EP0457752B1 - Method of measuring the temperatures of axles and bearings for detection of hot-boxes - Google Patents

Method of measuring the temperatures of axles and bearings for detection of hot-boxes Download PDF

Info

Publication number
EP0457752B1
EP0457752B1 EP91890096A EP91890096A EP0457752B1 EP 0457752 B1 EP0457752 B1 EP 0457752B1 EP 91890096 A EP91890096 A EP 91890096A EP 91890096 A EP91890096 A EP 91890096A EP 0457752 B1 EP0457752 B1 EP 0457752B1
Authority
EP
European Patent Office
Prior art keywords
scanning beam
measured values
values
oscillation
rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91890096A
Other languages
German (de)
French (fr)
Other versions
EP0457752A1 (en
Inventor
Ivan Dr. Sutnar
Wolfgang Dipl.-Ing. Nayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Railway Systems GmbH
Original Assignee
Voestalpine VAE GmbH
Voestalpine Weichensysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3506880&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0457752(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Voestalpine VAE GmbH, Voestalpine Weichensysteme GmbH filed Critical Voestalpine VAE GmbH
Publication of EP0457752A1 publication Critical patent/EP0457752A1/en
Application granted granted Critical
Publication of EP0457752B1 publication Critical patent/EP0457752B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/04Detectors for indicating the overheating of axle bearings and the like, e.g. associated with the brake system for applying the brakes in case of a fault
    • B61K9/06Detectors for indicating the overheating of axle bearings and the like, e.g. associated with the brake system for applying the brakes in case of a fault by detecting or indicating heat radiation from overheated axles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S246/00Railway switches and signals
    • Y10S246/02Thermal sensing devices

Definitions

  • the invention relates to a method for measuring axis or bearing temperatures for locating hot runners in rolling rail traffic with infrared receivers with an oscillating scanning beam directed transversely to the longitudinal direction of the rail, the analog measured values of the infrared receiver being digitized.
  • the measuring device itself comprises an infrared receiver, which has usually been positioned near the rails so that its active window can detect an angle to the normal bearing of a rolling rail vehicle.
  • the temperature measurement is only available for a relatively short time and rail vehicles deviate from a straight line movement when moving in the longitudinal direction of the rail even if a straight track is laid. This so-called "sinusoidal run" leads to a lateral offset of the axes of the order of magnitude ⁇ 4 cm.
  • the hottest point that can be measured in each case is located at different points in different bearing constructions.
  • devices have already been proposed with which a larger area can be detected transversely to the longitudinal direction of the rail, around that region of a bearing which is actually inadmissibly heated to be able to record safely.
  • an integral signal is obtained, which is assumed to contain the hottest point with certainty.
  • the invention now aims to develop a method of the type mentioned with an oscillating scanning beam in such a way that with different designs of bearings and different positions of the hottest point of a bearing in the longitudinal direction of the axis with certainty a significant value can be measured.
  • the method according to the invention essentially consists in the fact that the measured values of the infrared receiver are linked to the oscillation frequency or the orientation of the scanning beam, that at least two complete oscillations of the scanning beam are evaluated per axis, with a partial region of a first oscillation of the A mean value is formed that corresponds to the scan beam corresponding measurement value and the measurement value (s) corresponding to the corresponding sub-area of subsequent vibrations of the scan beam, that the averaging over a predetermined maximum number of vibrations of the scan beam and / or as long as another signal triggered by the wheel in the same axis in Measuring angle of the sensor is signaled, repeated and that the highest mean value of the measured values of the corresponding sub-areas is evaluated.
  • the measured values of the infrared receiver in particular voltage measured values
  • the measured values of the infrared receiver are digitized
  • there is a simple possibility of linking such values to the oscillation frequency of the oscillating scanning beam as a result of which measured values are broken down for the respective orientation of the scanning beam.
  • the same axis can be scanned several times even at high speeds of rolling rail vehicles and by evaluating at least two complete oscillations of the scanning beam per axis, of which it is known which sub-area is linked to the oscillation frequency or the orientation of the scanning beam the respective signals correspond to the axis, averaging can be carried out, which further eliminates interference.
  • the measurement value corresponding to a sub-area of a first oscillation of the scanning beam and at least one further measurement value from the corresponding sub-area of another vibration a mean value of the scanning beam is formed, the number of averages being able to be limited in the case of correspondingly slow rolling rail traffic, since if further measured values are taken into account a higher accuracy is no longer achieved and is interrupted at the latest when the respectively measured axis emerges from the measuring angle of the sensor.
  • a signal triggered by the wheel is evaluated, which can originate from a conventional wheel arch sensor.
  • a relatively significant peak is determined by repeatedly measuring the hottest point, which peak actually represents a significant value for the inadmissible bearing or axis heating, and the highest average value of the measured values of corresponding sub-areas is therefore used according to the invention for the evaluation.
  • the oscillation frequency of the scanning beam is advantageously chosen between 2 and 10 kHz.
  • a correspondingly high sampling rate must be selected, the sampling rate advantageously being chosen to be an integer multiple of the oscillation frequency, in particular 5 to 15 times the oscillation frequency. In this way it is ensured that each full oscillation of the scanning beam can be divided into 5 to 15 partial areas, the measured values of such partial areas being able to be used separately for averaging with corresponding measured values of corresponding partial areas of at least one further vibration.
  • the method is advantageously carried out in such a way that the oscillating movement of the scanning beam is switched on by a wheel sensor located in front of the measuring point and is switched off after the last wheel has overrun. In this way, the oscillation of the scanning beam is only activated when rolling train traffic is actually to be measured.
  • the one-sided heating of bearings due to the solar radiation can result in distortions of the measurement results.
  • the acquisition of the mean values of the measured values on the same axis to the left and right of the rail vehicle provides information as to whether one-sided solar radiation distorts the results.
  • the comparison of measured values of successive axes on the same side of the rail vehicle can be evaluated on the basis of probability considerations, since an excessive accumulation of hot runners on one side has a low degree of probability.
  • the method is advantageously carried out in such a way that at least 3 and at most 20 measured values of partial areas of the oscillation of the scanning beam are subjected to averaging.
  • at least one wheel sensor is advantageously arranged on the rail adjacent to the IR receiver, wherein in addition, the oscillating movement of the scanning beam can be switched on by at least one wheel sensor arranged offset in the longitudinal direction of the rail.
  • a separate wheel sensor must be arranged in the longitudinal direction of the rail before and after the infrared receiver.
  • FIG. 1 shows a schematic illustration of an infrared receiver with an oscillating mirror
  • 2 shows a perspective arrangement of the receiver in the course of the rail
  • FIG. 3 shows a schematic representation of the measurement value formation from the signals of the infrared receiver.
  • the measuring beam or scanning beam 1 strikes a deflecting mirror 3 via a focusing optical element 2 and subsequently arrives at an oscillating mirror 5 with the interposition of an image field lens 4, which mirrors the image scanned on the image field line 4 via infrared optics 6 feeds a detector or heat radiation sensor 7.
  • the oscillating mirror 5 oscillates in the direction of the double arrow 8 and can be excited piezoelectrically via oscillating crystals or electromagnetically in order to exert this oscillation.
  • the image field lens 4 has a radius of curvature on its side facing the mirror, which corresponds to the refractive power of the converging lens (s) of the infrared optics 6. Due to the pivoting movement of the mirror 5, a viewing area corresponding to the double arrow 9 is now partly detected and, on the other hand, the image of the detector 7 designed by the converging lens of the infrared optics 6 reaches the mirrored areas 10 provided in the marginal area of the converging lens with a correspondingly wide deflection the image of the detector 7 is reflected and in A reference signal for the temperature of the detector element 7, which can be thermoelectrically cooled in a simple manner, is thus made available to these edge regions.
  • the autocollimation is achieved by the reflectively vaporized areas of the image field lens 4, which are designated by 10. Since small images on lens surfaces are known to be critical because of possible inhomogeneities, the lens can also be arranged somewhat out of focus. In the present case, however, only a slight additional modulation can occur due to the deflected beam even with inhomogeneities, which is insignificant for the reference formation.
  • a corresponding partial area in the direction of the double arrow 9 is thus detected as the viewing area.
  • a corresponding sub-region of the oscillation of the oscillating mirror 5 can be assigned to the respective point of the visual range.
  • an inductive transmitter for example, not shown in FIG. 1, is provided for the actual oscillation frequency of the mirror 5.
  • FIG. 2 shows the schematic arrangement of an infrared receiver in the course of the rail.
  • the receivers are indicated schematically by 11 and one receiver is provided for each separate rail 12.
  • a rail contact 13 is provided in order to enable the switching on and counting in of axes through which the infrared receivers 11 pass.
  • the evaluation circuit schematically indicated by 14 and the oscillation frequency of the oscillating mirror 5 can be switched off after a defined period of time after which the last axis has passed the wheel sensor or rail contact 13.
  • a further wheel sensor 15 can be provided for this purpose It is particularly important if the track is to be navigable in both directions, since then the wheel sensor 15 gives the switch-on pulse for the oscillator of the oscillating mirror 5 and the synchronization of the evaluation electronics.
  • the evaluation electronics also contain an outside or air temperature sensor 16 in order to improve the accuracy of the measured value acquisition.
  • the signals provided by the infrared receiver 11 via signal lines 17 to the evaluation electronics 14 are now used, as explained in more detail in FIG.
  • the time duration of a full oscillation of the oscillator for the oscillating mirror 5 is designated by a.
  • This full oscillation in which the scanning beam in the sense of the double arrow 9 in FIG. 1 successively detects the visual range, is used to obtain and temporarily store measured values at a sampling rate ten times the oscillator frequency.
  • the respective measured values over a first full vibration a are designated as a1, a2, a3 to a10.
  • ten measured values b1 to b10 are obtained in an analogous manner with an identical sampling rate.
  • a sharp measurement signal can also be guaranteed with such an evaluation of the measurement results and averaging if a largely covered bearing is one hottest point only in a relatively small area, for example on the edge of the bearing cover.
  • the evaluation of the integral signal would reveal a significantly lower absolute warming than the averaging carried out according to the invention, which can actually reliably identify the hottest area in the visual range.
  • the sampling rate can naturally be varied, it being advantageous to always select an integer multiple of the oscillation frequency as the sampling rate and, as a preferred embodiment of the invention, to select 5 to 15 times the oscillation frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Radiation Pyrometers (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Rolling Contact Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

In a method for measuring temperatures of axles and bearings for locating hot boxes in rolling railway traffic with infrared receivers with an oscillating sensing beam (1) which is directed transversely with respect to the longitudinal direction of the rails, the analog measured values of the infrared receiver (7) are digitised and logically connected to the oscillation frequency or the orientation of the sensing beam, at least two complete oscillations of the sensing beam (1) being evaluated per axle, in which case a mean value is formed from the measured value corresponding to a subregion of a first oscillation of the sensing beam (1) and the measured value or values corresponding to the appropriate subregion of subsequent oscillations of the sensing beam (1). Here, the formation of mean values is repeated over a predetermined maximum number of oscillations of the sensing beam (1) and/or as long as a further signal triggered by the wheel indicates the same axle in the measuring angle of the sensor (7), and the respective highest mean value of the measured values of corresponding subregions is evaluated. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Verfahren zum Messen von Achs- bzw. Lagertemperaturen zur Ortung von Heißläufern im rollenden Bahnverkehr mit Infrarotempfängern mit einem quer zur Schienenlängsrichtung gerichteten, oszillierenden Abtaststrahl, wobei die analogen Meßwerte des Infrarotempfängers digitalisiert werden.The invention relates to a method for measuring axis or bearing temperatures for locating hot runners in rolling rail traffic with infrared receivers with an oscillating scanning beam directed transversely to the longitudinal direction of the rail, the analog measured values of the infrared receiver being digitized.

Für die Messung von unzulässigen Temperaturerhöhungen und insbesondere für die Ortung von Heißläufern im rollenden Bahnverkehr sind bereits eine Reihe von Einrichtungen bekannt geworden. Die Meßvorrichtung selbst umfaßt einen Infrarotempfänger, welcher nahe den Schienen zumeist so positioniert wurde, daß sein aktives Fenster unter Einschluß eines Winkels zur Normalen Lager eines rollenden Schienenfahrzeuges erfassen kann. Insbesondere bei höheren Geschwindigkeiten steht für die Temperaturmessung nur relativ kurze Zeit zur Verfügung und Schienenfahrzeuge weichen bei ihrer Bewegung in Längsrichtung der Schiene von einer geradlinigen Bewegung auch dann ab, wenn ein gerades Geleise verlegt ist. Dieser sogenannte "Sinuslauf" führt zu einem seitlichen Versetzen der Achsen um größenordnungsmäßig ± 4 cm. Je nach Lagerkonstruktion und insbesondere Konstruktion der Abdeckung eines Lagers befindet sich die jeweils meßbare heißeste Stelle bei verschiedenen Lagerkonstruktionen an verschiedenen Stellen. Um alle diese Abweichungen der jeweils heißesten Stelle einer Achse bzw. eines Lagers quer zur Schienenlängsrichtung erfassen zu können, sind bereits Einrichtungen vorgeschlagen worden, mit welchen quer zur Schienenlängsrichtung ein größerer Bereich erfaßt werden kann, um denjenigen Bereich eines Lagers, welcher tatsächlich unzulässig erwärmt ist, sicher erfassen zu können. Bei einem entsprechend breiten Abtaststrahl quer zur Schienenlängsrichtung wird ein integrales Signal erhalten, von welchem angenommen wird, daß es die jeweils heißeste Stelle mit Sicherheit enthält. Die durch die Erfassung eines relativ breiten Bereiches in Längsrichtung der Achsen gegebene Integration führt aber insgesamt zu relativ geringen Unterschieden der jeweils gemessenen Signale, so daß eine sichere Auswertung nicht ohne weiteres gelingt. Insbesondere bei relativ vollständigen Lagerabdeckungen kann eine unzulässige Erwärmung nur über einen geringen Teilbereich der axialen Länge einer Achse erfaßt werden, da die übrigen Bereiche vergleichsweise wesentlich kühler sind.A number of devices have already become known for measuring impermissible temperature increases and in particular for locating hot runners in rolling rail traffic. The measuring device itself comprises an infrared receiver, which has usually been positioned near the rails so that its active window can detect an angle to the normal bearing of a rolling rail vehicle. Especially at higher speeds, the temperature measurement is only available for a relatively short time and rail vehicles deviate from a straight line movement when moving in the longitudinal direction of the rail even if a straight track is laid. This so-called "sinusoidal run" leads to a lateral offset of the axes of the order of magnitude ± 4 cm. Depending on the bearing construction and in particular the construction of the cover of a bearing, the hottest point that can be measured in each case is located at different points in different bearing constructions. In order to be able to detect all these deviations of the hottest point of an axis or a bearing transversely to the longitudinal direction of the rail, devices have already been proposed with which a larger area can be detected transversely to the longitudinal direction of the rail, around that region of a bearing which is actually inadmissibly heated to be able to record safely. With a correspondingly wide Scanning beam transverse to the longitudinal direction of the rail, an integral signal is obtained, which is assumed to contain the hottest point with certainty. However, the integration given by the detection of a relatively wide area in the longitudinal direction of the axes leads overall to relatively small differences in the signals measured in each case, so that a reliable evaluation is not easily achieved. In particular with relatively complete bearing covers, impermissible heating can only be detected over a small part of the axial length of an axis, since the other areas are comparatively much cooler.

Zur Verbreiterung der möglichen Abtaststrecke längs der Achse eines Lagers sind Einrichtungen mit rotierenden und schwingenden Spiegeln bekanntgeworden, mit welchen die längs der Achse eines Schienenfahrzeuges auftretenden Erwärmungen bzw. Infrarotstrahlen auf einen Infrarotdetektor gerichtet und fokussiert werden. In der EP-A 265 417 wurde bereits vorgeschlagen, zum Erfassen von unzulässig erwärmten Radlagern in den Strahlengang von der Meßstelle zum Wärmestrahlungsfühler eine die Abbildung wenigstens einachsig verbreiternde Einrichtung einzuschalten, wobei eine derartige Einrichtung von einem verzerrenden optischen Element gebildet wird, welches die Abbildung eines entsprechenden verbreiterten Feldes ermöglicht. Anordnungen mit einer schwingenden Ablenkeinrichtung sind beispielsweise der EP-A 264 360 zu entnehmen, wobei hier die Meßgenauigkeit dadurch erhöht werden konnte, daß die Amplitude der Schwingung der Ablenkeinrichtung so gewählt wurde, daß in regelmäßigen Abständen eine Reflexion des gekühlten Detektors auf sich selbst vorgenommen wurde, um auf diese Weise zu einem Kalibrierungspunkt für die Erhöhung der Meßgenauigkeit zu gelangen.In order to broaden the possible scanning distance along the axis of a bearing, devices with rotating and oscillating mirrors have become known, with which the heating or infrared rays occurring along the axis of a rail vehicle are directed and focused on an infrared detector. In EP-A 265 417 it has already been proposed to switch on the imaging at least uniaxially broadening device for detecting inadmissibly heated wheel bearings in the beam path from the measuring point to the heat radiation sensor, such a device being formed by a distorting optical element which represents the imaging corresponding widened field allows. Arrangements with an oscillating deflection device can be found, for example, in EP-A 264 360, it being possible here to increase the measurement accuracy by selecting the amplitude of the oscillation of the deflection device so that the cooled detector was reflected on itself at regular intervals in order to arrive at a calibration point for increasing the measuring accuracy.

Die Erfindung zielt nun darauf ab, ein Verfahren der eingangs genannten Art mit einem oszillierenden Abtaststrahl dahingehend weiterzubilden, daß bei unterschiedlichen Ausbildungen von Lagern und unterschiedlicher Lage der jeweils heißesten Stelle eines Lagers in Längsrichtung der Achse mit Sicherheit ein signifikanter Wert gemessen werden kann. Zur Lösung dieser Aufgabe besteht das erfindungsgemäße Verfahren im wesentlichen darin, daß die Meßwerte des Infrarotempfängers mit der Oszillationsfrequenz bzw. der Orientierung des Abtaststrahles verknüpft werden, daß je Achse wenigstens zwei vollständige Schwingungen des Abtaststrahles ausgewertet werden, wobei aus dem einem Teilbereich einer ersten Schwingung des Abtaststrahles entsprechenden Meßwert und dem oder den dem entsprechenden Teilbereich nachfolgender Schwingungen des Abtaststrahles entsprechenden Meßwert(en) ein Mittelwert gebildet wird, daß die Mittelwertbildung über eine vorbestimmte maximale Anzahl von Schwingungen des Abtaststrahles und/oder solange ein weiteres vom Rad ausgelöstes Signal die gleiche Achse im Meßwinkel des Sensors signalisiert, wiederholt wird und daß der jeweils höchste Mittelwert der Meßwerte entsprechender Teilbereiche ausgewertet wird. Da die Meßwerte des Infrarotempfängers, insbesondere Spannungsmeßwerte, digitalisiert werden, besteht eine einfache Möglichkeit der Verknüpfung derartiger Werte mit der Oszillationsfrequenz des oszillierenden Abtaststrahles, wodurch Meßwerte aufgeschlüsselt für die jeweilige Orientierung des Abtaststrahles zur Verfügung stehen. Bei entsprechend hoher Oszillationsfrequenz kann auch bei hohen Geschwindigkeiten rollender Schienenfahrzeuge die gleiche Achse mehrmals abgetastet werden und dadurch, daß je Achse wenigstens zwei vollständige Schwingungen des Abtaststrahles ausgewertet werden, von welchen durch Verknüpfung mit der Oszillationsfrequenz bzw. der Orientierung des Abtaststrahles bekannt ist, welchem Teilbereich der Achse die jeweiligen Signale entsprechen, kann eine Mittelwertbildung vorgenommen werden, welche Störungen weiter eliminiert. Zu diesem Zweck wird erfindungsgemäß aus dem einem Teilbereich einer ersten Schwingung des Abtaststrahles entsprechenden Meßwert und wenigstens einem weiteren Meßwert aus dem entsprechenden Teilbereich einer weiteren Schwingung des Abtaststrahles ein Mittelwert gebildet, wobei die Anzahl der Mittelwertbildungen bei entsprechend langsam rollendem Bahnverkehr begrenzt werden kann, da bei Berücksichtigung weiterer Meßwerte eine höhere Genauigkeit nicht mehr erzielt wird und spätestens dann unterbrochen wird, wenn die jeweils gemessene Achse aus dem Meßwinkels des Sensors austritt. Um zu erfassen, ob sich die gleiche Achse noch im Meßwinkel des Sensors befindet, wird hiebei ein vom Rad ausgelöstes Signal ausgewertet, welches von einem konventionellen Radlaufsensor stammen kann. Bei einer derartigen Messung wird durch mehrmaliges Messen der heißesten Stelle ein relativ signifikanter Peak ermittelt, welcher tatsächlich einen signifikanten Wert für die unzulässige Lager- bzw. Achserwärmung darstellt und es wird daher erfindungsgemäß der jeweils höchste Mittelwert der Meßwerte entsprechender Teilbereiche für die Auswertung verwendet.The invention now aims to develop a method of the type mentioned with an oscillating scanning beam in such a way that with different designs of bearings and different positions of the hottest point of a bearing in the longitudinal direction of the axis with certainty a significant value can be measured. To achieve this object, the method according to the invention essentially consists in the fact that the measured values of the infrared receiver are linked to the oscillation frequency or the orientation of the scanning beam, that at least two complete oscillations of the scanning beam are evaluated per axis, with a partial region of a first oscillation of the A mean value is formed that corresponds to the scan beam corresponding measurement value and the measurement value (s) corresponding to the corresponding sub-area of subsequent vibrations of the scan beam, that the averaging over a predetermined maximum number of vibrations of the scan beam and / or as long as another signal triggered by the wheel in the same axis in Measuring angle of the sensor is signaled, repeated and that the highest mean value of the measured values of the corresponding sub-areas is evaluated. Since the measured values of the infrared receiver, in particular voltage measured values, are digitized, there is a simple possibility of linking such values to the oscillation frequency of the oscillating scanning beam, as a result of which measured values are broken down for the respective orientation of the scanning beam. With a correspondingly high oscillation frequency, the same axis can be scanned several times even at high speeds of rolling rail vehicles and by evaluating at least two complete oscillations of the scanning beam per axis, of which it is known which sub-area is linked to the oscillation frequency or the orientation of the scanning beam the respective signals correspond to the axis, averaging can be carried out, which further eliminates interference. For this purpose, according to the invention, the measurement value corresponding to a sub-area of a first oscillation of the scanning beam and at least one further measurement value from the corresponding sub-area of another vibration a mean value of the scanning beam is formed, the number of averages being able to be limited in the case of correspondingly slow rolling rail traffic, since if further measured values are taken into account a higher accuracy is no longer achieved and is interrupted at the latest when the respectively measured axis emerges from the measuring angle of the sensor. In order to determine whether the same axis is still in the measuring angle of the sensor, a signal triggered by the wheel is evaluated, which can originate from a conventional wheel arch sensor. In such a measurement, a relatively significant peak is determined by repeatedly measuring the hottest point, which peak actually represents a significant value for the inadmissible bearing or axis heating, and the highest average value of the measured values of corresponding sub-areas is therefore used according to the invention for the evaluation.

Um Geschwindigkeiten des rollenden Bahnverkehres von bis zu 350 km/h unter Einhaltung der Bedingung, daß wenigstens zwei vollständige Schwingungen ausgewertet werden können, sicher erfassen zu können, wird mit Vorteil die Oszillationsfrequenz des Abtaststrahles zwischen 2 und 10 kHz gewählt. Um nun zu verhindern, daß wiederum nur integrale Signale mit entsprechender Unschärfe zur Auswertung gelangen, muß eine entsprechend hohe Abtastrate gewählt werden, wobei die Abtastrate mit Vorteil gleich einem ganzzahligen Vielfachen der Oszillationsfrequenz, insbesondere gleich dem 5 bis 15-fachen der Oszillationsfrequenz gewählt wird. Auf diese Weise wird sichergestellt, daß jede volle Schwingung des Abtaststrahles in 5 bis 15 Teilbereiche unterteilt werden kann, wobei die Meßwerte derartiger Teilbereiche jeweils gesondert zu einer Mittelwertbildung mit entsprechenden Meßwerten von entsprechenden Teilbereichen wenigstens einer weiteren Schwingung herangezogen werden können.In order to be able to reliably record speeds of rolling rail traffic of up to 350 km / h while observing the condition that at least two complete vibrations can be evaluated, the oscillation frequency of the scanning beam is advantageously chosen between 2 and 10 kHz. In order to prevent that in turn only integral signals with corresponding blurring are evaluated, a correspondingly high sampling rate must be selected, the sampling rate advantageously being chosen to be an integer multiple of the oscillation frequency, in particular 5 to 15 times the oscillation frequency. In this way it is ensured that each full oscillation of the scanning beam can be divided into 5 to 15 partial areas, the measured values of such partial areas being able to be used separately for averaging with corresponding measured values of corresponding partial areas of at least one further vibration.

Um die mechanischen Teile des Infrarotempfängers entsprechend zu schonen, wird das Verfahren mit Vorteil so durchgeführt, daß die oszillierende Bewegung des Abtaststrahles von einem vor der Meßstelle liegenden Radsensor eingeschaltet wird und nach Überlaufen des letzten Rades abgeschaltet wird. Auf diese Weise wird die Oszillation des Abtaststrahles nur dann aktiviert, wenn tatsächlich rollender Bahnverkehr gemessen werden soll.In order to protect the mechanical parts of the infrared receiver accordingly, the method is advantageously carried out in such a way that the oscillating movement of the scanning beam is switched on by a wheel sensor located in front of the measuring point and is switched off after the last wheel has overrun. In this way, the oscillation of the scanning beam is only activated when rolling train traffic is actually to be measured.

Bei hoher Sonneneinstrahlung kann die einseitige Erwärmung von Lagern auf Grund der Sonneneinstrahlung Verzerrungen der Meßergebnisse zur Folge haben. Um auch derartige Verzerrungen der Meßergebnisse sicher ausschließen zu können und signifikante Meßwerte zu erhalten, wird mit Vorteil so vorgegangen, daß die Mittelwerte der Meßwerte der gleichen Achse zu beiden Seiten des Schienenfahrzeuges miteinander verglichen werden, wobei vorzugsweise auch die Mittelwerte der Meßwerte von in Längsrichtung des Schienenfahrzeuges aufeinanderfolgenden Achsen miteinander verglichen werden. Die Erfassung der Mittelwerte der Meßwerte der gleichen Achse links und rechts des Schienenfahrzeuges gibt Auskunft darüber, ob eine einseitige Einstrahlung von Sonnenenergie die Ergebnisse verzerrt. Der Vergleich von Meßwerten aufeinanderfolgender Achsen an der gleichen Seite des Schienenfahrzeuges kann auf Grund von Wahrscheinlichkeitsüberlegungen ausgewertet werden, da eine übermäßige Anhäufung von Heißläufern auf einer Seite ein geringes Maß an Wahrscheinlichkeit besitzt.With high solar radiation, the one-sided heating of bearings due to the solar radiation can result in distortions of the measurement results. In order to be able to reliably exclude such distortions of the measurement results and to obtain significant measured values, it is advantageously carried out in such a way that the average values of the measured values of the same axis on both sides of the rail vehicle are compared with one another, preferably also the average values of the measured values from in the longitudinal direction of the Rail vehicle successive axes are compared. The acquisition of the mean values of the measured values on the same axis to the left and right of the rail vehicle provides information as to whether one-sided solar radiation distorts the results. The comparison of measured values of successive axes on the same side of the rail vehicle can be evaluated on the basis of probability considerations, since an excessive accumulation of hot runners on one side has a low degree of probability.

Zur Erzielung entsprechend signifikanter und aussagekräftiger Meßwerte bzw. Mittelwerte von Meßwerten wird das Verfahren mit Vorteil so durchgeführt, daß wenigstens 3 und maximal 20 Meßwerte von Teilbereichen der Schwingung des Abtaststrahles einer Mittelwertbildung unterworfen werden. Um zu signalisieren, daß sich die gleiche Achse immer noch im Meßwinkel des Sensors aufhält, ist mit Vorteil an der Schiene dem IR-Empfänger benachbart wenigstens ein Radsensor angeordnet, wobei zusätzlich durch wenigstens einen in Schienenlängsrichtung versetzt angeordneten Radsensor die Einschaltung der oszillierenden Bewegung des Abtaststrahles erfolgen kann. Bei Schienenwechselbetrieb bzw. eingleisigen Strecken, welche in beide Richtungen befahren werden können, muß hiebei in Schienenlängsrichtung versetzt vor und nach dem Infrarotempfänger je ein gesonderter Radsensor angeordnet werden.In order to achieve correspondingly significant and meaningful measured values or mean values of measured values, the method is advantageously carried out in such a way that at least 3 and at most 20 measured values of partial areas of the oscillation of the scanning beam are subjected to averaging. In order to signal that the same axis is still in the measuring angle of the sensor, at least one wheel sensor is advantageously arranged on the rail adjacent to the IR receiver, wherein in addition, the oscillating movement of the scanning beam can be switched on by at least one wheel sensor arranged offset in the longitudinal direction of the rail. When changing rails or single-track routes that can be traveled in both directions, a separate wheel sensor must be arranged in the longitudinal direction of the rail before and after the infrared receiver.

Die Erfindung wird nachfolgend an Hand eines in der Zeichnung Schematisch dargestellten Ausführungsbeispieles näher erläutert. In dieser zeigen Fig.1 eine schematische Darstellung eines Infrarotempfängers mit einem Schwingspiegel; Fig.2 eine perspektivische Anordnung des Empfängers im Schienenverlauf und Fig.3 eine schematische Darstellung der Meßwertbildung aus den Signalen des Infrarotempfängers.The invention is explained in more detail below with the aid of an exemplary embodiment shown schematically in the drawing. 1 shows a schematic illustration of an infrared receiver with an oscillating mirror; 2 shows a perspective arrangement of the receiver in the course of the rail and FIG. 3 shows a schematic representation of the measurement value formation from the signals of the infrared receiver.

Bei der Ausbildung nach Fig.1 trifft der Meßstrahl bzw. Abtaststrahl 1 über ein fokussierendes optisches Element 2 auf einen Umlenkspiegel 3 und gelangt in der Folge unter Zwischenschaltung einer Bildfeldlinse 4 auf einen Schwingspiegel 5, welcher das an der Bildfeldlinie 4 abgetastete Bild über eine Infrarotoptik 6 einem Detektor bzw. Wärmestrahlungsfühler 7 zuleitet. Der Schwingspiegel 5 schwingt hiebei in Richtung des Doppelpfeiles 8 und kann zur Ausübung dieser Schwingung piezoelektrisch über Schwingquarze oder elektromagnetisch erregt sein.In the embodiment according to FIG. 1, the measuring beam or scanning beam 1 strikes a deflecting mirror 3 via a focusing optical element 2 and subsequently arrives at an oscillating mirror 5 with the interposition of an image field lens 4, which mirrors the image scanned on the image field line 4 via infrared optics 6 feeds a detector or heat radiation sensor 7. The oscillating mirror 5 oscillates in the direction of the double arrow 8 and can be excited piezoelectrically via oscillating crystals or electromagnetically in order to exert this oscillation.

Die Bildfeldlinse 4 weist einen Krümmungsradius an ihrer dem Spiegel zugewandten Seite auf, welcher der Brechkraft der Sammellinse(n) der Infrarotoptik 6 entspricht. Durch die Schwenkbewegung des Spiegels 5 wird nun einesteils ein entsprechend dem Doppelpfeil 9 überstrichener Sehbereich erfaßt und andererseits gelangt die durch die Sammellinse der Infrarotoptik 6 entworfenen Abbildung des Detektors 7 bei entsprechend weiter Auslenkung auf im Randbereich der Sammellinse vorgesehene verspiegelte Bereiche 10. In diesen Randbereichen wird das Bild des Detektors 7 reflektiert und in diesen Randbereichen wird somit ein Referenzsignal für die Temperatur des Detektorelementes 7, welches in einfacher Weise thermoelektrisch gekühlt sein kann, zur Verfügung gestellt. Die Autokollimation wird hiebei durch die reflektierend bedampften Bereiche der Bildfeldlinse 4, welche mit 10 bezeichnet sind, erzielt. Da kleine Abbildungen auf Linsenflächen wegen möglicher Inhomogenitäten bekanntermaßen kritisch sind, kann die Linse auch etwas außerhalb des Fokus angeordnet sein. Im vorliegenden Fall kann jedoch durch den abgelenkten Strahl auch bei Inhomogenitäten lediglich eine geringe zusätzliche Modulation auftreten, die für die Referenzbildung unwesentlich ist.The image field lens 4 has a radius of curvature on its side facing the mirror, which corresponds to the refractive power of the converging lens (s) of the infrared optics 6. Due to the pivoting movement of the mirror 5, a viewing area corresponding to the double arrow 9 is now partly detected and, on the other hand, the image of the detector 7 designed by the converging lens of the infrared optics 6 reaches the mirrored areas 10 provided in the marginal area of the converging lens with a correspondingly wide deflection the image of the detector 7 is reflected and in A reference signal for the temperature of the detector element 7, which can be thermoelectrically cooled in a simple manner, is thus made available to these edge regions. The autocollimation is achieved by the reflectively vaporized areas of the image field lens 4, which are designated by 10. Since small images on lens surfaces are known to be critical because of possible inhomogeneities, the lens can also be arranged somewhat out of focus. In the present case, however, only a slight additional modulation can occur due to the deflected beam even with inhomogeneities, which is insignificant for the reference formation.

Bei der Schwenkbewegung des Spiegels 5 in Richtung des Doppelpfeiles 8 wird somit ein jeweils entsprechender Teilbereich in Richtung des Doppelpfeiles 9 als Sehbereich erfaßt. Bei entsprechender Kenntnis der Schwingungsfrequenz des Schwingspiegels 5 läßt sich der jeweiligen Stelle des Sehbereiches ein entsprechender Teilbereich der Schwingung des Schwingspiegels 5 zuordnen. Zu diesem Zweck ist ein in Fig.1 nicht dargestellter beispielsweise induktiver Geber für die tatsächliche Schwingfrequenz des Spiegels 5 vorgesehen.During the pivoting movement of the mirror 5 in the direction of the double arrow 8, a corresponding partial area in the direction of the double arrow 9 is thus detected as the viewing area. With appropriate knowledge of the oscillation frequency of the oscillating mirror 5, a corresponding sub-region of the oscillation of the oscillating mirror 5 can be assigned to the respective point of the visual range. For this purpose, an inductive transmitter, for example, not shown in FIG. 1, is provided for the actual oscillation frequency of the mirror 5.

In Fig.2 ist nun die schematische Anordnung eines Infrarotempfängers im Schienenverlauf dargestellt. Die Empfänger sind hiebei schematisch mit 11 angedeutet und es sind jeweils ein Empfänger für jede gesonderte Schiene 12 vorgesehen. Um die Einschaltung und das Einzählen von Achsen, welche die Infrarotempfänger 11 passieren zu ermöglichen, ist ein Schienenkontakt 13 vorgesehen. Die Abschaltung der mit 14 schematisch angedeuteten Auswerteschaltung und der Oszillationsfrequenz des Schwingspiegels 5 kann nach Ablauf eines definierten Zeitraumes nach welchem die letzte Achse den Radsensor bzw. Schienenkontakt 13 passiert hat, erfolgen. Alternativ kann hiefür ein weiterer Radsensor 15 vorgesehen sein, welcher insbesondere dann von Bedeutung ist, wenn das Gleis in beide Richtungen befahrbar sein soll, da dann der Radsensor 15 den Einschalteimpuls für den Oszillator des Schwingspiegels 5 und die Synchronisierung der Auswerteelektronik ergibt. Die Auswerteelektronik enthält darüberhinaus noch einen Außen- bzw. Lufttemperatursensor 16 um die Genauigkeit der Meßwerterfassung zu verbessern. Die vom Infrarotempfänger 11 über Signalleitungen 17 der Auswerteelektronik 14 zur Verfügung gestellten Signale werden nun, wie in Fig.3 näher erläutert, für die Meßwertbildung herangezogen.2 shows the schematic arrangement of an infrared receiver in the course of the rail. The receivers are indicated schematically by 11 and one receiver is provided for each separate rail 12. A rail contact 13 is provided in order to enable the switching on and counting in of axes through which the infrared receivers 11 pass. The evaluation circuit schematically indicated by 14 and the oscillation frequency of the oscillating mirror 5 can be switched off after a defined period of time after which the last axis has passed the wheel sensor or rail contact 13. Alternatively, a further wheel sensor 15 can be provided for this purpose It is particularly important if the track is to be navigable in both directions, since then the wheel sensor 15 gives the switch-on pulse for the oscillator of the oscillating mirror 5 and the synchronization of the evaluation electronics. The evaluation electronics also contain an outside or air temperature sensor 16 in order to improve the accuracy of the measured value acquisition. The signals provided by the infrared receiver 11 via signal lines 17 to the evaluation electronics 14 are now used, as explained in more detail in FIG.

In Fig.3 ist mit a die Zeitdauer einer vollen Schwingung des Oszillators für den Schwingspiegel 5 bezeichnet. Über diese volle Schwingung, bei welcher der Abtaststrahl im Sinne des Doppelpfeiles 9 in Fig.1 den Sehbereich sukzessive erfaßt, werden mit einer Abtastrate vom zehnfachen der Oszillatorfrequenz Meßwerte gewonnen und zwischengespeichert. Die jeweiligen Meßwerte über eine erste volle Schwingung a sind als a1, a2, a3 bis a10 bezeichnet. Bei einer nachfolgenden vollen Schwingung des Schwingspiegels 5, für welche bei gleicher Oszillationsfrequenz auf der Zeitachse die Länge b zur Verfügung steht, werden in analoger Weise bei identischer Abtastrate wiederum zehn Meßwerte b1 bis b10 gewonnen. Analoges gilt für eine dritte vollständige Schwingung, deren Zeitdauer mit c bezeichnet ist und welche bei entsprechender Abtastrate Meßwerte von c1 bis c10 ergibt. Die jeweils erhaltenen Meßwerte mit gleichen Indizes werden einer Mittelwertbildung unterworfen und es wird beispielsweise ein Mittelwert a1 + b1 + c1 / 3 gebildet. Analog werden Werte a2 + b2 + c2 / 3 bis a10 + b10 + c10 / 3 gebildet. Der jeweils höchste Mittelwert ergibt einen signifikanten Wert für die tatsächliche Erwärmung der heißesten Stelle im Abtastbereich entsprechend dem Doppelpfeil 9 der Fig.1 und es kann bei einer derartigen Auswertung der Meßergebnisse und Mittelwertbildung ein scharfes Meßsignal auch dann gewährleistet werden, wenn ein weitgehend abgedecktes Lager eine heißeste Stelle nur in einem relativ kleinen Teilbereich, beispielsweise am Rande der Lagerabdeckung, aufweist. Bei derartigen Lagern würde die Auswertung des integralen Signales eine wesentlich geringere absolute Erwärmung erkennen lassen, als die erfindungsgemäß vorgenommene Mittelwertbildung, welche tatsächlich den heißesten Bereich im Sehbereich sicher erkennen läßt.In FIG. 3, the time duration of a full oscillation of the oscillator for the oscillating mirror 5 is designated by a. This full oscillation, in which the scanning beam in the sense of the double arrow 9 in FIG. 1 successively detects the visual range, is used to obtain and temporarily store measured values at a sampling rate ten times the oscillator frequency. The respective measured values over a first full vibration a are designated as a1, a2, a3 to a10. In the event of a subsequent full oscillation of the oscillating mirror 5, for which the length b is available at the same oscillation frequency on the time axis, ten measured values b1 to b10 are obtained in an analogous manner with an identical sampling rate. The same applies analogously to a third complete oscillation, the duration of which is designated by c and which, with a corresponding sampling rate, gives measured values from c1 to c10. The measured values obtained in each case with the same indices are subjected to averaging and, for example, an average a1 + b1 + c1 / 3 is formed. Analog values a2 + b2 + c2 / 3 to a10 + b10 + c10 / 3 are formed. The highest mean value in each case results in a significant value for the actual heating of the hottest point in the scanning area in accordance with the double arrow 9 in FIG. 1, and a sharp measurement signal can also be guaranteed with such an evaluation of the measurement results and averaging if a largely covered bearing is one hottest point only in a relatively small area, for example on the edge of the bearing cover. In the case of such bearings, the evaluation of the integral signal would reveal a significantly lower absolute warming than the averaging carried out according to the invention, which can actually reliably identify the hottest area in the visual range.

Analog kann die Abtastrate naturgemäß variiert werden, wobei es vorteilhaft ist als Abtastrate immer ein ganzzahliges Vielfaches der Oszillationsfrequenz und wie es einer bevorzugten Ausführung der Erfindung entspricht ein 5 bis 15-faches der Oszillationsfrequenz zu wählen.Analogously, the sampling rate can naturally be varied, it being advantageous to always select an integer multiple of the oscillation frequency as the sampling rate and, as a preferred embodiment of the invention, to select 5 to 15 times the oscillation frequency.

Claims (8)

  1. A method of measuring axle and/or bearing temperatures to detect overheating in rolling rail traffic with infrared receivers (7) with an oscillating scanning beam (1) directed transversely to the longitudinal direction of the rail, wherein the analog measured values of the infrared receiver (7) are digitised, characterised in that the measured values of the infrared receiver are combined with the oscillation frequency and/or orientation of the scanning beam (1), in that for each axis at least two complete oscillations of the scanning beam (1) are evaluated, wherein a mean value is formed from the measured value corresponding to a partial zone (a₁,a₂,a₃,a₄,a₅,a₆,a₇, a₈,a₉,a₁₀) of a first oscillation (a) of the scanning beam (1) and from the measured value or values corresponding to the partial zone (b₁,b₂,b₃,b₄,b₅,b₆,b₇,b₈,b₉,b₁₀; c₁,c₂,c₃,c₄,c₅, c₆,c₇,c₈,c₉,c₁₀) of subsequent oscillations (b,c) of the scanning beam (1), in that the averaging is repeated over a predetermined maximum number of oscillations (a,b,c) of the scanning beam (1) and/or as long as a further signal triggered by the wheel signals the same axle within the measured angle of the sensor (7), and in that the respective maximum mean value of the partial zones corresponding to the measured values is evaluated.
  2. A method according to Claim 1, characterised in that the oscillation movement of the scanning beam (1) is switched on by a wheel sensor (13) disposed in front of the measuring point (11) and is switched off after the last wheel has passed.
  3. A method according to Claim 1 or 2, characterised in that the mean values of the measured values of the same axle on either side of the rail vehicle are compared with one another.
  4. A method according to Claim 1, 2 or 3, characterised in that the mean values of the measured values of successive axles in the longitudinal direction of the rail vehicle are compared with one another.
  5. A method according to any one of Claims 1 to 4, characterised in that the oscillation frequency of the scanning beam (1) is chosen between 2 and 10 kHz.
  6. A method according to any one of Claims 1 to 5, characterised in that the scanning rate is chosen to be equal to a whole-number multiple of the oscillation frequency, in particular equal to 5 to 15 times the oscillation frequency.
  7. A method according to any one of Claims 1 to 6, characterised in that at least 3 and at most 20 measured values of partial zones (a₁,a₂,a₃,a₄,a₅,a₆,a₇,a₈,a₉,a₁₀; b₁,b₂,b₃,b₄,b₅,b₆,b₇,b₈,b₉,b₁₀; c₁,c₂,c₃,c₄,c₅,c₆,c₇,c₈,c₉,c₁₀) of the oscillation of the scanning beam (1) are subjected to averaging (a,b,c).
  8. A method according to any one of Claims 1 to 7, characterised in that mounted on the rail are at least one wheel sensor (13) adjacent the IR receiver (11) and at least one further wheel sensor (15) offset in the longitudinal direction of the rail.
EP91890096A 1990-05-18 1991-05-06 Method of measuring the temperatures of axles and bearings for detection of hot-boxes Expired - Lifetime EP0457752B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1114/90 1990-05-18
AT0111490A AT398413B (en) 1990-05-18 1990-05-18 METHOD FOR MEASURING AXLE OR STORAGE TEMPERATURES FOR LOCATING HOT RUNNERS

Publications (2)

Publication Number Publication Date
EP0457752A1 EP0457752A1 (en) 1991-11-21
EP0457752B1 true EP0457752B1 (en) 1993-12-15

Family

ID=3506880

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91890096A Expired - Lifetime EP0457752B1 (en) 1990-05-18 1991-05-06 Method of measuring the temperatures of axles and bearings for detection of hot-boxes

Country Status (8)

Country Link
US (1) US5201483A (en)
EP (1) EP0457752B1 (en)
AT (2) AT398413B (en)
AU (1) AU645318B2 (en)
CA (1) CA2042842A1 (en)
DE (1) DE59100716D1 (en)
DK (1) DK0457752T3 (en)
ES (1) ES2049104T3 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331311A (en) * 1992-12-09 1994-07-19 Servo Corporation Of America Railroad wheel temperature sensor with infrared array
AT400989B (en) * 1992-12-21 1996-05-28 Vae Ag DEVICE FOR DETECTING INADMISSIBLY HEATED COMPONENTS OR. POSITION ON MOVING OBJECTS
AT408214B (en) 1998-04-09 2001-09-25 Oesterr Bundesbahnen DEVICE FOR THE CONTACTLESS MEASUREMENT OF THE TEMPERATURE OF BEARING RAIL VEHICLES
US6286992B1 (en) * 1999-02-12 2001-09-11 Meritor Heavy Vehicle Systems, Llc Axle temperature monitor
AT408092B (en) 1999-10-19 2001-08-27 Vae Ag DEVICE FOR MEASURING AXLE OR STORAGE TEMPERATURES FOR LOCATING HOT RUNNERS OR OVERHEATED BRAKES IN ROLLING RAILWAY TRAFFIC
US6386653B1 (en) 2000-03-23 2002-05-14 Caterpillar Paving Products Inc. Apparatus and method for measuring and realigning track misalignment
US6911914B2 (en) * 2002-03-29 2005-06-28 General Electric Company Method and apparatus for detecting hot rail car surfaces
US6813581B1 (en) 2003-03-26 2004-11-02 Union Pacific Railroad Company Statistical and trend analysis of railroad bearing temperatures
US7507965B2 (en) * 2005-02-14 2009-03-24 Spirit Solutions, Inc Smart thermal imaging and inspection device for wheels and components thereof and method
US8478480B2 (en) * 2006-10-27 2013-07-02 International Electronic Machines Corp. Vehicle evaluation using infrared data
US7946537B2 (en) * 2007-05-17 2011-05-24 Progress Rail Services Corp Hot rail wheel bearing detection system and method
DE102008033856B3 (en) 2008-07-19 2009-07-09 Sst Signal & System Technik Gmbh Temperature measuring device for axle box of driving rail vehicle, has lens and radiation deflector forming measuring points on infrared radiation detector, where detector is formed of hetero-structure based semiconductor-detector material
US8335606B2 (en) * 2008-10-22 2012-12-18 International Electronic Machines Corporation Thermal imaging-based vehicle analysis
US8112237B2 (en) * 2009-03-11 2012-02-07 Progress Rail Services Corp. System and method for correcting signal polarities and detection thresholds in a rail vehicle inspection system
DE102009029891A1 (en) 2009-06-23 2010-12-30 Sst Signal & System Technik Gmbh Control device for controlling e.g. hot-box detector immovably fixed in track in place, has radar sensors designed as transmission and receiving devices and as evaluation device for measuring running time of waves
US8280675B2 (en) * 2009-08-04 2012-10-02 Progress Rail Services Corp System and method for filtering temperature profiles of a wheel
CN104165707B (en) * 2014-08-20 2016-09-21 国家电网公司 A kind of based on the femtosecond all-fiber Raman power transformer temp measuring method passed as guiding

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3402290A (en) * 1966-10-07 1968-09-17 Servo Corp Of America Hot-box detector
US3513462A (en) * 1967-08-01 1970-05-19 Simmonds Precision Products Detector for hot boxes
US3646343A (en) * 1970-02-26 1972-02-29 Gen Electric Method and apparatus for monitoring hot boxes
US3731087A (en) * 1970-11-16 1973-05-01 Cleveland Technical Center Inc Hot box alarm system
US4113211A (en) * 1977-10-13 1978-09-12 Servo Corporation Of America Hot box detector bearing discriminator circuit
IT1121200B (en) * 1979-08-07 1986-03-26 Soliani Pier Luigi METHOD AND SYSTEM FOR DETECTING HOT BUSHINGS INDEPENDENTLY FROM EVEN VARIABLE ENVIRONMENTAL FACTORS
US4313583A (en) * 1980-03-31 1982-02-02 Servo Corporation Of America Railroad car wheel bearing heat signal processing circuit
US4323211A (en) * 1980-04-28 1982-04-06 Servo Corporation Of America Self adjusting wheel bearing heat signal processing circuit
US4659043A (en) * 1981-10-05 1987-04-21 Servo Corporation Of America Railroad hot box detector
DE3680671D1 (en) * 1986-09-09 1991-09-05 Signaux Equip Electroniques SYSTEM FOR DETECTING INVALIDLY WARMED COMPONENTS ON DRIVING RAILWAYS.
DE3674212D1 (en) * 1986-10-17 1990-10-18 Signaltechnik Gmbh METHOD FOR EXTERNAL MEASUREMENT OF AXLE OR. AXLE BEARING TEMPERATURES ON DRIVING RAILWAY CARS AND DEVICE FOR CARRYING OUT THE PROCESS.
AT396778B (en) * 1986-10-17 1993-11-25 Voest Alpine Eisenbahnsysteme DEVICE FOR DETECTING INADWALLY HEATED WHEEL BEARINGS AND / OR WHEEL TIRES
AT395571B (en) * 1986-10-17 1993-01-25 Voest Alpine Eisenbahnsysteme DEVICE FOR DETECTING THE SPATIAL ORIENTATION OF INADWALLY WARMED POINTS OF WHEEL BEARINGS AND / OR WHEEL RUNNINGS OF RAIL VEHICLES
SE457431B (en) * 1987-01-16 1988-12-27 Frontec Mikrodatorcentrum Ab PROCEDURE TO DETECT HEATING IN STOCK
US4805854A (en) * 1987-02-25 1989-02-21 Southern Railway Company Gate circuitry for hot box detectors
US5060890A (en) * 1988-10-11 1991-10-29 Harmon Industries, Inc. Detection of overheated railroad wheel and axle components
US4928910A (en) * 1988-10-11 1990-05-29 Harmon Industries, Inc. Detection of overheated railroad wheel and axle components

Also Published As

Publication number Publication date
ATE98582T1 (en) 1994-01-15
CA2042842A1 (en) 1991-11-19
ATA111490A (en) 1994-04-15
AU7711591A (en) 1991-11-21
ES2049104T3 (en) 1994-04-01
US5201483A (en) 1993-04-13
EP0457752A1 (en) 1991-11-21
AT398413B (en) 1994-12-27
DE59100716D1 (en) 1994-01-27
DK0457752T3 (en) 1994-04-18
AU645318B2 (en) 1994-01-13

Similar Documents

Publication Publication Date Title
EP0457752B1 (en) Method of measuring the temperatures of axles and bearings for detection of hot-boxes
EP0578129B1 (en) Imaging sensor unit
DE3110287C2 (en)
WO2000026612A1 (en) Profile measuring system and method for the implementation thereof
DE2743054A1 (en) OPTICAL MEASURING DEVICE WITH A LONGITUDINAL, FOCUSED BEAM
AT408092B (en) DEVICE FOR MEASURING AXLE OR STORAGE TEMPERATURES FOR LOCATING HOT RUNNERS OR OVERHEATED BRAKES IN ROLLING RAILWAY TRAFFIC
EP0265417A2 (en) Detecting device for unacceptably heated wheel bearings and/or tyres
EP0604389B1 (en) Device for the detection of unacceptably heated components or spots on moving objects
EP1421430B1 (en) Scanning device
EP0468952B1 (en) Optical measuring system for human cornea
DE1573323A1 (en) Differential radiation pyrometer system
EP0264360B1 (en) Detecting device for the spatial orientation of unacceptably heated spots
DE1279942B (en) Device for periodically scanning an object with a radiation detector
DE1918317B2 (en) Device for determining the heating of axle bearings
DE3702691C2 (en) Non-contact distance sensor
EP0263896B1 (en) Method for the external measurement of the temperatures of the axle or axle bearing of running railway coaches, and device for carrying out the method
EP0263217B1 (en) System for identifying overheated components of moving railway vehicles
DE3939877A1 (en) Foil thickness-thermal property contactless measurer - has deflector ensuring opposite directions of heating radiation from measurement object
DE3942293C2 (en)
DE3408106A1 (en) Optical roughness scanner
DE2250142A1 (en) METHOD AND DEVICE FOR MEASURING THE SURFACE TEMPERATURE OF TURBINE BLADES
AT390928B (en) Device for sensing wheel bearings and wheel tyres of rail vehicles which have been heated up to an unacceptable degree
DE4114367C2 (en) Pyrometer for non-contact temperature measurement of running and elongated measuring objects
DE2534752C3 (en)
DE102021112942A1 (en) Method for operating a detection device, detection device and vehicle with at least one detection device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19911031

17Q First examination report despatched

Effective date: 19930215

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOEST-ALPINE EISENBAHNSYSTEME AKTIENGESELLSCHAFT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 98582

Country of ref document: AT

Date of ref document: 19940115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59100716

Country of ref document: DE

Date of ref document: 19940127

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940223

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2049104

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3010669

EPTA Lu: last paid annual fee
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIGNALTECHNIK GMBH

Effective date: 19940915

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIGNALTECHNIK GMBH

EAL Se: european patent in force in sweden

Ref document number: 91890096.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19950401

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950418

Year of fee payment: 5

Ref country code: BE

Payment date: 19950418

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950419

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19950428

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950517

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950531

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960506

Ref country code: GB

Effective date: 19960506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960531

Ref country code: CH

Effective date: 19960531

Ref country code: BE

Effective date: 19960531

BERE Be: lapsed

Owner name: VOEST-ALPINE EISENBAHNSYSTEME A.G.

Effective date: 19960531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19961130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19961201

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3010669

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19961201

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VAE AKTIENGESELLSCHAFT

PLBL Opposition procedure terminated

Free format text: ORIGINAL CODE: EPIDOS OPPC

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 19990527

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030505

Year of fee payment: 13

Ref country code: DK

Payment date: 20030505

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030506

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030512

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030514

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050506

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO