EP0446325A1 - Composite material - Google Patents

Composite material

Info

Publication number
EP0446325A1
EP0446325A1 EP90914117A EP90914117A EP0446325A1 EP 0446325 A1 EP0446325 A1 EP 0446325A1 EP 90914117 A EP90914117 A EP 90914117A EP 90914117 A EP90914117 A EP 90914117A EP 0446325 A1 EP0446325 A1 EP 0446325A1
Authority
EP
European Patent Office
Prior art keywords
composite material
resin
middle layer
filaments
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90914117A
Other languages
German (de)
French (fr)
Inventor
Marc Vanden Broeck
Olivier De Marchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARCHI OLIVIER DE
Original Assignee
MARCHI OLIVIER DE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARCHI OLIVIER DE filed Critical MARCHI OLIVIER DE
Publication of EP0446325A1 publication Critical patent/EP0446325A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate

Definitions

  • the present invention relates to a composite material based on thermosetting resin reinforced with carbon filaments, rethermoformable at will after polymerization of the resin.
  • thermoformable composite orthosis material intended to form an orthosis element, composed of a polymerized resin reinforced with fibers.
  • the fibers or filaments used are intended to reinforce the composite and are chosen for this purpose from the category of materials whose elastic modulus is> 50 GPa.
  • these filaments there are carbon, glass, aramid filaments. Generally these filaments (or multi-filaments) are woven to be incorporated into the re ⁇ sine.
  • Reinforcement with glass filaments gives the material good resistance, it allows rethermoforming after polymerization of the resin, but the density of the glass leads to a relatively heavy material, which in the field of orthopedics in particular constitutes a serious drawback.
  • the carbon filaments cannot elongate during the thermoforming of the composite material.
  • the wettability of these carbon filaments by the resin is not very good.
  • one face of the reinforcing ply is subjected to a tensile force while the opposite face is subjected to a compressive force during the bending of the composite.
  • the resin cracks on the convex face and forms beads on the concave face.
  • the composite material delaminates. In all cases, such a material can only be thermoformed using a special tool and can then no longer be rethermo-forroated, which prevents the successive adaptations that an orthosis may require, as explained. previously.
  • the object of the present invention is to allow the production of a light composite material, reinforced with carbon filaments which is rethermoformable at will.
  • the present invention relates to a thermoformable laminate material according to claim 1.
  • the structure of the composite material according to the invention is always symmetrical with respect to a middle layer which can be produced in particular from polyurethanes, polyolefins, polyvinyl chloride (PVC), etc. in the form of a layer 0.1 to 10 mm thick, porous with open pores and having a modulus of elasticity ⁇ 2 GPa and a density less than 1.
  • a middle layer which can be produced in particular from polyurethanes, polyolefins, polyvinyl chloride (PVC), etc. in the form of a layer 0.1 to 10 mm thick, porous with open pores and having a modulus of elasticity ⁇ 2 GPa and a density less than 1.
  • the material comprises at least one layer of reinforcing filaments which can be in the form of a fabric whose elastic modulus is> 50 GPa composed of carbon filaments.
  • the whole of this structure is embedded in a resin matrix which is a thermosetting resin, preferably a mixture of an unsaturated resin with low functionality, which confers flexibility, and of an unsaturated resin with high functionality, which confers hardness, the proportion between the two, varying according to the desired hardness / flexibility balance.
  • the polymerization initiator is an organic peroxide.
  • fine, light, porous, inorganic or organic fillers can be incorporated into the mixture.
  • the fine filler can be obtained by cryogenic grinding of porous polymers, for example porous PVC whose density is less than 1.
  • the resin can be tinted using a compatible dye and a certain proportion of high mineral charges. thermal conductivity can be incorporated to speed up polymerization.
  • the structure described above is complemented by at least two plies of a fabric whose elastic modulus is between 2 and 5 GPa and the elongation at break is between 40% and 300%.
  • These thermoplastic fabrics are commonly produced from polyesters, aliphatic polyamides, polyacrylics, etc.
  • These two plies with modulus of elasticity are arranged on the side of the external face of each ply of reinforcing filaments. At least two plies with additional modulus of elasticity can be inserted respectively between the middle layer and the two plies of carbon filaments.
  • each ply of carbon filaments and each ply with medium modulus of elasticity can be doubled so as to be in adjacent pairs in the composite material rather than in the form of a single ply.
  • the middle layer can also be doubled, a sheet of carbon filaments being inserted between the two middle layers.
  • the middle layer being formed by a polymer with open pores
  • the resin can penetrate to a surface depth by the two faces of this middle layer and form a homogeneous binding interphase.
  • This characteristic is extremely important, insofar as it is well known in interface theory, that the presence of an interphase avoids the concentration of forces and thus makes it possible to reduce the risks of delamination under the effect of shearing.
  • This interphase is also extremely important for transferring the reinforcing effect between the different layers of the laminate material.
  • this middle layer gives the laminated material flexibility, from low to medium temperature, and at the same time makes it compressible. Thanks to this faculty of deformation and compression and to the symmetrical structure of the layers, the stresses can be dissipated and redistributed increasing the durability of the material and its capacity for thermoforming and multiple rethermoforming.
  • Two methacrylic resins marketed with different functionalities are used, Degaplast, Orthocryl. Although the proportions can be varied due to the desired properties, the preferred mixture for orthopedic applications consists of 20 parts by weight of low functionality resin and 80 parts by weight of high functionality resin.
  • the benzoyl peroxide initiator (Roland Frey 5504 Othmarsingen, Switzerland) used is of the order of 1 to 3% by weight.
  • a further 2% by weight of a Ruconix blue dye (Ruff and Co, Glattbrugg, Switzerland) is added.
  • the fabric As for the fabric whose elastic modulus is between 2 and 5 GPa, it is a Perlon® polyamide fabric reference 028400-120 (Roland Frey 5504 Othmarsingen, Switzerland).
  • porous middle layer is 3 mm thick PVC Aire or Simosel.
  • the structure of the laminate material is as follows:
  • a set of five components in the order listed above is placed in a 30 x 60 cm mold coated with a humidified PVA film and used for demolding.
  • the mold is closed and a vacuum of 78.5 kPa is produced in order to inject 700 g of the above-mentioned methacrylic resin with the 3% benzoyl peroxid therein.
  • the whole is left to polymerize for 30 min.
  • the laminated material of this example differs from that of Example 1 only by the fact that two sheets of Perlon fabric are interposed between components 2 and 3 as well as between components 3 and 4 of Example 1.
  • the laminated material of this example differs from that of Example 1 only in the structure of the middle layer 3 which comprises two layers of PVC Aire of 3mm between which two layers of the fabric of carbon multi-filaments are arranged, so that the middle layer is itself formed of a laminate.
  • the laminate material of this example differs from that of Example 1 only by the fact of the elimination of the components 1 and 5 each consisting of two layers of Perlon fabric.
  • the samples of the laminated material according to Examples 1 to 4 were subjected to thermoforming tests using a hot air fan delivering air at 250 ° C.
  • the heated samples are quickly bent at right angles to form a round.
  • After cooling, the samples were reheated to quickly straighten them to bring them back to their initial state.
  • thermomechanical and dynamic properties were carried out using the samples produced according to Examples 3 and 4 which 1 'were compared with four other samples 5, 6, 7 and 8 each composed of the resin matrix in which only some of the components of the laminate material according to Example 1 were incorporated, namely s
  • Tfr brittleness temperature temperature of the transition from the elastic phase to the transition phase
  • the material is thermoformable when heated to a temperature between Tg alpha and Tfl.
  • Tfl is equal to the thermoformability temperature Tth, because at this temperature, the mobility of the chains polymers reaches the maximum.
  • a new beta transition zone appears between -20 ° C and + 6B ° C (Tg beta: 47 ° C). Its presence explains the high value of Tandelta and the improvement in impact resistance at room temperature (25 ° C). At this temperature, the PVC-free material is still in the elastic phase.
  • thermoformability of the new material is proven by the following viscoelastic properties:
  • Perlon fabric provides the medium modulus AIREX® PCV provides the lowest modulus
  • Carbon filaments are the constituents which increase the rigidity of the laminate by raising the glass transition temperature alpha.
  • Tandelta indicates its good ability to dissipate bending stresses.
  • PVC increases the impact resistance and the thermoformability of the laminate.
  • PVC introduces two transition zones, namely:
  • Table 3 gives the viscoelastic properties of the laminated material according to Examples 3 and 4
  • Perlon and PVC of relatively large thickness reduce the rigidity and favorite the thermoformability by lowering Tg alpha and Tfl.
  • the insertion of carbon filaments in the middle layer increases its rigidity.
  • Tg beta is moved to a higher temperature.
  • the density of the laminate ⁇ 1 is significantly lower than that of the resin / carbon filament products which is between 1.2 and 1.4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Ce matériau comporte une matrice de résine thermodurcissable renfermant des nappes de filaments de carbone. Etant donné le module d'élasticité élevé de ces filaments, ceux-ci ne peuvent pas s'allonger lors du thermoformage du matériau composite. Par ailleurs, ces filaments sont relativement mal mouillables par la résine, de sorte que le thermoformage entraîne notamment un délaminage du matériau composite. C'est la raison pour laquelle une couche médiane à pores ouverts à faible module d'élasticité, compressible, est intercalée entre deux nappes du matériau de renfort filamentaire. Cette couche médiane réalise un excellent accrochage avec la résine et permet d'absorber les contraintes de traction et de compression en raison de sa capacité de compression.This material comprises a matrix of thermosetting resin containing layers of carbon filaments. Given the high elastic modulus of these filaments, they cannot lengthen during thermoforming of the composite material. Furthermore, these filaments are relatively poorly wettable by the resin, so that thermoforming notably causes delamination of the composite material. This is the reason why a middle layer with open pores with a low modulus of elasticity, which is compressible, is interposed between two layers of the filamentary reinforcing material. This middle layer achieves an excellent bond with the resin and makes it possible to absorb the stresses of traction and compression due to its compression capacity.

Description

MATERIAU COMPOSITE COMPOSITE MATERIAL
La présente invention se rapporte à un matériau composite à base de résine thermodurcissable renforcée de filaments de carbone, rethermoformable à volonté après polymérisation de la résine.The present invention relates to a composite material based on thermosetting resin reinforced with carbon filaments, rethermoformable at will after polymerization of the resin.
Il a déjà été proposé, notamment dans le EP-A2-174 216, un matériau d'orthèse composite thermoformable, destiné à former un élément d'orthèse, composé d'une résine polymérisée renforcée par des fibres. Un matériau similaire est décrit dans le FR-A1-2 284 634. Les fibres ou filaments utilisés sont destinés à renforcer le composite et sont choisis à cet effet dans la catégorie des matériaux dont le module d'élasticité est > 50 GPa. Parmi ces filaments, on trouve les filaments de carbone, de verre, d'aramide. Généralement ces filaments (ou multi-filaments) sont tissés pour être incorporés à la ré¬ sine.It has already been proposed, in particular in EP-A2-174 216, a thermoformable composite orthosis material, intended to form an orthosis element, composed of a polymerized resin reinforced with fibers. A similar material is described in FR-A1-2 284 634. The fibers or filaments used are intended to reinforce the composite and are chosen for this purpose from the category of materials whose elastic modulus is> 50 GPa. Among these filaments, there are carbon, glass, aramid filaments. Generally these filaments (or multi-filaments) are woven to be incorporated into the re¬ sine.
Le renforcement avec des filaments de verre donne au matériau une bonne résistance, il permet de le rethermoformer après polymérisation de la résine, mais la densité du verre conduit à un matériau relativement lourd, ce qui, dans le domaine de l'orthopédie notamment constitue un grave inconvé¬ nient.Reinforcement with glass filaments gives the material good resistance, it allows rethermoforming after polymerization of the resin, but the density of the glass leads to a relatively heavy material, which in the field of orthopedics in particular constitutes a serious drawback.
Le renforcement avec des filaments de carbone générale¬ ment tissés dont le module d'élasticité est beaucoup plus élevé que celui du verre et dont la densité est beaucoup plus faible, donne un matériau léger et de haute résistance mécani¬ que qui se prête particulièrement bien à des applications orthopédiques notamment. Toutefois de tels matériaux présen¬ tent une très mauvaise aptitude au thermoformage après polymé¬ risation de la résine ce qui constitue un grave inconvénient notamment en orthopédie. Dans certaines conditions, il est possible de thermoformer une fois le matériau formé de résine thermodurcissable renforcée de filaments de carbone, mais on ne connait pas de telles résines ainsi renforcée rettiermofor- mableε à volonté. Or, cette propriété est souhaitable, notam¬ ment dans le domaine orthopédique, pour permettre d'adapter l'orthèse. En effet, après une fracture par exemple, il arrive que celle-ci soit accompagnée d'une enflure, nécessitant une réadaptation de l'orthèse après disparition de l'enflure. Après quelques semaines d'immobilisation, la musculature s'at¬ rophie nécessitant une nouvelle adaptation. Ces exemples mon¬ trent la nécessité de pouvoir effectuer de multiples rethermo- formages de la résine renforcée de filament de carbone pour adapter l'orthèse aux évolutions sus-mentionnées.Reinforcement with generally woven carbon filaments whose elastic modulus is much higher than that of glass and whose density is much lower, gives a light material with high mechanical resistance which lends itself particularly well to orthopedic applications in particular. However, such materials present a very poor aptitude for thermoforming after polymerization of the resin, which constitutes a serious drawback, especially in orthopedics. Under certain conditions, it is possible to thermoform once the material has been formed from thermosetting resin reinforced with carbon filaments, but no such resins are thus known, thus reinforced at will. However, this property is desirable, especially in the orthopedic field, to allow adaptation the orthosis. Indeed, after a fracture for example, it happens that it is accompanied by swelling, requiring a readjustment of the orthosis after disappearance of the swelling. After a few weeks of immobilization, the musculature atrophies requiring a new adaptation. These examples show the need to be able to carry out multiple rethermoformings of the resin reinforced with carbon filament in order to adapt the orthosis to the above-mentioned developments.
Compte tenu de leur module d'élasticité élevé, les fila¬ ments de carbone ne peuvent pas s'allonger lors du thermofor¬ mage du matériau composite. En outre, la mouillabilité de ces filaments de carbone par la résine n'est pas très bonne. Il en résulte que lors du thermoformage, une face de la nappe de renforcement est soumise à un effort de traction tandis que la face opposée est soumise à un effort de compression lors du cintrage du composite. De ce fait, la résine se fissure sur la face convexe et forme des bourrelets sur la face concave. Compte tenu des efforts de cisaillement entre la nappe de filaments de carbone et la résine et des problèmes de mouilla¬ bilité, le matériau composite se délamine. Dans tous les cas un tel matériau ne peut être thermoformé qu'à l'aide d'un outillage particulier et ne peut ensuite plus être rethermo- forroé, ce qui empêche les adaptations successives que peut demander une orthèse, comme on l'a expliqué précédemment.In view of their high modulus of elasticity, the carbon filaments cannot elongate during the thermoforming of the composite material. In addition, the wettability of these carbon filaments by the resin is not very good. As a result, during thermoforming, one face of the reinforcing ply is subjected to a tensile force while the opposite face is subjected to a compressive force during the bending of the composite. As a result, the resin cracks on the convex face and forms beads on the concave face. In view of the shear forces between the sheet of carbon filaments and the resin and the problems of wettability, the composite material delaminates. In all cases, such a material can only be thermoformed using a special tool and can then no longer be rethermo-forroated, which prevents the successive adaptations that an orthosis may require, as explained. previously.
Il apparaît donc qu'actuellement les filaments de carbone ne sont utilisables pour renforcer de la résine que pour fabriquer des éléments, dans le domaine de l'orthopédie ou dans d'autres domaines, qui ne nécessitent pas d'être rether- oformés à volonté après polymérisation de la résine consti¬ tuant la matrice et que seules les résines renforcées de filaments de verre se prêtent à des rethermoformages à vo¬ lonté, mais en conduisant à un matériau beaucoup plus lourd et à un module d'élasticité inférieur à celui renforcé par des filaments de carbone.It therefore appears that currently the carbon filaments can only be used to reinforce the resin for manufacturing elements, in the field of orthopedics or in other fields, which do not need to be retheroformed at will. after polymerization of the resin constituting the matrix and only the resins reinforced with glass filaments lend themselves to rethermoforming as desired, but leading to a much heavier material and to a lower modulus of elasticity than that reinforced by carbon filaments.
Le but de la présente invention est de permettre la réalisation d'un matériau composite léger, renforcé par des filaments de carbone qui soit rethermoformable à volonté. A cet efet, la présente invention a pour objet un matériau stratifié thermoformable selon la revendication 1.The object of the present invention is to allow the production of a light composite material, reinforced with carbon filaments which is rethermoformable at will. To this end, the present invention relates to a thermoformable laminate material according to claim 1.
La présence d'une couche médiane à pores ouverts à faible module d'élasticité, compressible, permet de réaliser un excellent accrochage entre la résine et la couche médiane et d'absorber les contraintes de traction et de compression grâce à la capacité de compression de cette couche médiane. Dès lors on ne constate plus ni fissures, ni bourrelets, ni délaminage après cintrage du matériau composite et celui-ci peut être rethermoformé des dizaines de fois sans subir aucune dégrada¬ tion.The presence of an open pore middle layer with low elastic modulus, which is compressible, makes it possible to achieve excellent bonding between the resin and the middle layer and to absorb the tensile and compressive stresses thanks to the compression capacity of this middle layer. Therefore there are no more cracks, beads, or delamination after bending the composite material and it can be rethermoformed dozens of times without undergoing any degradation.
D'autres avantages du matériau composite objet de l'in¬ vention apparaîtront au cours de la description qui va suivre.Other advantages of the composite material which is the subject of the invention will become apparent during the description which follows.
La structure du matériau composite selon l'invention est toujours symétrique par rapport à une couche médiane qui peut être fabriquée notamment à partir de polyuréthannes, polyolé- fines, polychlorure de vinyle (PVC), etc. sous forme d'une couche de 0,1 à 10 mm d'épaisseur, poreuse à pores ouverts et présentant un module d'élasticité < 2 GPa et une densité inférieure à 1.The structure of the composite material according to the invention is always symmetrical with respect to a middle layer which can be produced in particular from polyurethanes, polyolefins, polyvinyl chloride (PVC), etc. in the form of a layer 0.1 to 10 mm thick, porous with open pores and having a modulus of elasticity <2 GPa and a density less than 1.
De part et d'autre de cette couche médiane, le matériau comporte au moins une nappe de filaments de renforcement qui peut être sous forme d'un tissu dont le module d'élasticité est > 50 GPa composé de filaments de carbone.On either side of this middle layer, the material comprises at least one layer of reinforcing filaments which can be in the form of a fabric whose elastic modulus is> 50 GPa composed of carbon filaments.
L'ensemble de cette structure est noyé dans une matrice de résine qui est une résine thermodurcissable, de préférence un mélange d'une résine insaturée à basse fonctionnalité, qui confère la flexibilité, et d'une résine insaturée à haute fonctionnalité, qui confère la dureté, la proportion entre les deux, variant selon la balance de dureté/flexibilité désirée. L'initiateur de polymérisation est un peroxyde organique.The whole of this structure is embedded in a resin matrix which is a thermosetting resin, preferably a mixture of an unsaturated resin with low functionality, which confers flexibility, and of an unsaturated resin with high functionality, which confers hardness, the proportion between the two, varying according to the desired hardness / flexibility balance. The polymerization initiator is an organic peroxide.
Pour augmenter la flexibilité et diminuer la densité, on peut incorporer au mélange des charges fines, légères, poreu¬ ses, inorganiques ou organiques. La charge fine peut être obtenue par broyage cryogénique de polymères poreux, par exem¬ ple du PVC poreux dont la densité est inférieure à 1.To increase flexibility and decrease density, fine, light, porous, inorganic or organic fillers can be incorporated into the mixture. The fine filler can be obtained by cryogenic grinding of porous polymers, for example porous PVC whose density is less than 1.
La résine peut être teintée à l'aide d'un colorant compa¬ tible et une certaine proportion de charges minérales à haute conductivité thermique peut y être incorporée pour accélérer la polymérisation.The resin can be tinted using a compatible dye and a certain proportion of high mineral charges. thermal conductivity can be incorporated to speed up polymerization.
De préférence, la structure décrite ci-dessus est complé¬ tée par au moins deux nappes d'un tissu dont le module d'élas¬ ticité est compris entre 2 et 5 GPa et l'allongement à la rupture se situe entre 40 % et 300 %. Ces tissus thermoplasti¬ ques sont couramment produits à partir de polyesters, de polyamides aliphatiques, de polyacryliques, etc. Ces deux nappes à moyen module d'élasticité sont disposées du cβté de la face externe de chaque nappe de filaments de renforcement. Au moins deux nappes à moyen module d'élasticité supplémen¬ taires peuvent être insérées respectivement entre .la couche médiane et les deux nappes de filaments de carbone.Preferably, the structure described above is complemented by at least two plies of a fabric whose elastic modulus is between 2 and 5 GPa and the elongation at break is between 40% and 300%. These thermoplastic fabrics are commonly produced from polyesters, aliphatic polyamides, polyacrylics, etc. These two plies with modulus of elasticity are arranged on the side of the external face of each ply of reinforcing filaments. At least two plies with additional modulus of elasticity can be inserted respectively between the middle layer and the two plies of carbon filaments.
Dans tous les cas chaque nappe de filaments de carbone et chaque nappe à moyen module d'élasticité peut être doublée pour se trouver par paires adjacentes dans le matériau compo¬ site plutôt que sous forme de nappe unique.In all cases each ply of carbon filaments and each ply with medium modulus of elasticity can be doubled so as to be in adjacent pairs in the composite material rather than in the form of a single ply.
Par ailleurs, en variante, la couche médiane peut égale¬ ment être doublée, une nappe de filaments de carbone étant insérée entre les deux couches médianes.Furthermore, as a variant, the middle layer can also be doubled, a sheet of carbon filaments being inserted between the two middle layers.
Une des particularités du matériau composite selon l'in¬ vention réside dans le fait que, la couche médiane étant formée par un polymère à pores ouverts, la résine peut pé¬ nétrer à une profondeur superficielle par les deux faces de cette couche médiane et former une interphase homogène de liaison. Cette caractéristique est extrêment importante, dans la mesure où il est bien connu dans la théorie de l'interface, que la présence d'une interphase évite la concentration des forces et permet ainsi de réduire les risques de délaminage sous l'effet du cisaillement. Cette interphase est également extrêmement importante pour transférer l'effet de renforcement entre les différentes couches du matériau stratifié.One of the characteristics of the composite material according to the invention lies in the fact that, the middle layer being formed by a polymer with open pores, the resin can penetrate to a surface depth by the two faces of this middle layer and form a homogeneous binding interphase. This characteristic is extremely important, insofar as it is well known in interface theory, that the presence of an interphase avoids the concentration of forces and thus makes it possible to reduce the risks of delamination under the effect of shearing. This interphase is also extremely important for transferring the reinforcing effect between the different layers of the laminate material.
Pour former la couche médiane, le PVC offre un grand intérêt dans la mesure où il peut participer au processus de polymérisation comme donneur de radicaux ou accélérateur de la décomposition du peroxyde. Une confirmation de ce phénomène est donnée par le fait que l'on observe une évolution thermi¬ que plus importante et un temps de polymérisation plus court en présence de PVC dans la résine. En outre cette couche médiane confère au matériau stratifié une flexibilité, de basse à moyenne température et le rend en même temps compres¬ sible. Grâce à cette faculté de déformation et de compression et à la structure symétrique des couches, les contraintes peuvent être dissipées et redistribuées augmentant la durabi- lité du matériau et sa capacité de thermoformage et de multi¬ ples rethermoformage.To form the middle layer, PVC is of great interest since it can participate in the polymerization process as a radical donor or accelerator of the decomposition of peroxide. A confirmation of this phenomenon is given by the fact that there is a greater thermal development and a shorter polymerization time. in the presence of PVC in the resin. In addition, this middle layer gives the laminated material flexibility, from low to medium temperature, and at the same time makes it compressible. Thanks to this faculty of deformation and compression and to the symmetrical structure of the layers, the stresses can be dissipated and redistributed increasing the durability of the material and its capacity for thermoforming and multiple rethermoforming.
Nous allons décrire ci-après, à titre d'exemple, diffé¬ rentes variantes de réalisation du matériau stratifié, objet de la présente invention.We will describe below, by way of example, different embodiments of the laminated material which is the subject of the present invention.
Exemple 1Example 1
On utilise deux résines méthacryliques commercialisées à différentes fonctionnalités, Degaplast , Orthocryl . Bien que l'on puisse varier les proportions en raison des propriétés recherchées, le mélange préféré pour des applications orthopé¬ diques est constitué par 20 parties en poids de résine à basse fonctionnalité et 80 parties en poids de résine à haute fonc¬ tionnalité. L'initiateur peroxyde de benzoyle (Roland Frey 5504 Othmarsingen, Suisse) utilisé est de l'ordre de 1 à 3 % en poids. On ajoute encore 2 % en poids d'un colorant bleu Ruconix (Ruff et Co, Glattbrugg, Suisse).Two methacrylic resins marketed with different functionalities are used, Degaplast, Orthocryl. Although the proportions can be varied due to the desired properties, the preferred mixture for orthopedic applications consists of 20 parts by weight of low functionality resin and 80 parts by weight of high functionality resin. The benzoyl peroxide initiator (Roland Frey 5504 Othmarsingen, Switzerland) used is of the order of 1 to 3% by weight. A further 2% by weight of a Ruconix blue dye (Ruff and Co, Glattbrugg, Switzerland) is added.
Comme renfort à module d'élasticité > 50 GPa on utiliseAs reinforcement with elastic modulus> 50 GPa we use
2 un tissu de multifilaments de carbone de 0,2 kg/m référence2 a 0.2 kg / m carbon multifilament fabric reference
028500-120 (Roland Frey 5504 Othmarsingen, Suisse).028500-120 (Roland Frey 5504 Othmarsingen, Switzerland).
Quant au tissu dont le module d'élasticité est compris entre 2 et 5 GPa, il s'agit d'un tissu polyamide Perlon® référence 028400-120 (Roland Frey 5504 Othmarsingen, Suisse).As for the fabric whose elastic modulus is between 2 and 5 GPa, it is a Perlon® polyamide fabric reference 028400-120 (Roland Frey 5504 Othmarsingen, Switzerland).
Enfin la couche médiane poreuse est du PVC de 3 mm d'épaisseur Aire ou Simosel .Finally, the porous middle layer is 3 mm thick PVC Aire or Simosel.
La structure du matériau stratifié est la suivante :The structure of the laminate material is as follows:
1. Deux nappes de tissu Perlon1. Two sheets of Perlon fabric
2. Deux nappes de tissu de multifilaments de carbone2. Two layers of carbon multifilament fabric
3. Couche médiane PVC Airex 3mm poncée et percée à intervalles réguliers 4. Deux nappes de tissu de multifilaments de carbone3. PVC Airex 3mm middle layer sanded and drilled at regular intervals 4. Two layers of carbon multifilament fabric
5. Deux nappes de tissu de Perlon5. Two tablecloths of Perlon fabric
Pour réaliser le matériau stratifié, on place dans un moule de 30 x 60 cm revêtu d'un film de PVA humidifié et servant au démoulage, l'ensemble des cinq composants dans l'ordre énuméré ci-dessus. On ferme le moule et on réalise un vide de 78,5 kPa pour y injecter 700 g de la résine métacryli- que sus-mentionnée avec les 3 % de peroxde de benzoyle. On laisse l'ensemble polymériser pendant 30 min.To make the laminated material, a set of five components in the order listed above is placed in a 30 x 60 cm mold coated with a humidified PVA film and used for demolding. The mold is closed and a vacuum of 78.5 kPa is produced in order to inject 700 g of the above-mentioned methacrylic resin with the 3% benzoyl peroxid therein. The whole is left to polymerize for 30 min.
Exemple 2Example 2
Le matériau stratifié de cet exemple ne diffère de celui de l'exemple 1 que par le fait que l'on intercale deux nappes de tissu Perlon entre les composants 2 et 3 ainsi qu'entre les composants 3 et 4 de l'Exemple 1.The laminated material of this example differs from that of Example 1 only by the fact that two sheets of Perlon fabric are interposed between components 2 and 3 as well as between components 3 and 4 of Example 1.
Exemple 3Example 3
Le matériau stratifié de cet exemple ne diffère de celui de l'Exemple 1 que dans la structure de la couche médiane 3 qui comporte deux couches de PVC Aire de 3mm entre lesquel¬ les sont disposées deux nappes du tissu de multi-filaments de carbone, de sorte que la couche médiane est elle-même formée d'un stratifié.The laminated material of this example differs from that of Example 1 only in the structure of the middle layer 3 which comprises two layers of PVC Aire of 3mm between which two layers of the fabric of carbon multi-filaments are arranged, so that the middle layer is itself formed of a laminate.
Exemple 4Example 4
Le matériau stratifié de cet exemple ne diffère de celui de l'Exemple 1 que par le fait de la suppression des compo¬ sants 1 et 5 constitués chacun par deux nappes de tissu Perlon .The laminate material of this example differs from that of Example 1 only by the fact of the elimination of the components 1 and 5 each consisting of two layers of Perlon fabric.
Les échantillons du matériau stratifié selon les exemples 1 à 4 ont été soumis à des essais de thermoformage à l'aide d'un ventilateur à air chaud délivrant de l'air à 250°C. Les échantillons chauffés sont rapidement courbés à angle droit en formant un arrondi. Après refroidissement, on a réchauffé les échantillons pour les redresser rapidement pour les ramener à leur état initial.The samples of the laminated material according to Examples 1 to 4 were subjected to thermoforming tests using a hot air fan delivering air at 250 ° C. The heated samples are quickly bent at right angles to form a round. After cooling, the samples were reheated to quickly straighten them to bring them back to their initial state.
Ces tests ont été subis 40 fois avec succès par les quatre échantillons correspondant aux exemples respectifs ci- dessus, c'est-à-dire que l'on n'a relevé aucun délaminage ni aucune fissure à l'extérieur de la courbure et bourrelets à l'intérieur, défauts que l'on a constaté dans les produits εus-mentionnés du commerce sans couche médiane poreuse.These tests have been successfully passed 40 times by four samples corresponding to the respective examples above, that is to say that no delamination or cracks were found on the outside of the curvature and beads on the inside, defects which we have found in the above-mentioned commercial products without a porous middle layer.
Des essais de rupture de ces échantillons réalisés par pliage à température ambiante ont mis en évidence le rβle des composants 1 et 5 de l'Exemple 1 formé de deux nappes deRupture tests of these samples carried out by folding at room temperature revealed the role of components 1 and 5 of Example 1 formed of two layers of
AAT
Perlon ou des composants équivalents des échantillons selon les Exemples 2 et 3 par rapport à l'Exemple 4 qui est dépourvu de ces composants. En effet, avec les échantillons selon les Exemples 1 à 3, il y a rupture sans séparation, tandis que dans le cas de l'échantillon selon l'Exemple 4, il y a rupture avec séparation en deux morceaux. Les nappes de tissu à fort allongement à la rupture constituent donc des éléments de sécurité en cas de casse ou de choc.Perlon or equivalent components of the samples according to Examples 2 and 3 compared to Example 4 which is devoid of these components. Indeed, with the samples according to Examples 1 to 3, there is a break without separation, while in the case of the sample according to Example 4, there is a break with separation into two pieces. The sheets of fabric with high elongation at break therefore constitute safety elements in the event of breakage or impact.
Une étude des propriétés thermomécaniques et dynamiques a été réalisée à l'aide des échantillons réalisés selon les Exemples 3 et 4 que 1 'on a comparé à quatre autres échantil¬ lons 5, 6, 7 et 8 composés chacun de la matrice de résine dans laquelle seuls certains des composants du matériau stratifié selon l'Exemple 1 ont été incorporés, à savoir sA study of the thermomechanical and dynamic properties was carried out using the samples produced according to Examples 3 and 4 which 1 'were compared with four other samples 5, 6, 7 and 8 each composed of the resin matrix in which only some of the components of the laminate material according to Example 1 were incorporated, namely s
échantillon 5 résine 20/80 + PVC Airex β 3mmsample 5 resin 20/80 + PVC Airex β 3mm
A échantillon 6 résine 20/80 + Perlon + multifilamentsA sample 6 resin 20/80 + Perlon + multifilaments
A carbone + Perlon échantillon 7 résine 20/80 + Perlon échantillon 8 résine 20/80 + multifilaments carboneA carbon + Perlon sample 7 resin 20/80 + Perlon sample 8 resin 20/80 + carbon multifilaments
Au lieu d'utiliser la mesure classique sur instrument Instron, nous avons adapté la technologie viεcoélastique à l'aide d'un appareil de mesure "Dynamic Mechanical Analyzer DMA 983" piloté par un "9900 Thermal Analyzer" fabriqués par Du Pont Instruments aux U.S.A.. Cette technologie est utilisée pour l'étude approfondie des propriétés viscoélastiques des matériaux composites. Les conditions d' étude sont les suivantes :Instead of using conventional measurement on an Instron instrument, we have adapted the viεcoelastic technology using a "Dynamic Mechanical Analyzer DMA 983" measuring device controlled by a "9900 Thermal Analyzer" manufactured by Du Pont Instruments in the USA . This technology is used for the in-depth study of the viscoelastic properties of composite materials. The study conditions are as follows:
DMA Fixed Frequency 1 HzDMA Fixed Frequency 1 Hz
Températures -20° à 200 °CTemperatures -20 ° to 200 ° C
Augmentation 3 °C/minuteIncrease 3 ° C / minute
Coefficient de Poisson : 0 ,420 pour compositePoisson's ratio: 0.420 for composite
0 ,450 pour PVC0.450 for PVC
Les significations des symboles viscoélastiques sont les sui¬ vantes :The meanings of the viscoelastic symbols are as follows:
E' Module élastique en flexionE 'Elastic modulus in bending
E' Module visqueux en flexionE 'Viscous module in bending
Tandelta : E"/E'Tandelta: E "/ E '
Tg Température de transition vitreuse alpha pour Tg élevée béta pour Tg moyenne gamma pour Tg basseTg Glass transition temperature alpha for high Tg beta for medium Tg gamma for low Tg
Tfr Température de fragilité : température du passage de la phase élastique à la phase de transitionTfr brittleness temperature: temperature of the transition from the elastic phase to the transition phase
Tfl Température de flexibilité : température du passage de la phase de transi tion alpha à la phase visqueuse = température du maximum de la courbe Tandelta dans la zone de transition alpha.Tfl Flexibility temperature: temperature of transition from the alpha transition phase to the viscous phase = temperature of the maximum of the Tandelta curve in the alpha transition zone.
Théoriquement, le matériau est thermoformable lorsqu'il est chauffé à une température entre Tg alpha et Tfl. On peut admettre que Tfl est égale à la température de thermoformabi- lité Tth, car à cette température, la mobilité des chaînes polymères atteint le maximum.Theoretically, the material is thermoformable when heated to a temperature between Tg alpha and Tfl. We can admit that Tfl is equal to the thermoformability temperature Tth, because at this temperature, the mobility of the chains polymers reaches the maximum.
Dans un premier temps on a comparé un composite résine PMMa renforcée de filaments de carbone, avec un stratifié conforme à l'Exemple 4. Les résultats obtenus ont été les suivants ÎFirst, a PMMa resin composite reinforced with carbon filaments was compared, with a laminate in accordance with Example 4. The results obtained were as follows:
La présence de la couche médiane à base de PVC poreuxThe presence of the middle layer based on porous PVC
AAT
Aire selon l'Exemple 4 change totalement les propriétés thermomécaniques et dynamiques par rapport au composite PMMa/ carbone.Area according to Example 4 completely changes the thermomechanical and dynamic properties compared to the PMMa / carbon composite.
Une nouvelle zone de transition béta apparaît entre -20°C et +6B°C (Tg béta : 47°C). Sa présence explique la valeur élevée de Tandelta et l'amélioration de la résistance à l'im¬ pact à température ambiante (25°C). A cette température le matériau sans PVC est encore dans la phase élastique.A new beta transition zone appears between -20 ° C and + 6B ° C (Tg beta: 47 ° C). Its presence explains the high value of Tandelta and the improvement in impact resistance at room temperature (25 ° C). At this temperature, the PVC-free material is still in the elastic phase.
La facilité de thermoformabilité du nouveau matériau est prouvée par les propriétés viscoélastiques suivantes :The ease of thermoformability of the new material is proven by the following viscoelastic properties:
- Température de fragilité Tfr plus basse- Lower brittleness temperature Tfr
- La présence de la transition béta- The presence of the beta transition
- La faible valeur du module élastique E' à la température de thermoformabilité Tfl Le tableau 2 donne les propriétés viscoélastiques des différents constituants du matériau stratifié objet de l'in¬ vention.- The low value of the elastic modulus E 'at the thermoformability temperature Tfl Table 2 gives the viscoelastic properties of the various constituents of the laminated material which is the subject of the invention.
TABLEAU 2TABLE 2
No 8 No 6 No 5No 8 No 6 No 5
PMMa PMMa PMMa Carbone Perlone Aire β CarbonePMMa PMMa PMMa Carbon Perlone Aire β Carbon
25,98 4,085 0,456 704,5 221,4 57,0425.98 4.085 0.456 704.5 221.4 57.04
0,027 0,054 0,067 106,1 106,3 82,6 40 57,5 -17 117 120 890.027 0.054 0.067 106.1 106.3 82.6 40 57.5 -17 117 120 89
Il ressort de ces mesures DMA en ce qui concerne le module élastique aussi bien que visqueux que :It follows from these DMA measurements with regard to the elastic as well as viscous modulus that:
Les filaments de carbone confèrent le module le plus élevéCarbon filaments give the highest modulus
AAT
Le tissu Perlon confère le module moyen Le PCV AIREX® confère le module le plus basPerlon fabric provides the medium modulus AIREX® PCV provides the lowest modulus
La combinaison des différents composants donne un maté¬ riau à module intermédiaire (voir Exemple 4 du tableau 1). Contrairement à la prévision, la diminution du module élasti¬ que du stratifié fabriqué avec filaments de carbone (No 8) est plus importante lorsqu'il est combiné avec le tissu polyamide (No 6) qu'avec le PVC AIREX® échantillon 4 du tableau 1. Ceci peut être expliqué par la présence d'une interphaεe entre la résine et le PVC qui permet un meilleur transfert de l'effet de renforcement des filaments de carbone à la couche médiane de PVC. Il est par ailleurs bien connu que le mouillage du tissu polyamide par la résine n'est pas bon.The combination of the different components gives an intermediate module material (see Example 4 in Table 1). Contrary to the forecast, the reduction in the elastic modulus of the laminate made with carbon filaments (No 8) is greater when combined with the polyamide fabric (No 6) than with the PVC AIREX® sample 4 in the table 1. This can be explained by the presence of an interphase between the resin and the PVC which allows a better transfer of the reinforcing effect of the carbon filaments to the middle layer of PVC. It is also well known that the wetting of the polyamide fabric by the resin is not good.
En ce qui concerne l'effet thermomécanique : Les filaments de carbone sont les constituants qui aug¬ mentent la rigidité du stratifié par une élévation de la température de transition vitreuse alpha.Regarding the thermomechanical effect: Carbon filaments are the constituents which increase the rigidity of the laminate by raising the glass transition temperature alpha.
AAT
Le Perlon confère une meilleure souplesse à température moyenne à cause de sa propre transition béta entre 10°C et 60°C (Tg béta = 40°C). La valeur élevée de Tandelta indique sa bonne aptitude de dissipation des contraintes en flexion.Perlon gives better flexibility at medium temperature because of its own beta transition between 10 ° C and 60 ° C (Tg beta = 40 ° C). The high value of Tandelta indicates its good ability to dissipate bending stresses.
Le PVC augmente la résistance à l'impact et la thermo¬ formabilité du stratifié. En fait, le PVC introduit deux zones de transition, à savoir :PVC increases the impact resistance and the thermoformability of the laminate. In fact, PVC introduces two transition zones, namely:
Transition gamma à -17°C : plastifiants Transition béta à 5B°C : résine PVCGamma transition at -17 ° C: plasticizers Beta transition at 5B ° C: PVC resin
C'est la raison pour laquelle le stratifié selon l'inven¬ tion qui comporte des zones très larges de transition, présen¬ te une bonne rigidité, une bonne résiεtance à l'impact, au délaminage et une bonne thermoformabilité.This is the reason why the laminate according to the invention which has very wide transition zones, presents good rigidity, good impact resistance, delamination and good thermoformability.
Le tableau 3 donne leε propriétés viscoélastiques du matériau stratifié selon les Exemples 3 et 4Table 3 gives the viscoelastic properties of the laminated material according to Examples 3 and 4
TABLEAU 3TABLE 3
Echantillon Selon Ex. 4 Selon Ex. 3Sample According to Ex. 4 According to Ex. 3
E' 25°C GPa 9,767 3,700E '25 ° C GPa 9,767 3,700
E" 25°C MPa 397,7 90,91E "25 ° C MPa 397.7 90.91
Tg alpha °C 113 95,9Tg alpha ° C 113 95.9
Tg béta °C 47,5 60,6Tg beta ° C 47.5 60.6
Tfl °C 124 104Tfl ° C 124 104
E' Tfl GPa 0,2348 0,1467E 'Tfl GPa 0.2348 0.1467
Densité 0,98 0,94Density 0.98 0.94
AAT
Comme on l'a déjà constaté, le Perlon et le PVC à épais¬ seur relativement importante diminuent la rigidité et favori¬ sent la thermoformabilité en abaissant Tg alpha et Tfl. L'insertion de filaments de carbone dans la couche mé¬ diane augmente sa rigidité. Tg béta est déplacée vers une température plus élevée.As has already been observed, Perlon and PVC of relatively large thickness reduce the rigidity and favorite the thermoformability by lowering Tg alpha and Tfl. The insertion of carbon filaments in the middle layer increases its rigidity. Tg beta is moved to a higher temperature.
La densité du εtratifié < 1 est sensiblement plus faible que celle des produits résine/filaments de carbone qui se situe entre 1,2 et 1,4. The density of the laminate <1 is significantly lower than that of the resin / carbon filament products which is between 1.2 and 1.4.

Claims

REVENDICATIONS
1. Matériau composite à base de résine thermodurcissable renforcée de filaments de carbone rethermoformable à volonté après polymérisation de la résine, caractérisé par le fait que ces filaments de carbone sont disposés en au moins deux nap¬ pes, de part et d'autre d'une couche médiane d'un polymère réalisée sous forme poreuse à pores ouverts dont le module d'élasticité est < 2 GPa, dont l'épaisseur est comprise entre 0,1 et 10 mm et dont la densité est < 1.1. Composite material based on thermosetting resin reinforced with carbon filaments rethermoformable at will after polymerization of the resin, characterized in that these carbon filaments are arranged in at least two layers, on either side of a middle layer of a polymer produced in porous form with open pores whose modulus of elasticity is <2 GPa, whose thickness is between 0.1 and 10 mm and whose density is <1.
2. Matériau composite selon la revendication 1, caracté¬ risé par le fait qu'au moins deux nappes d'un tissu en un polymère thermoplastique dont le module d'élasticité est com¬ pris entre 2 et 5 GPa et dont l'allongement à la rupture est compris entre 40 % et 300 % sont disposées respectivement du cβté externe des deux nappes de filaments de carbone.2. Composite material according to claim 1, caracté¬ ized in that at least two plies of a fabric of a thermoplastic polymer whose elastic modulus is between 2 and 5 GPa and whose elongation at the rupture is between 40% and 300% are respectively arranged on the external side of the two layers of carbon filaments.
3. Matériau composite selon la revendication 1, caracté¬ risé par le fait que la nappe de filaments de carbone, dispo¬ sée de chaque cβté de la couche médiane est elle-même disposée entre au moins deux couches d'un tiεεu en un polymère thermo- plastique dont le module d'élasticité est compris entre 2 et 5 GPa et dont l'allongement à la rupture est compris entre 40 -s et 300 %.3. Composite material according to claim 1, caracté¬ ized in that the sheet of carbon filaments, available on each side of the middle layer is itself disposed between at least two layers of a fabric of a polymer thermoplastic whose elastic modulus is between 2 and 5 GPa and whose elongation at break is between 40 -s and 300%.
4. Matériau composite selon la revendication 1, caracté¬ risé par le fait que la couche médiane comporte deux couches dudit polymère disposées de part et d'autre d'au moins une nappe de filaments de carbone.4. Composite material according to claim 1, caracté¬ ized in that the middle layer comprises two layers of said polymer arranged on either side of at least one layer of carbon filaments.
5. Matériau composite selon l'une des revendications 1 à 4, caractérisé par le fait que ladite matrice de résine est en PMMa.5. Composite material according to one of claims 1 to 4, characterized in that said resin matrix is made of PMMa.
6. Matériau composite selon l'une des revendications 2 à 4, caractérisé par le fait que lesdites nappes en un tissu de polymère thermoplastique sont en polyamide aliphatique.6. Composite material according to one of claims 2 to 4, characterized in that said plies in a thermoplastic polymer fabric are made of aliphatic polyamide.
7. Matériau composite selon l'une des revendications 1 à 4, caractérisé par le fait que ladite couche médiane est en PVC. 7. Composite material according to one of claims 1 to 4, characterized in that said middle layer is made of PVC.
EP90914117A 1989-10-03 1990-09-26 Composite material Withdrawn EP0446325A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH359989 1989-10-03
CH3599/89 1989-10-03

Publications (1)

Publication Number Publication Date
EP0446325A1 true EP0446325A1 (en) 1991-09-18

Family

ID=4259465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90914117A Withdrawn EP0446325A1 (en) 1989-10-03 1990-09-26 Composite material

Country Status (3)

Country Link
EP (1) EP0446325A1 (en)
CA (1) CA2042410A1 (en)
WO (1) WO1991004852A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3089486A (en) * 1961-03-29 1963-05-14 George J Pike Orthopedic structures, and methods and compositions for making same
AU506960B2 (en) * 1977-03-03 1980-01-31 Unitex Ltd. Foam sandwich construction
JPS6131218A (en) * 1984-07-23 1986-02-13 Hitachi Chem Co Ltd Manufacture of frp molded product
US4683877A (en) * 1985-10-04 1987-08-04 Minnesota Mining And Manufacturing Company Orthopedic casting article and method
FR2614579A1 (en) * 1987-04-30 1988-11-04 Monnot Patrick Composite panels which may have highly contorted shapes with numerous curves and large reentrant angles, and having mechanical flexural strength and impact resistance which are both very high in relation to their weight, and method of manufacture
IT1210837B (en) * 1987-06-26 1989-09-29 Pianfei Ipa Spa PERFECTED PROCESS OF MANUFACTURE OF LIGHT SELF-SUPPORTING AND SOUND ABSORBING PRINTABLE MANUFACTURES AND MANUFACTURED OBTAINED WITH THIS PROCEDURE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9104852A1 *

Also Published As

Publication number Publication date
CA2042410A1 (en) 1991-04-04
WO1991004852A1 (en) 1991-04-18

Similar Documents

Publication Publication Date Title
TWI335268B (en)
EP0223664B1 (en) Fabric based on glass and carbon fibres, and article comprising such a fabric
EP0235087A1 (en) Reinforcing element intended for impregnation with a resin and the use of such an element
JP4585863B2 (en) Method for manufacturing elastic molded article
FR2679044A1 (en) COMPOSITE OPHTHALMIC LENS.
EP0419645B1 (en) Deformable textile structure
JP2007520371A (en) Bulletproof articles
JPS58171918A (en) Tough acryl sheet
Mosleh et al. Manufacture and properties of a polyethylene homocomposite
TW201242992A (en) Methods to improve the process-ability of uni-directional composites
ES2805783T3 (en) Polymeric particles
NO161048B (en) LAMINATED SPRAY ATTENDING DEVICE.
Luo et al. Characterization of henequen fibers and the henequen fiber/poly (hydroxybutyrate-co-hydroxyvalerate) interface
Brady et al. Interfacial adsorption and crystallization of polycarbonate in carbon fiber composites
EP0446325A1 (en) Composite material
Endo et al. Uniaxial drawing of polytetrafluoroethylene virgin powder by extrusion plus cold tensile draw
CH684726B5 (en) Product comprising a fibrous structure having separate groups of fibers showing a higher density.
JP2004524202A (en) Polyolefin sheet
JPS62156928A (en) Manufacture of polyethylene film
US6652966B1 (en) Transparent composite membrane
Wang et al. An Investigation on the rheological properties of ultra-high molecular weight polyethylene single-polymer composites
EP0288355B1 (en) Fabric based on fire-resistant fibres, and article comprising such a fabric
EP0287454B1 (en) Fabric from glass fibres and polyester, and articles comprising such a fabric
JP3952605B2 (en) Degreased paper and its manufacturing method
FR3068277A1 (en) COMPOSITE MATERIAL CONSISTING OF PRE-IMPREGNATED WOVEN FIBERS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19911015

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19930401