EP0455531B1 - Method for selfguidance of missile towards a supersonic target - Google Patents

Method for selfguidance of missile towards a supersonic target Download PDF

Info

Publication number
EP0455531B1
EP0455531B1 EP19910401006 EP91401006A EP0455531B1 EP 0455531 B1 EP0455531 B1 EP 0455531B1 EP 19910401006 EP19910401006 EP 19910401006 EP 91401006 A EP91401006 A EP 91401006A EP 0455531 B1 EP0455531 B1 EP 0455531B1
Authority
EP
European Patent Office
Prior art keywords
missile
target
trajectory
pressure sensors
supersonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19910401006
Other languages
German (de)
French (fr)
Other versions
EP0455531A1 (en
Inventor
Jean Loup Durieux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Steria SA
Original Assignee
Steria SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steria SA filed Critical Steria SA
Publication of EP0455531A1 publication Critical patent/EP0455531A1/en
Application granted granted Critical
Publication of EP0455531B1 publication Critical patent/EP0455531B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2273Homing guidance systems characterised by the type of waves
    • F41G7/228Homing guidance systems characterised by the type of waves using acoustic waves, e.g. for torpedoes

Definitions

  • the shock wave of the target is assimilated to a conical sheet of origin a point B of the target, of axis the speed of the target V B and of angle at the top a being the speed of the sound.
  • the guidance law comprises two functional modules programmed on the missile computer.
  • the first called an estimator, determines the speed of the missile relatively to the conical tablecloth at each crossing of it.
  • the second called the controller, develops the missile command based on the estimated relative speed.
  • the function f is chosen, in conjunction with the amplitude ⁇ max of the command and the dynamics of the missile, to adjust the amplitude and the frequency of the limit cycle as appropriate.
  • the passage distance is of the order of the amplitude of this cycle.
  • FIG. 3 constitutes a simplified functional diagram of the method according to the invention showing the functions exercised by the sensor (s) (function A), the inertial unit (function B), the estimator (functions C) and the controller (functions D).
  • FIG. 6 shows a complete relative trajectory of interception for a shooting station located inside the conical sheet, which could be the case of an air-air shooting. We see the target 5, its shock wave 7, the relative rallying trajectory 16 and the relative interception trajectory 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

La présente invention concerne un procédé d'autoguidage de missile tactique sur un but supersonique.The present invention relates to a method for homing tactical missiles to a supersonic aim.

Traditionnellement l'organe de guidage des missiles autoguidés est un capteur sensible au rayonnement électromagnétique ou infrarouge de la cible. Ce capteur est, en général, porté sur un système de pointage mobile asservi sur le but appelé autodirecteur. Des gyromètres montés sur l'autodirecteur mesurent la vitesse angulaire absolue de la ligne de visée qui est, à la précision de l'asservissement près, la ligne missile-cible. Le capteur peut aussi être lié au missile. Dans ce cas la vitesse angulaire absolue de la ligne missile-cible est obtenue en combinant la direction de la cible relative au missile, mesurée par le capteur, et l'orientation absolue du missile mesurée par une centrale inertielle. Le capteur électromagnétique est actif ou passif, suivant qu'il émet lui-même ou non le rayonnement éclairant la cible. La loi de guidage transforme la vitesse angulaire absolue de la ligne de visée en un ordre au missile. Elle demande la connaissance de la vitesse radiale missile cible qui est soit mesurée, soit estimée.Traditionally, the guided organ of guided missiles is a sensor sensitive to the electromagnetic or infrared radiation of the target. This sensor is, in general, carried on a mobile pointing system slaved to the goal called seeker. Gyros mounted on the seeker measure the absolute angular speed of the line of sight which is, to the accuracy of the servo, the missile-target line. The sensor can also be linked to the missile. In this case the absolute angular speed of the missile-target line is obtained by combining the direction of the target relative to the missile, measured by the sensor, and the absolute orientation of the missile measured by an inertial unit. The electromagnetic sensor is active or passive, depending on whether or not it emits radiation illuminating the target. The law of guidance transforms the absolute angular speed of the line of sight into an order with the missile. It requires knowledge of the target missile radial speed which is either measured or estimated.

L'autodirecteur a les inconvénients suivants :

  • . Coût très élevé,
  • . Sensibilité au leurrage,
  • . point visé sur la cible mal connu et fluctuant, pouvant sortir du contour apparent,
  • . accrochage sur la cible délicat, qu'il soit réalisé avant ou après le départ du missile,
  • . portée limitée.
The seeker has the following disadvantages:
  • . Very high cost,
  • . Sensitivity to decoy,
  • . target point on the poorly known and fluctuating target, which may leave the apparent contour,
  • . attachment to the delicate target, whether carried out before or after the missile's departure,
  • . limited range.

Le procédé selon l'invention permet de remédier aux inconvénients précédents car il est basé sur l'asservissement du missile à l'onde de choc attachée à la cible au moyen d'organes sensibles oui sont de simples capteurs de pression. Il ne concerne donc que les cibles supersoniques. Le terme onde de choc est utilisé ici pour définir l'onde de pression induite à grande distance par une cible supersonique, assimilable à une nappe de révolution de faible épaisseur, se propageant suivant les lois de l'acoustique. On pourrait utiliser de manière équivalente, le terme "onde acoustique".The method according to the invention overcomes the above drawbacks because it is based on the control of the missile to the shock wave attached to the target by means of sensitive organs yes are simple pressure sensors. It therefore only concerns supersonic targets. The term shock wave is used here to define the pressure wave induced over a long distance by a supersonic target, comparable to a thin sheet of revolution, propagating according to the laws of acoustics. The term "acoustic wave" could be used in an equivalent manner.

On connaît (DE-A-3334758) l'utilisation de capteurs acoustiques pour assurer la détection de cibles subsoniques et également (DE-A-3528075) l'application de tels capteurs, positionnés au sol, pour mesurer la trajectoire d'un mobile supersonique. Dans cette technique antérieure, il n'est pas question d'asservir la trajectoire d'un missile supersonique à l'onde de choc d'une cible supersonique pour obtenir les avantages et effets techniques mentionnés ci-dessus.We know (DE-A-3334758) the use of acoustic sensors to detect subsonic targets and also (DE-A-3528075) the application of such sensors, positioned on the ground, to measure the trajectory of a mobile supersonic. In this prior technique, there is no question of controlling the trajectory of a supersonic missile to the shock wave of a supersonic target in order to obtain the advantages and technical effects mentioned above.

L'invention a donc pour objet un procédé de guidage d'un missile anti-aérien supersonique vers une cible supersonique mettant en oeuvre des capteurs de pression, caractérisé en ce que la trajectoire du missile est asservie à l'onde de choc induite par la cible :

  • en détectant ladite onde de choc par des premiers capteurs de pression installés à bord du missile,
  • en estimant la trajectoire de la cible à partir des positions et attitudes du missile aux instants datés auxquels lesdits capteurs de pression traversent l'onde de choc de la cible, au moyen d'algorithme approprié,
  • en commandant au missile une trajectoire quasi sinusoïdale de part et d'autre de l'onde assurant l'excitation périodique des capteurs de pression et les mesures subséquentes et,
  • en asservissant la trajectoire relative moyenne du missile à la génératrice de l'onde de choc conique de la cible.
The subject of the invention is therefore a method of guiding a supersonic anti-aircraft missile towards a supersonic target using pressure sensors, characterized in that the trajectory of the missile is subject to the shock wave induced by the target:
  • by detecting said shock wave by first pressure sensors installed on board the missile,
  • by estimating the trajectory of the target from the positions and attitudes of the missile at the dated instants at which said pressure sensors cross the shock wave of the target, by means of an appropriate algorithm,
  • by commanding the missile a quasi-sinusoidal trajectory on either side of the wave ensuring the periodic excitation of the pressure sensors and the subsequent measurements and,
  • by slaving the average relative trajectory of the missile to the generator of the target's conical shock wave.

Le missile est muni d'une centrale inertielle rustique fournissant à chaque instant une mesure de sa position M, de son vecteur vitesse VM, de son accélération ΓM et de son trièdre de référence TM dans un trièdre initial de référence To.The missile is provided with a rustic inertial unit providing at all times a measurement of its position M, of its speed vector V M , of its acceleration Γ M and of its reference trihedron T M in an initial trihedron of reference T o .

L'organe sensible du guidage, remplaçant l'autodirecteur, est constitué par un ou plusieurs capteurs de pression placés à bord du missile. Ces capteurs peuvent être constitués d'un ou plusieurs orifices répartis sur le missile reliés à autant de détecteurs de pression, ou à un détecteur unique pour l'ensemble des orifices. Il s'agit de détecteurs simples de type microphone. Ces capteurs détectent et datent, grâce à une horloge interne, leurs passages à travers l'onde de choc de la cible. Compte tenu de la raideur du front de l'onde de choc de la cible, ces passages sont datés avec une très grande précision. La bande passante des capteurs est choisie en conséquence. La figure 1 montre des emplacements possibles de capteurs 1, 2, 3 installés à bord du missile 4.The sensitive guidance member, replacing the seeker, consists of one or more pressure sensors placed on board the missile. These sensors may consist of one or more orifices distributed over the missile connected to as many pressure detectors, or to a single detector for all of the orifices. These are simple microphone type detectors. These sensors detect and date, thanks to an internal clock, their passage through the shock wave of the target. Taking into account the stiffness of the front of the shock wave of the target, these passages are dated with very great precision. The bandwidth of the sensors is chosen accordingly. Figure 1 shows possible locations of sensors 1, 2, 3 installed on board missile 4.

L'onde de choc de la cible est assimilée à une nappe conique d'origine un point B de la cible, d'axe la vitesse de la cible VB et d'angle au sommet

Figure imgb0001

a étant la célérité du son.The shock wave of the target is assimilated to a conical sheet of origin a point B of the target, of axis the speed of the target V B and of angle at the top
Figure imgb0001

a being the speed of the sound.

Dans son principe, l'ordre de guidage produit une trajectoire du missile, qui, relativement au but a l'allure d'une sinusoïde de faible amplitude située alternativement à l'intérieur et à l'extérieur de la nappe conique en suivant une génératrice de cette nappe. Les mesures concourant à l'élaboration de l'ordre sont effectuées à chaque traversée de la nappe conique. L'interception a lieu quand le missile arrive au sommet du cône ce qui demande évidemment que sa vitesse soit supérieure à celle de la cible.In principle, the guidance order produces a trajectory of the missile, which, relative to the goal has the appearance of a sinusoid of low amplitude located alternately inside and outside the conical sheet by following a generator of this tablecloth. The measurements contributing to the development of the order are carried out at each crossing of the conical sheet. Interception takes place when the missile arrives at the top of the cone which obviously requires that its speed be higher than that of the target.

La figure 2 montre la cible 5, la trajectoire absolue 6 de la cible , le missile 4, l'onde de choc conique 7 de la cible 5, la trajectoire relative moyenne 8 du missile 5 qui est une génératrice du cône, la trajectoire absolue moyenne 9 du missile conduisant au point d'interception 10.FIG. 2 shows the target 5, the absolute trajectory 6 of the target, the missile 4, the conical shock wave 7 of the target 5, the average relative trajectory 8 of the missile 5 which is a generator of the cone, the absolute trajectory average 9 of the missile leading to the interception point 10.

Dans sa réalisation suivant l'invention, la loi de guidage comprend deux modules fonctionnels programmés sur le calculateur du missile. Le premier, appelé estimateur, détermine la vitesse du missile relativement à la nappe conique à chaque traversée de celle-ci. Le second, appelé contrôleur élabore la commande au missile en fonction de la vitesse relative estimée.In its embodiment according to the invention, the guidance law comprises two functional modules programmed on the missile computer. The first, called an estimator, determines the speed of the missile relatively to the conical tablecloth at each crossing of it. The second, called the controller, develops the missile command based on the estimated relative speed.

L'estimateur estime la trajectoire de la cible définie par sa position B et son vecteur vitesse VB , soit en tout six paramètres, à partir des positions successives des capteurs de pression MC (k,i) à la traversée de l'onde de choc (k le numéro du capteur, i numéro de la traversée), survenant à l'instant T

Figure imgb0002
. Ces positions sont déduites de la position à t
Figure imgb0003
du missile élaborée par la centrale inertielle et de la disposition des capteurs dans le missile. L'estimateur non linéaire utilise un algorithme du gradient conjugué ou d'un autre type. Il est initialisé avec les informations éventuelles sur la trajectoire du but communiquées au missile avant tir. En l'absence de telles informations, la convergence est acquise après un nombre n de traversées dépendant du nombre k de capteurs installés dans le missile, tel que nk=6. Il est possible, lorsque le transitoire de recalage est amorti, d'estimer l'accélération du but ΓB . La grande précision des mesures l'autorise.The estimator estimates the trajectory of the target defined by its position B and its speed vector V B , that is to say in all six parameters, from the successive positions of the pressure sensors M C (k, i) at the crossing of the wave shock (k the number of the sensor, i number of the crossing), occurring at time T
Figure imgb0002
. These positions are deduced from the position at t
Figure imgb0003
the missile developed by the inertial unit and the arrangement of the sensors in the missile. The nonlinear estimator uses a conjugate gradient or other type algorithm. It is initialized with any information on the trajectory of the goal communicated to the missile before firing. In the absence of such information, convergence is acquired after a number n of crossings depending on the number k of sensors installed in the missile, such as nk = 6. It is possible, when the registration transient is damped, to estimate the acceleration of the goal Γ B. The high accuracy of the measurements allows it.

On choisit un capteur particulier (dans le cas où il est unique c'est évidemment celui-là) comme point du missile dont la trajectoire sera contrôlée. A partir de l'estimée du but B̂

Figure imgb0004
, V̂B
Figure imgb0005
obtenue quand ce capteur effectue la traversée n°i au point M
Figure imgb0006
, on détermine en ce point le trièdre instantané du guidage TC constitué par la génératrice du cône xc , la normale intérieure zc, la tangente au cercle directeur yc . On calcule en outre les composantes de la vitesse relative du missile au but suivant zc et yc , notées ėz et ėy .One chooses a particular sensor (in the case where it is unique it is obviously this one) as point of the missile whose trajectory will be controlled. From the estimated goal B̂
Figure imgb0004
, V̂ B
Figure imgb0005
obtained when this sensor crosses n ° i at point M
Figure imgb0006
, we determine at this point the instantaneous trihedron of the guidance T C constituted by the generator of the cone x c , the interior normal z c , the tangent to the directing circle y c . We also calculate the components of the relative speed of the missile at the goal following z c and y c , denoted ė z and ė y .

Le contrôleur élabore les ordres commandés au missile. Le missile auquel s'applique l'invention peut avoir une organisation quelconque. Il peut être stabilisé en roulis ou en autorotation naturelle. Son mouvement latéral peut être produit par des forces aérodynamiques et/ou pyrotechniques. La prise d' incidence peut êre provoquée par un actionneur aérodynamique (gouverne), pyrotechnique (impulseur, jet transversal) ou autre. L'actionneur peut opérer suivant deux axes transversaux de manoeuvre (lacet, tangage) ou un seul (si le missile est directement en autorotation). L'ordre commandé peut s'adresser directement à (aux) actionneur (s) ou à un autopilote, s'il existe. Il peut s'agir d'un autopilote en accélération ou en vitesse angulaire transversale. L'exposé suivant est fait en supposant un missile stabilisé en roulis et muni d'un autopilote en accélération.The controller prepares the orders ordered with the missile. The missile to which the invention applies can have any organization. It can be stabilized in roll or in natural autorotation. Its lateral movement can be produced by aerodynamic and / or pyrotechnic forces. The taking of incidence can be caused by an aerodynamic actuator (rudder), pyrotechnic (impeller, transverse jet) or other. The actuator can operate along two transverse maneuvering axes (yaw, pitch) or only one (if the missile is directly in autorotation). The command ordered can be addressed directly to the actuator (s) or to an autopilot, if it exists. It can be an autopilot under acceleration or transverse angular velocity. The following presentation is made by assuming a missile stabilized in roll and equipped with an autopilot in acceleration.

Les ordres en accélération au missile sont d'abord calculés dans le repère xc , yc , zc. Ils comprennent deux composantes. La première composante Γyc dirigée suivant yc , a pour effet d'asservir la projection du missile sur le plan tangent au cône xcyc , à suivre la génératrice du cône xc , ou encore d'asservir la projection de la vitesse du missile sur le plan tangent au cône à être parallèle à la génératrice. Elle est linéaire, de la forme Γ yc = -k e ̇ y

Figure imgb0007
, k= gain. Une fonction de transfert plus élaborée pourrait être substituée au gain suivant la dynamique du missile. La seconde composante Γzc , dirigée suivant la normale au cône zc a pour but d'entretenir une trajectoire périodique perpendiculaire à l'onde de choc assurant les traversées nécessaires à l'excitation des capteurs de pression et aux mesures subséquentes. Elle est produite par une loi non linéaire de la forme Γ zc = Γ max
Figure imgb0008
signe (f(e)). La fonction f est choisie, en liaison avec l'amplitude Γmax de la commande et la dynamique du missile, pour régler comme il convient l'amplitude et la fréquence du cycle limite. La distance de passage est de l'ordre de l'amplitude de ce cycle.The accelerated missile orders are first calculated in the frame x c , y c , z c . They have two components. The first component Γ yc directed along y c , has the effect of controlling the projection of the missile on the plane tangent to the cone x c y c , to follow the generator of the cone x c , or even to control the projection of the speed of the missile on the plane tangent to the cone to be parallel to the generator. It is linear, of the form Γ yc = -k e ̇ y
Figure imgb0007
, k = gain. A more sophisticated transfer function could be substituted for the gain depending on the dynamics of the missile. The second component Γ zc , directed along the normal to the cone z c aims to maintain a periodic trajectory perpendicular to the shock wave ensuring the crossings necessary for the excitation of the pressure sensors and for subsequent measurements. It is produced by a nonlinear law of the form Γ zc = Γ max
Figure imgb0008
sign (f (e)). The function f is chosen, in conjunction with the amplitude Γ max of the command and the dynamics of the missile, to adjust the amplitude and the frequency of the limit cycle as appropriate. The passage distance is of the order of the amplitude of this cycle.

Les ordres en accélération sont ensuite calculés dans le repère missile xm ym, zm (mesuré par la centrale inertielle), par la condition que leurs projections sur yc et zc soient respectivement égales à Γyc et Γzc.The acceleration orders are then calculated in the missile coordinate system x m y m , z m (measured by the inertial unit), on the condition that their projections on y c and z c are respectively equal to Γ yc and Γ zc .

La figure 3 constitue un diagramme fonctionnel simplifié du procédé selon l'invention montrant les fonctions exercées par le(s) capteur(s) (fonction A), la centrale inertielle ( fonction B), l'estimateur (fonctions C) et le contrôleur (fonctions D).FIG. 3 constitutes a simplified functional diagram of the method according to the invention showing the functions exercised by the sensor (s) (function A), the inertial unit (function B), the estimator (functions C) and the controller (functions D).

La figure 4 montre la trajectoire relative 8′ du missile autour de la génératrice de cône 8 contenue dans le plan défini par cette génératrice 8 et la normale 11.FIG. 4 shows the relative trajectory 8 ′ of the missile around the cone generator 8 contained in the plane defined by this generator 8 and the normal 11.

Le missile est lancé depuis un poste de tir. L'invention s'applique à un poste de tir terrestre, naval ou aérien. La direction de lancement peut être quelconque sous les conditions que le missile rallie l'onde de choc de la cible et dispose des capacités cinématiques suffisantes pour s'y asservir et rattraper la cible. Au cours de la phase initiale entre le lancement et la première traversée de l'onde de choc de la cible, le missile est asservi à une trajectoire de ralliement précalculée sous le critère que la vitesse du missile relative au but à la première traversée de l'onde de choc ait une direction aussi proche que possible de celle de la génératrice de la nappe conique, c'est à dire que la condition cinématique d'interception indiquée sur la figure 5 soit remplie. Sur cette figure on voit la vitesse absolue 12 du but, celle 13 du missile , la vitesse relative 14 de ce missile . L'angle

Figure imgb0009

a étant la célérité du son. La détermination de cette trajectoire suppose que le poste de tir ait des informations sur la trajectoire du but (une telle information peut être simplement la détection du passage de l'onde de choc de la cible par le poste de tir). Si aucune information n'est disponible le missile peut être tiré au jugé et la trajectoire de ralliement est rectiligne. Il en résulte que, dans la plupart des cas, la condition cinématique d'interception ne sera pas réalisée à la première traversée, mais après un transitoire résorbé au bout d'une à deux traversées supplémentaires, au delà duquel le cycle limite asservissant le missile à l'onde de choc sera effectivement enclenché. Les ordres Γyczc calculés aux premières traversées tiennent compte de cette circonstance et aussi du temps de réponse de l'algorythme de l'estimateur. La figure 6 montre une trajectoire relative complète d'interception pour un poste de tir situé à l'intérieur de la nappe conique, ce qui pourrait être le cas d'un tir air-air. On y voit la cible 5, son onde de choc 7, la trajectoire relative de ralliement 16 et la trajectoire relative d'interception 17.The missile is launched from a firing station. The invention applies to a land, naval or air firing station. The launching direction can be arbitrary under the conditions that the missile rallies the shock wave of the target and has sufficient kinematic capacities to enslave itself there and catch up with the target. During the initial phase between launch and the first crossing of the shock wave of the target, the missile is slaved to a precalculated rallying trajectory under the criterion that the speed of the missile relative to the goal at the first crossing of the The shock wave has a direction as close as possible to that of the generator of the conical sheet, that is to say that the kinematic condition of interception indicated in FIG. 5 is fulfilled. In this figure we see the absolute speed 12 of the goal, that 13 of the missile, the relative speed 14 of this missile. The angle
Figure imgb0009

a being the speed of the sound. The determination of this trajectory supposes that the shooting station has information on the trajectory of the goal (such information can be simply the detection of the passage of the shock wave of the target by the shooting station). If no information is available, the missile can be fired on trial and the rallying trajectory is straight. It follows that, in most cases, the kinematic condition of interception will not be achieved on the first crossing, but after a transient resorbed after one to two additional crossings, beyond which the limit cycle enslaving the missile the shock wave will actually be triggered. The orders Γ yc , Γ zc calculated on the first crossings take into account this circumstance and also the response time of the estimator's algorithm. FIG. 6 shows a complete relative trajectory of interception for a shooting station located inside the conical sheet, which could be the case of an air-air shooting. We see the target 5, its shock wave 7, the relative rallying trajectory 16 and the relative interception trajectory 17.

Claims (3)

  1. Method of guiding a supersonic anti-aircraft missile onto a supersonic target using pressure sensors, characterized in that the trajectory (9) of the missile (4) is locked to the shockwave (7) created by the target (5):
    - by detecting said shockwave by first pressure sensors (1, 2, 3) installed on the missile (4),
    - by estimating the trajectory (6) of the target from positions and attitudes of the missile (4) at the dated instants at which said pressure sensors pass through the shockwave (7) of the target, by appropriate algorithm,
    - by instructing to the missile (4) a quasi-sinusoidal trajectory on either side of the wave assuring the periodic excitation of the pressure sensors and the subsequent measurements and,
    - by locking the mean relative trajectory (8) of the missile (4) to the generatrix of the conical shockwave (7) of the target.
  2. Method of guiding according to Claim 1, characterized in that it consists, in an initial phase, of launching the missile equipped with said first pressure sensors in a direction calculated by an automatic firing station equipped with second pressure sensors.
  3. Method of guiding according to Claim 1, characterized in that it is applied to a missile equipped with an electromagnetic or infrared homing device.
EP19910401006 1990-04-23 1991-04-16 Method for selfguidance of missile towards a supersonic target Expired - Lifetime EP0455531B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9005305 1990-04-23
FR9005305A FR2661245B1 (en) 1990-04-23 1990-04-23 METHOD FOR SELF-GUIDING A SUPERSONIC MISSILE ON A SUPERSONIC TARGET COMPRISING THE IMPLEMENTING ARRANGEMENTS AND THE METHODS OF USE OF THE METHOD.

Publications (2)

Publication Number Publication Date
EP0455531A1 EP0455531A1 (en) 1991-11-06
EP0455531B1 true EP0455531B1 (en) 1995-02-22

Family

ID=9396100

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910401006 Expired - Lifetime EP0455531B1 (en) 1990-04-23 1991-04-16 Method for selfguidance of missile towards a supersonic target

Country Status (3)

Country Link
EP (1) EP0455531B1 (en)
DE (1) DE69107508T2 (en)
FR (1) FR2661245B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563763B2 (en) * 2001-04-03 2003-05-13 Aai Corporation Method and system for correcting for curvature in determining the trajectory of a projectile
CN109596019B (en) * 2018-12-19 2020-12-11 中国空气动力研究与发展中心超高速空气动力研究所 Device and method for measuring flying speed and trajectory of projectile

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE915790C (en) * 1943-12-03 1954-07-29 Otto Nitzschke Method and device for firing projectiles
US3678453A (en) * 1970-10-23 1972-07-18 Us Army Flush mounted acoustic sensor
DE3334758A1 (en) * 1983-09-26 1985-04-18 Bundesrepublik Deutschland, vertreten durch den Bundesminister der Verteidigung, dieser vertreten durch den Präsidenten des Bundesamtes für Wehrtechnik und Beschaffung, 5400 Koblenz Method for combating helicopters with guided missiles
DE3412326A1 (en) * 1984-04-03 1985-10-10 DRELLO, Ing. Paul Drewell GmbH & Co.KG, 4050 Mönchengladbach ARRANGEMENT FOR DETERMINING THE MEETING POSITION AND / OR THE SPEED AND / OR THE HIT MEETING ANGLE
DE3528075A1 (en) * 1985-08-05 1987-02-12 Ingbuero Fuer Elektro Mechanis Method and device for stereo-acoustic hit position measurement of projectiles
DE3535575C1 (en) * 1985-10-05 1989-11-23 Licentia Gmbh Fuze sensor for a projectile mine, and a method for use of the detonating sensor

Also Published As

Publication number Publication date
DE69107508D1 (en) 1995-03-30
EP0455531A1 (en) 1991-11-06
FR2661245A1 (en) 1991-10-25
DE69107508T2 (en) 1995-06-14
FR2661245B1 (en) 1994-07-29

Similar Documents

Publication Publication Date Title
EP0684485B1 (en) Method and system to localize a firearm using an acoustic detection
US8047070B2 (en) Fast response projectile roll estimator
FR2722579A1 (en) DEVICE FOR CORRECTING MISSILES TRAJECTORY
FR2890760A1 (en) SYSTEM AND METHOD FOR GUIDING.
EP0485292B1 (en) Optical device to measure the roll-angle of a projectile
EP0161962B1 (en) Weapon system and missile for destroying the structure of an aeral target using a focussed charge
EP0455531B1 (en) Method for selfguidance of missile towards a supersonic target
FR2995699A1 (en) INFRARED IMAGING ECARTOMETER AND AUTOMATIC TARGET TRACKING AND TRACKING SYSTEM
FR2743622A1 (en) SIMULATION DEVICE FOR DISTINGUISHING SELF-DIRECTING TELEGUIDE MISSILE
JPH04110600A (en) Lightweight missile guidance system
FR2859782A1 (en) ARMS SYSTEMS
FR2611886A1 (en) METHOD AND DEVICE FOR AUTONOMOUS DETERMINATION OF AN INTERTIAL REFERENCE OF A PLATE ON BOARD A GUIDED PROJECTILE
EP0508905A1 (en) Method for selfguidance of missile towards a target by means of range measurements
EP0169758B1 (en) Method and apparatus for fixing the position of an object in space, and application to gunnery simulation
EP1866597A2 (en) System for target designation and/or illumination and for air reconnaissance
EP0809084B1 (en) Apparatus for determining the roll angle position of a flying device, especially of an ammunition
US7982862B2 (en) Line of sight wind speed detection system
FR2640043A1 (en) TARGET RECOGNITION METHOD FOR FLYING VEHICLES HAVING SEEKING HEAD
FR2746495A1 (en) TANDEM MILITARY HEAD FOR ATTACKING ACTIVE TARGETS
FR2974625A1 (en) METHOD FOR AUTOMATICALLY MANAGING AN AUTODIRECTEUR MOUNTED ON A FLYING MACHINE, ESPECIALLY ON A MISSILE
EP0650026B1 (en) Method for operating a weapon system displaced with respect to a target designation system and combination of these systems for carrying out the method
JP3581104B2 (en) Anti-ship missile detection method
CN111290427B (en) High-overload-resistant aircraft lateral deviation correction system
FR2512537A1 (en) INSTALLATION FOR DIRECTING A LAUNCHED BOMB FROM AN AIRCRAFT
EP0013195A1 (en) Air-ground radar telemetry apparatus for airborne fire-control system and use of such apparatus in a fire control system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI NL SE

17P Request for examination filed

Effective date: 19920418

17Q First examination report despatched

Effective date: 19940216

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STERIA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: UFFICIO BREVETTI GUAZZO

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950222

REF Corresponds to:

Ref document number: 69107508

Country of ref document: DE

Date of ref document: 19950330

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950522

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970505

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980416

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990416

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050416

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050510

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061101