au-dessus de ces électrodes (4) et de ces contre-électrodes (26) ainsi qu'au-dessus de cette partie de guidage (22), avec interposition d'une deuxième couche sacrificielle (222), ladite bague centrale (30) ainsi qu'au moins un élément formant pont (40) constituant un bras surélevé du rotor destiné à être associé à au moins un organe (26, 151, 161) mécaniquement ou électriquement fonctionnel, tel qu'un pignon ou une roue, g) - puis à éliminer par attaque chimique les couches sacrifi¬ cielles (218, 222).13. A method of photo-ithegraphic production of an electrostatic motor, such as that of claims 1 to 12, characterized in that it consists of: a) - preferably to be formed substantially over the entire surface of a substrate ( 2), a first electrically conductive layer (36) intended to supply a central ring (30) capable of guiding and contacting a guide part (20) of a rotor of the micromotor, b) - providing at least a first layer electrically insulating (50) on this conductive layer, c) - to structure conductive tracks (6) on said first insulating layer (50), these tracks being intended to supply electrodes (4) of the stator (1) by the 'through a micromotor control circuit, d) - at least partially depositing on the preceding layers preferably a layer having a protective function and a function of reducing friction and electrical insulation, e) - â structure, with the interposition of a first sacrificial layer (218), at least one group (Gl) of electrodes (4) angularly offset around an axis A of rotation of the micromotor, as well as said guide portion (22) of the rotor and at least one counter electrode (26) of the rotor (20), f) - to be structured above these electrodes (4) and these counter electrodes (26) as well as above this guide part (22), with the interposition of a second sacrificial layer (222), said central ring (30) as well as at least one bridge element (40) constituting a raised arm of the rotor intended to be associated with at least one member (26, 151, 161) mechanically or electrically functional, such as a pinion or a wheel, g) - then eliminating by chemical attack the sacrificial layers (218, 222).
14. Procédé selon la revendication 13, caractérisé en ce que dans l'étape f) on structure simultanément des bornes d'alimentation (8, 38) et des électrodes (4).14. The method of claim 13, characterized in that in step f) is simultaneously structured supply terminals (8, 38) and electrodes (4).
15. Procédé selon la revendication 13 ou 14, caractérisé en ce que dans 1 'étape e) on structure au moins une extension formant bras (105) destinée à former la liaison mécanique entre la partie de guidage (22) du rotor et la ou les contre-électrodes (26).15. Method according to claim 13 or 14, characterized in that in step e) at least one extension forming an arm (105) is designed to form the mechanical connection between the guide part (22) of the rotor and the or the counter-electrodes (26).
16. Procédé selon une des revendications 13 â 15, caractérisé en ce que dans 1 'étape e) on structure simultanément plusieurs groupes d'électrodes (G ) ménagés de façon coaxiale.16. Method according to one of claims 13 to 15, characterized in that in step e) simultaneously structures several groups of electrodes (G) formed coaxially.
17. Procédé selon la revendication 15 ou 16, caractérisé en ce que dans l'étape e) on réalise plusieurs contre-électrodes disposées de part et d'autre du ou des groupes de contre-électrodes.17. Method according to claim 15 or 16, characterized in that in step e) a plurality of counter-electrodes are arranged, arranged on either side of the group or groups of counter-electrodes.
18. Procédé selon la revendication 16 ou 17, caractérisé en ce dans l'étape f) on réalise simultanément plusieurs éléments formant pont (40a-f) sensiblement alignés les uns dans le prolongement des autres, venant se lier à une contre-électrode sous-jacente corres¬ pondante. 18. The method of claim 16 or 17, characterized in that in step f) several bridge elements are produced simultaneously (40a-f) substantially aligned one in the extension of the other, coming to bond to a counter electrode under - corresponding corres¬ ponding.
EP91903142A 1990-02-09 1991-02-06 Electrostatic radial field micromotor obtained by photolithographic micromanufacture and method of manufacture thereof Withdrawn EP0466874A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH426/90 1990-02-09
CH42690A CH680962A5 (en) 1990-02-09 1990-02-09 Radial field electrostatic micromotor
FR9002385 1990-02-23
FR9002385A FR2658960A1 (en) 1990-02-23 1990-02-23 Electrostatic micromotor with radial field produced by photolithographic microfabrication and method of producing such a micromotor

Publications (1)

Publication Number Publication Date
EP0466874A1 true EP0466874A1 (en) 1992-01-22

Family

ID=25684548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91903142A Withdrawn EP0466874A1 (en) 1990-02-09 1991-02-06 Electrostatic radial field micromotor obtained by photolithographic micromanufacture and method of manufacture thereof

Country Status (4)

Country Link
US (1) US5180940A (en)
EP (1) EP0466874A1 (en)
JP (1) JPH04505546A (en)
WO (1) WO1991012650A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0482205B1 (en) * 1990-04-16 1996-09-11 Fujitsu Limited Electrostatic actuator
CA2069227C (en) * 1991-05-24 1996-10-22 Minoru Ueda Process for fabricating micromachines
US6472794B1 (en) * 1992-07-10 2002-10-29 Matsushita Electric Industrial Co., Ltd. Microactuator
US5296775A (en) * 1992-09-24 1994-03-22 International Business Machines Corporation Cooling microfan arrangements and process
US5555765A (en) * 1993-02-10 1996-09-17 The Charles Stark Draper Laboratory, Inc. Gimballed vibrating wheel gyroscope
US5413668A (en) * 1993-10-25 1995-05-09 Ford Motor Company Method for making mechanical and micro-electromechanical devices
US5631514A (en) * 1994-06-09 1997-05-20 The United States Of America As Represented By The United States Department Of Energy Microfabricated microengine for use as a mechanical drive and power source in the microdomain and fabrication process
US5539267A (en) * 1994-07-21 1996-07-23 International Business Machines Corporation Microfabricated rotary motion wobble motor and disk drive incorporating it
US5805375A (en) * 1994-08-01 1998-09-08 International Business Machines Corporation Wobble motor microactuator for fine positioning and disk drive incorporating the microactuator
US5710466A (en) * 1995-06-19 1998-01-20 Georgia Tech Research Corporation Fully integrated magnetic micromotors and methods for their fabrication
GB2321642B8 (en) 1996-10-01 2006-08-22 Geron Corp Human telomerase reverse transcriptase promoter
US6137206A (en) * 1999-03-23 2000-10-24 Cronos Integrated Microsystems, Inc. Microelectromechanical rotary structures
TW201006846A (en) 2000-03-07 2010-02-16 Senomyx Inc T1R taste receptor and genes encidung same
US6936951B1 (en) 2000-11-27 2005-08-30 Grq Instruments, Inc. Smart sonic bearings and method for frictional force reduction and switching
US6717312B1 (en) * 2001-01-03 2004-04-06 Dana Corporation Defense vehicle aiming ordinance platform having variable reluctance motor
TW201022287A (en) 2001-01-03 2010-06-16 Senomyx Inc T1R taste receptors and genes encoding same
US7883856B2 (en) 2001-04-05 2011-02-08 Senomyx Inc. Identification of bitter ligands that specifically activate human T2R receptors and related assays for identifying human bitter taste modulators
EP1412750B1 (en) 2001-06-26 2012-05-23 Senomyx, Inc. T1r2-t1r3 hetero-oligomeric sweet taste receptors and cell lines that express said receptors and use thereof for identification of sweet taste compounds
IL159640A0 (en) 2001-07-10 2004-06-01 Senomyx Inc Use of specific t2r taste receptors to identify compounds that block bitter taste
DE60232597D1 (en) * 2001-10-01 2009-07-23 Lion Corp METHOD OF BLEACHING TEETH; DENTAL COMPOSITION AND TOOTHBAR SET
CA2476894A1 (en) 2002-02-20 2003-08-28 American Integrated Biologics, Inc. Transgenic production in saliva
RU2006106920A (en) 2003-08-06 2007-09-20 Синомикс Инк. (Us) T1R HETERO-OLIGOMER TASTE RECEPTORS, CELL LINES THAT EXPRESS THE SPECIFIED RECEPTORS AND TASTE COMPOUNDS
JP2009507835A (en) 2005-09-09 2009-02-26 ジョンズ ホプキンス ユニバーシティ Manipulating regulatory T cell and DC function by targeting the neuritin gene with antibodies, agonists and antagonists
ES2658859T3 (en) 2005-10-20 2018-03-12 Senomyx, Inc. Chimeric human sweet-umami and umami-sweet taste receptors
DK3235811T3 (en) 2006-04-21 2018-11-12 Senomyx Inc PROCEDURE FOR THE PREPARATION OF OXALAMIDS
CN101828111B (en) 2007-08-21 2014-07-23 塞诺米克斯公司 Human T2R bitterness receptors and uses thereof
US8337141B2 (en) 2008-02-14 2012-12-25 The Charles Stark Draper Laboratory, Inc. Rotary nanotube bearing structure and methods for manufacturing and using the same
US9083208B2 (en) * 2012-09-05 2015-07-14 The United States Of America As Represented By The Secretary Of The Army Ball bearing supported electromagnetic microgenerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1521852A (en) * 1966-05-03 1968-04-19 Philips Nv Synchronous electrostatic machine
NL6605934A (en) * 1966-05-03 1967-11-06
US3629624A (en) * 1970-03-23 1971-12-21 Juergen H Staudte Electrostatic motor
US4997521A (en) * 1987-05-20 1991-03-05 Massachusetts Institute Of Technology Electrostatic micromotor
US5043043A (en) * 1990-06-22 1991-08-27 Massachusetts Institute Of Technology Method for fabricating side drive electrostatic micromotor
US5093594A (en) * 1990-06-22 1992-03-03 Massachusetts Institute Of Technology Microfabricated harmonic side-drive motors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9112650A1 *

Also Published As

Publication number Publication date
JPH04505546A (en) 1992-09-24
US5180940A (en) 1993-01-19
WO1991012650A1 (en) 1991-08-22

Similar Documents

Publication Publication Date Title
EP0466874A1 (en) Electrostatic radial field micromotor obtained by photolithographic micromanufacture and method of manufacture thereof
EP0605302B1 (en) Procedure for fabricating a pressure transducer using the silicon on isolation technique and transducer thus obtained
WO2002065187A2 (en) Method for making an optical micromirror and micromirror or array of micromirrors obtained by said method
EP0795231A1 (en) Electrostatic motor and its fabrication process
EP0444539B1 (en) Exciting coil set, method of fabricating the same and micromotor equipped therewith
CH680322A5 (en)
LU84413A1 (en) CAPACITIVE PRESSURE TRANSDUCER WITH ELECTROSTATICALLY LINKED SILICON
FR2697675A1 (en) Method of manufacturing integrated capacitive transducers
EP1040492A1 (en) Microsystem with element deformable by the action of a heat-actuated device
FR2887537A1 (en) ELECTROSTATIC ACTUATOR, DEVICE COMPRISING SUCH ACTUATORS, MICROSYSTEM COMPRISING SUCH A DEVICE AND METHOD FOR PRODUCING SUCH ACTUATOR
EP0287945B1 (en) Motor device comprising at least one coil, and process for manufacturing this coil
WO2004081695A2 (en) Mems device comprising an actuator generating a hysteresis driving motion
EP0753671B1 (en) Method of manufacturing elements of floating, rigid microstructures and apparatus equipped with such elements
FR2915984A1 (en) ACTUATOR AND MICROMOTOR TYPE BDA.
WO2002065186A2 (en) Pivoting optical micromirror, array for such micromirrors and method for making same
CH688745A5 (en) differential pressure sensor of capacitive type.
FR2658960A1 (en) Electrostatic micromotor with radial field produced by photolithographic microfabrication and method of producing such a micromotor
CH680962A5 (en) Radial field electrostatic micromotor
EP3828943B1 (en) Mechanical microsystem and corresponding production process
FR2639085A1 (en) Built-in electrostatic microvalve and method for manufacturing such a microvalve
EP0874379B1 (en) Magnetic microswitch and method of making
FR3082999A1 (en) MIM STRUCTURE AND METHOD FOR PRODUCING SUCH A STRUCTURE
CH677136A5 (en) Electrostatically operated medical micro-valve - has integrated structure with channels and components formed in engraved layers
EP0441269B1 (en) Electrostatic micromotor
EP3865954A1 (en) Method for manufacturing a device with flexible single-piece silicon sheets, for timepieces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19911125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17Q First examination report despatched

Effective date: 19931108

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950815