EP0443340B1 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP0443340B1
EP0443340B1 EP91100895A EP91100895A EP0443340B1 EP 0443340 B1 EP0443340 B1 EP 0443340B1 EP 91100895 A EP91100895 A EP 91100895A EP 91100895 A EP91100895 A EP 91100895A EP 0443340 B1 EP0443340 B1 EP 0443340B1
Authority
EP
European Patent Office
Prior art keywords
tube sheet
face
tube
horizontal
partition groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91100895A
Other languages
English (en)
French (fr)
Other versions
EP0443340A1 (de
Inventor
Tai Wai Kwok
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phillips Petroleum Co
Original Assignee
Phillips Petroleum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phillips Petroleum Co filed Critical Phillips Petroleum Co
Publication of EP0443340A1 publication Critical patent/EP0443340A1/de
Application granted granted Critical
Publication of EP0443340B1 publication Critical patent/EP0443340B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions

Definitions

  • This invention relates to a shell-and-tube heat exchanger comprising the features as indicated in the precharacterising part of claim 1.
  • Shell-and-tube heat exchangers may be used in essentially all types of functional services such as condensing, cooling, vaporizing, evaporating, and mere exchanging of heat energy between two different fluids. Furthermore, shell-and-tube exchangers are capable of handling practically any types of chemical compounds including, for example, water, steam, hydrocarbons, acids, and bases. In the design of a shell-and-tube heat exchanger, there are a myriad of mechanical and process factors to take into account in order to generate an economically optimum heat exchanger design. Many of these desirable design factors, however, have off-setting negative results which impose limits on the extent to which a certain design factor may be used.
  • Fouling is the deposition of material upon the heat transfer surfaces of a heat exchanger. These deposited materials usually have low thermal conductivities which create large thermal resistances thereby lowering the heat transfer coefficient. Having a surface with a high heat transfer coefficient is beneficial in that it provides a greater rate of heat transfer and allows for a more economical heat exchanger equipment design.
  • a shell-and-tube type heat exchanger When a shell-and-tube type heat exchanger is used as either a vaporizer or as a condenser, either one or both of the fluids passing through the heat exchanger undergo a phase change. Because of this phase change, the volumetric flow rate changes as gas or liquid passes through the heat exchanger. This change in volumetric flow rate results in a change in fluid velocity; and, in the case of a condensing fluid, its velocity will decrease as it passes through the exchanger creating a greater potential for fouling, scaling, or corrosion problems which are associated with low tube-side fluid velocities. In the case where a fluid is being vaporized, its volumetric velocity will increase as it passes through the exchanger creating a greater potential for erosion.
  • a multi-pass type heat exchanger construction provides for an improvement in the heat transfer coefficient through the increase in fluid velocity by decreasing the cross-sectional area of the fluid path.
  • a multi-pass heat exchanger is constructed by building into the head and return ends of a heat exchanger baffles or partitions which direct the fluid through the tubes into their proper relative positions.
  • the most common multi-pass heat exchanger construction is to arrange for an equal number of tubes per pass; however, if the physical changes in the fluid volumes warrant, a heat exchanger may be designed so that there are an unequal number of tubes per pass.
  • a heat exchanger can be designed to maintain a relatively even fluid velocity distribution throughout the length of the exchanger tubes even though there is a phase change in the fluid as it passes through the tubes.
  • all of the various design considerations such as fouling, scaling, corrosion, erosion, heat transfer coefficients, and pressure drop can be optimized.
  • a heat exchanger of the tube-bundle type that can be adjusted to fluid flow velocity and to the number of fluid passes through the tube-bundle.
  • This heat exchanger comprises a shell with groups of tubes therein the tube-bundle being fixedly secured to tube sheets on either sides of the heat exchanger.
  • the tube sheet comprises grooves horizontally and vertically arranged in a symmetric way to receive corresponding partitions plates arranged in the head to be mounted onto the side of the heat exchanger. Apart from the partition type of construction multi-type passes are provided.
  • a further objective of this invention is to provide a shell-and-tube heat exchanger containing equal or unequal numbers of tubes per tube-side pass, but which also allows for the periodic rotation of the tube bundle while maintaining the same fluid flow distribution through the tubes after said rotation.
  • FIG. 1 is an elevational view of a shell-and-tube heat exchanger with portions thereof broken away to illustrate certain features of the present invention.
  • FIG. 2 is an isometric exploded view of the heat exchanger of FIG. 1 illustrating the tube bundle, the tube sheet, and the front-end head thereof which includes the features of the present invention.
  • FIG. 3 is a cross sectional view taken along line 3-3 of FIG. 1 showing the inside of the front-end stationary head of the shell and tube heat exchanger of the present invention.
  • FIG. 4 is a cross sectional view taken along line 4-4 of FIG. 1 illustrating the tubesheet design and configuration which is a feature of the present invention.
  • FIG. 5 is an elevational view of a shell-and-tube heat exchanger with portions thereof broken away to illustrate certain features of the present invention.
  • FIG. 6 is a cross sectional view taken along line 6-6 of FIG. 5 illustrating the tube sheet design and configuration which is a feature of the present invention.
  • FIG. 7 is a cross sectional view taken along line 7-7 of FIG. 5 showing the inside of the floating head of the shell and tube heat exchanger of the present invention.
  • FIG. 8 is an elevational view of a typical tube sheet of a six-pass shell-and-tube heat exchanger providing for an essentially even number of tubes per pass.
  • FIG. 1 depicts a shell-and-tube heat exchanger 10 comprising shell 12 and tube-bundle 14.
  • the tube bundle 14 is composed of a plurality of U-shaped tubes 15 affixed to tube sheet 16 by any commonly used technique for rolling tubes inside drilled tube holes or apertures.
  • Tubes 15 of tube bundle 14 and tube sheet 16 may be arranged in any commonly used regular pattern such as in a triangular pitch or a square pitch and they can be made of a variety of materials which can include, for example, steel, copper, monel, admiralty brass, 70-30 copper-nickel, aluminum bronze, aluminum, and the stainless steels.
  • the preferred embodiment is to arrange tubes 15 in a square pitch pattern and to fabricate tubes 15 from a monel material. As shown in FIG.
  • tube bundle 14 is of the removable, U-tube type having a single tube sheet 16, but this invention is not limited to U-tube type construction and may be of any type of construction which allows for the removal of the tube bundle from the shell, including floating head type bundles.
  • Tube sheet 16 is held in place by shell flange 18 and channel flange 20 which are suitably secured together by a plurality of threaded bolts (not shown).
  • Shell 12 is provided with nozzles 22 and 24 spaced as shown to induce flow of shell-side fluid across and along the external length of the tubes of tube bundle 14.
  • This one-pass, shell-side fluid flow is the preferred arrangement under the embodiment of this invention, and generally, it is the most commonly used flow arrangement in typically designed shell-and-tube heat exchangers.
  • Other shell-side flow arrangements are possible such as a split-flow, double split-flow, divided flow and cross flow that require either additional nozzles or different nozzle arrangements or both.
  • Tube bundle 14 is equipped with segmental type baffles 26, spaced at convenient distances, which improve heat transfer by inducing turbulent fluid flow and causing the shell-side fluid to flow at right angles to the axes of tubes 15 of tube bundle 14.
  • Segmental baffles 26 are made from segments of circular, drilled plates which allow the insertion of the exchanger tubes.
  • the diameter of the segmental baffles 26 approaches that of the inner diameter of shell 12 and approximately twenty-five percent of each baffle 26 is cut out and removed from the drilled plate.
  • the cut-out portions of the baffles 26 are alternately rotated 180° about the longitudinal axis of the tube shell 12 so as to provide an up-and-down, side-to-side or zig-zag type fluid flow pattern across tube bundle 14. While the preferred embodiment of this invention uses twenty-five percent cut segmental baffles, there are other types which may be used such as disc and donut baffles, rod baffles, orifice baffles, double segmental baffles, and triple segmental baffles.
  • a stationary front-end bonnet head or front-end head 28, having inlet nozzle 30, outlet nozzle 32, two horizontally oriented pass partitions 34 and 36, and one vertically oriented pass partition 38, is equipped with channel flange 20 for assembly with shell 12 by bolts (not shown) passing through channel flange 20 and opposing shell flange 18. While it is generally preferred to use bolts and flanges as a fastener means, any other suitable means such as clamps and latches for connecting stationary front-end bonnet head 28 and shell 12 with tube sheet 16 therebetween may be used. Flanges 18 and 20 clamp on tube sheet 16, which is designed in accordance with this invention, in a closed position.
  • the joints between the outer edges of the pass partitions and the partition grooves in the tube sheet 16 are formed by inserting the outer edge of horizontal pass partition 34 into horizontal partition groove 52, the outer edge of horizontal pass partition 36 into horizontal partition groove 50, and the outer edge of vertical pass partition 38 into vertical partition groove 54, as best shown in FIG. 2, FIG. 3 and FIG. 4.
  • the joints are sealed with a gasket (not shown) and with force created by the torquing of the threaded bolts which connect channel flange 20 and shell flange 18.
  • Bonnet head 28 is fitted with lifting lug 40.
  • the shell 12 is provided with support saddles 42 and 44 for support and mounting upon a foundation.
  • FIG. 2 shows the lay-out of tube sheet 16 having a boundary edge and a group of five partition grooves 46, 48, 50, 52 and 54 formed thereon and showing bonnet head 28 with pass partition plates 34, 36 and 38 along with an inlet nozzle 30 and an outlet nozzle 32.
  • Horizontal pass partition grooves 46 and 48 are false grooves in that they are formed on the face of tube sheet 16 merely to allow for the rotation of tube bundle 14 through an angle of 180° about its center or longitudinal axis, which intersects the vertical center line of tube sheet 16, while still maintaining the same fluid flow distribution through the tubes.
  • the center or longitudinal axis of tube sheet 16 is defined as an imaginary line perpendicular to the face of tube sheet 16 which passes axially therethrough and is parallel to tubes 15 that are affixed to tube sheet 16 and which intersects the vertical centerline of tube sheet 16.
  • the vertical centerline of tube sheet 16 is defined as an imaginary line parallel to the faces of tube sheet 16 which divides the faces of tube sheet 16 into two symmetrical halves and which intersects the center or longitudinal axis.
  • a vertical partition groove 54 which extends vertically across the face of tube sheet 16 parallel to the vertical centerline with both ends of vertical partition groove 54 intersecting the boundary edge of tube sheet 16.
  • Both horizontal partition grooves 50 and 52 and horizontal false partition grooves 46 and 48 extend normally from the vertical centerline to the outer boundary edge of tube sheet 16.
  • the partition plates 34, 36 and 38 are fixedly secured inside bonnet head 28 either by welding or casting in place or any other suitable means. These partition plates serve to direct the fluid flow through the tubes in a specific pattern as, for example, required by a changing fluid phase as the fluid passes through the heat exchanger tubes 15. While FIG. 2 shows the preferred embodiment of this invention providing for a six-pass heat exchanger having an unequal number of tubes per pass. This invention, however, can be extended to heat exchangers having any even number of tube-side passes with equal or unequal numbers of tubes per pass. Furthermore, this invention can be extended to heat exchangers that use floating-head type tube bundles as described hereinbelow.
  • the fluid loops around and enters the third tube pass where the fluid passes axially down the length of tubes 15 of the third tube pass and returns to enter third chamber 60 in bonnet head 28 via the fourth tube pass.
  • the fluid makes another loop to enter the fifth tube pass where it flows axially down the length of tubes 15 and returns via the sixth tube pass to enter the fourth chamber 62 in bonnet head 28.
  • the condensed fluid exits the chamber via outlet nozzle 32.
  • the two so-called horizontal false pass partition grooves 46 and 48 that are incorporated in tube sheet 16 allow for the periodic rotation of tube bundle 14 through an angle of 180° about its center axis as earlier defined.
  • tube bundle 14 is removed from shell 12 and rotated through an angle of 180° about its center axis and subsequently replaced in the new rotated position.
  • horizontal false pass partition groove 46 is repositioned in the previous position held by horizontal pass partition groove 50
  • pass partition groove 48 is repositioned in the previous position held by horizontal pass partition groove 52.
  • horizontal pass partition grooves 50 and 52 become horizontal false pass partition grooves and horizontal false pass partition grooves 46 and 48 become the grooves required for forming a joint and seal with the ends of partition plates 34 and 36.
  • Pass partition groove 54 forms the joint seal with the end of partition plate 38 in both the original and the rotated positions of the tube bundle 14.
  • FIG. 5 is illustrated an embodiment of the invention wherein is depicted the rear-end head section of a floating head type heat exchanger 100 as opposed to the U-tube type heat exchanger 10 of FIG. 1 as previously referred to. All the elements indicated in the heat exchanger 10 of FIG. 1 are substantially similar to those of the heat exchanger 100 with several exceptions.
  • Shell 12 is equipped at its rear end with a shell flange 102.
  • the tube bundle is a floating head type with floating head assembly 104.
  • There is a shell cover 106 that is provided with a shell cover flange 108 for assembly with shell 12 by bolts (not shown) passing through shell cover flange 108 and opposing shell flange 102.
  • Floating head assembly 104 comprises a floating head cover 110 having a floating head flange 112 and two horizontal partition plates 114 and 116. Further provided with floating head assembly 104 is a floating head backing device 118.
  • the floating head backing device 118 is used in conjunction with floating head flange 112 to engage and secure in place tube sheet 120 against floating head cover 110 and to bring horizontal partition plates 114 and 116 in registration with tube sheet 120.
  • the floating head cover 110 serves as a return cover for the tube side fluid. While it is generally preferred to use as a fastener means a backing ring such as the floating head backing device 118 with bolts to secure tube sheet 120 and floating head cover 110 in place, any other suitable means can be used. For example, the floating head cover 110 can be bolted directly onto tube sheet 120 without the assistance of a backing ring.
  • FIG. 6 is a cross sectional view taken along line 6-6 of FIG. 5 showing one face of tube sheet 120.
  • the tubes 15 are affixed to tube sheet 120 by a substantially similar technique to that used for affixing the tubes to tube sheet 16 shown in FIG. 1, FIG. 2, and FIG. 4.
  • Formed in tube sheet 120 are four horizontal partition grooves 122, 124, 126, and 128 which extend horizontally across the face of tube sheet 120 parallel to the horizontal centerline with both ends of each horizontal partition groove intersecting the boundary edge of tube sheet 120.
  • Tube sheet 120 has an imaginary vertical centerline, an imaginary horizontal centerline and a center or longitudinal axis. These imaginary centerlines are defined as lines parallel to the faces of tube sheet 120 that divide the faces of tube sheet 120 into symmetrical halves.
  • the imaginary horizontal centerline divides tube sheet 120 in the horizontal direction and the imaginary vertical centerline divides tube sheet 120 in the vertical direction.
  • the intersection of the horizontal imaginary centerline and the vertical imaginary centerline is also the intersection point of the center axis , which is an imaginary line perpendicular to and passing through the face of tube sheet 120.
  • Center axis runs parallel to tubes 15 that are affixed to both tube sheet 120 and tube sheet 16.
  • the center axis of tube sheet 120 is substantially the same center axis as that of tube sheet 16.
  • the remaining horizontal partition grooves 126 and 128 are horizontal false partition grooves in that they are formed on the face of tube sheet 120 merely to allow for the rotation of tube bundle 14 through an angle of 180° about its center axis, as earlier defined, while still maintaining the same fluid flow distribution through the tubes.
  • FIG. 7 is a cross sectional view taken along line 7-7 of FIG. 5 showing an elevational view of the inside of floating head cover 110.
  • the horizontal partition plates 114 and 116 are fixedly secured inside floating head cover 110 either by welding or casting in place or any other suitable means. These partition plates serve to direct the tube-side fluid flow through the tubes in a specific pattern as determined by the front-end stationary head design.
  • the horizontal partition plates 114 and 116 are positioned so as to be horizontally aligned with the horizontal pass partitions 34 and 36 shown in FIG. 1, FIG. 2, and FIG. 3.
  • the preferred embodiment provides for a six-pass exchanger having an unequal number of tubes per pass. This invention however, can be extended to heat exchangers having any even number of tube-side passes with equal or unequal numbers of tubes per pass.
  • tube-side fluid passing from first chamber 56 of front-end head 28 as shown in FIG. 1, FIG. 2 and FIG. 3 via the associated tubes enters chamber 130.
  • the fluid flow direction is reversed so as to return the fluid to the tubes and to pass the fluid by way of the tubes into second chamber 58 of front-end head 28.
  • the fluid flow changes direction and enters the tubes whereby the fluid passes into chamber 132 in which the fluid is returned to the tubes to pass by way of the tubes into third chamber 60.
  • the fluid makes another change in direction and enters the tubes whereby the fluid passes into chamber 134 by which the fluid is once again returned to the tubes to make a final pass into fourth chamber 62.
  • the condensed fluid exits the chamber via outlet nozzle 32.
  • Table I is provided to show the benefits which can be achieved by using the disclosed invention. Shown in Table I are calculated heat exchanger values for a given flow rate within the tube side of a typical symmetrically oriented six-pass heat exchanger the tube sheet of which is illustrated in FIG. 8 (shown in "Before” column) and for a heat exchanger having an unequal number of tubes per pass as has been illustrated in FIG. 1, FIG. 2 and FIG. 4 (shown in "After” column) both being operated as a vapor condenser.
  • the flow velocity of the entering vapor is substantially higher than the flow velocity of the exiting condensed liquid.
  • a more preferred velocity distribution within the tubes can be obtained.
  • the vapor velocity is lowered and the liquid velocity is increased thus helping to reduce erosion caused by the high vapor velocities and to reduce fouling caused by low liquid velocities.
  • the overall heat transfer coefficient is improved due to an improvement in velocity distribution.

Claims (4)

  1. Rohrbündel-Wärmeaustauscher (10) zur Übertragung von Wärmeenergie von einem Fluid auf ein anderes Fluid, umfassend:
       einen Mantel (12); ein entfernbares Rohrbündel (14) zur Verwendung im Rohrbündel-Wärmeaustauscher (10), der eine erste Rohrplatte (16) mit einer ersten Seitenfläche, einer zweiten Seitenfläche, einer Randkante und eine vertikale Mittellinie umfaßt; eine vertikale Unterteilungsrille (54), die in der ersten Seitenfläche entlang der vertikalen Mittellinie ausgebildet ist, die Randkante an jedem Ende der vertikalen Unterteilungsrille (54) schneidet, wobei die vertikale Unterteilungsrille (54) die erste Seitenfläche in eine erste symmetrische Hälfte und eine zweite symmetrische Hälfte unterteilt; eine horizontale Unterteilungsrille (50), die in der ersten symmetrischen Hälfte der ersten Seitenfläche ausgebildet ist und in senkrechter Richtung zur ersten vertikalen Mittellinie ausgerichtet ist und sich von der vertikalen Unterteilungsrille (54) bis zum Schnittpunkt mit der Randkante erstreckt; eine Mehrzahl von Öffnungen, die in der ersten Rohrplatte (16) in einem symmetrischen Muster ausgebildet sind, wobei die einzelnen Öffnungen mit der ersten Seitenfläche und mit der zweiten Seitenfläche in Verbindung stehen; und eine Mehrzahl von Rohren (15), die in Fluidströmungsverbindung mit der entsprechenden Mehrzahl von Öffnungen stehen und sich von der zweiten Seitenfläche weg erstrecken; einen ersten Kopf (28), der eine Wand mit einer Innenfläche und einer Außenfläche aufweist und eine Einlaßdüse (30) an der Wand umfaßt, die in Verbindung mit der Innenfläche und der Außenfläche zur Aufnahme eines Fluids steht; eine vertikale Unterteilungsplatte (38), die mit der Innenfläche des ersten Kopfes (28) verbunden ist, um das Fluid durch die Mehrzahl von Rohren (15) des entfernbaren Bundels (14) zu leiten; eine horizontale Unterteilungsplatte (36), die sowohl an der Innenfläche des ersten Kopfes (28) als auch an der vertikalen Unterteilungsplatte (38) befestigt ist, um das Fluid durch die Mehrzahl von Rohren (15) des entfernbaren Bündels (14) zu leiten; und eine Auslaßdüse (32) an der Wand, die mit der Innenfläche und der Außenfläche des ersten Kopfes (28) in Verbindung steht und in Fluidstromverbindung mit der Einlaßduse (30) über die Mehrzahl von Rohren (15) verbunden ist; und eine erste Befestigungseinrichtung zur Verbindung des ersten Kopfes (28) mit dem Mantel (12) und zur Befestigung der vertikalen Unterteilungsplatte (38) in Positionsabstimmung mit der vertikalen Unterteilungsplatte (54) der ersten Seitenfläche und zum Befestigen der horizontalen Unterteilungsplatte (36) in Positionsabstimmung mit der horizontalen Unterteilungsrille (50) der ersten symmetrischen Hälfte der ersten Seitenfläche;
       gekennzeichnet durch
       eine horizontale falsche Unterteilungsrille (46), die in der zweiten Hälfte der ersten Seitenfläche in senkrechter Richtung zur vertikalen Mittellinie ausgebildet ist und sich von der vertikalen Unterteilungsrille (54) erstreckt und die Seitenkante schneidet, wobei die horizontale falsche Unterteilungsrille (46) so in der zweiten Hälfte der ersten Seitenfläche positioniert ist, daß beim Drehen der ersten Rohrplatte (16) um einen Winkel von 180° um eine Mittelachse, die senkrecht zur ersten Seitenfläche steht und die vertikale Mittellinie schneidet, die horizontale falsche Unterteilungsrille (46) in der gleichen Stellung positioniert ist wie die horizontale Unterteilungsrille (50) vor der Drehung der ersten Rohrplatte (16) um die Mittelachse um einen Winkel von 180°.
  2. Rohrbündel-Wärmeaustauscher (10) nach Anspruch 1, dadurch gekennzeichnet, daß die horizontale Unterteilungsplatte (50, 52) und die horizontale falsche Unterteilungsrille (48, 46) keine gemeinsame Achse aufweisen.
  3. Rohrbündel-Wärmeaustauscher (10) nach Anspruch 1, wobei das entfernbare Rohrbündel (14) ferner gekennzeichnet ist durch
       eine zweite Rohrplatte (120) mit einer ersten Seitenfläche, einer zweiten Seitenfläche, einer Randkante und einer vertikalen Mittellinie parallel zur ersten vertikalen Mittellinie der ersten Rohrplatte (16),
       eine horizontale Mittellinie, die die zweite Rohrplatte (120) in eine erste symmetrische Hälfte und eine zweite symmetrische Hälfte unterteilt,
       eine zweite horizontale Unterteilungsrille (122), die in der ersten symmetrischen Hälfte der ersten Seitenfläche der zweiten Rohrplatte (120) ausgebildet ist und sich in paralleler Position zur ersten horizontalen Unterteilungsrille (124) der ersten Rohrplatte (16) befindet und sich vollständig quer zur ersten Seitenfläche der zweiten Rohrplatte (120) erstreckt und die Randkante der zweiten Rohrplatte an zwei Stellen schneidet,
       eine zweite horizontale falsche Unterteilungsrille (128), die in der zweiten symmetrischen Hälfte der ersten Seitenfläche der zweiten Rohrplatte parallel zur horizontalen Unterteilungsrille (124) der ersten Seitenfläche der ersten symmetrischen Hälfte der zweiten Rohrplatte (120) ausgebildet ist und sich vollständig quer zur ersten Seitenfläche der zweiten Rohrplatte (120) erstreckt und die Randkante der zweiten Rohrplatte (120) an zwei Stellen schneidet, wobei die zweite horizontale falsche Unterteilungsrille (128) in der zweiten symmetrischen Hälfte der ersten Seitenfläche der zweiten Rohrplatte so positioniert ist, daß beim Drehen der zweiten Rohrplatte (120) um einen Winkel von 180° um eine Mittelachse, die senkrecht zur ersten Seitenfläche verläuft und die vertikale Mittellinie schneidet, die zweite horizontale falsche Unterteilungsrille (128) der zweiten Rohrplatte sich in der gleichen Stellung befindet wie die zweite horizontale Unterteilungsrille (122) der zweiten Rohrplatte vor der Drehung der zweiten Rohrplatte (120) um die Mittelachse um einen Winkel von 180° und
       eine Mehrzahl von Öffnungen, die in der zweiten Rohrplatte (120) in einem symmetrischen Muster ausgebildet sind, wobei die einzelnen Öffnungen eine Verbindung zwischen der ersten Seitenfläche und der zweiten Seitenfläche bilden; und eine Mehrzahl von Rohren (15), die in Fluidströmungsverbindung mit der entsprechenden Mehrzahl von Öffnungen der zweiten Rohrplatte (120) stehen und sich von der zweiten Seitenfläche der zweiten Rohrplatte weg erstrecken.
  4. Rohrbündel-Wärmeaustauscher (10) nach Anspruch 3, ferner gekennzeichnet durch
       einen zweiten Kopf (104), der eine Wand mit einer Innenfläche aufweist und eine zweite horizontale Unterteilungsplatte (122) umfaßt, die an der Innenfläche des zweiten Kopfes (104) befestigt ist, um das Fluid durch die Mehrzahl von Rohren (15) des entfernbaren Rohrbündels (14) zu leiten; und
       zweite Befestigungsmittel zur Verbindung des zweiten Kopfes (104) mit der zweiten Rohrplatte (120) und zur Befestigung der zweiten horizontalen Unterteilungsplatte (122) des zweiten Kopfes (104) in Positionsabstimmung mit der zweiten horizontalen Unterteilungsrille (122) der zweiten Rohrplatte (120).
EP91100895A 1990-01-25 1991-01-24 Wärmetauscher Expired - Lifetime EP0443340B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/470,659 US4972903A (en) 1990-01-25 1990-01-25 Heat exchanger
US470659 1990-01-25

Publications (2)

Publication Number Publication Date
EP0443340A1 EP0443340A1 (de) 1991-08-28
EP0443340B1 true EP0443340B1 (de) 1994-06-22

Family

ID=23868497

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91100895A Expired - Lifetime EP0443340B1 (de) 1990-01-25 1991-01-24 Wärmetauscher

Country Status (9)

Country Link
US (1) US4972903A (de)
EP (1) EP0443340B1 (de)
JP (1) JPH0739916B2 (de)
AT (1) ATE107765T1 (de)
CA (1) CA2024491C (de)
DE (1) DE69102556T2 (de)
DK (1) DK0443340T3 (de)
ES (1) ES2055459T3 (de)
FI (1) FI93774C (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110016367A (zh) * 2019-05-13 2019-07-16 西安交通大学 一种热进料水煤浆煤气化系统

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2036494C (en) * 1990-05-11 1995-06-27 Tai W. Kwok Heat exchanger in an hf alkylation process
US5732688A (en) * 1996-12-11 1998-03-31 Cummins Engine Company, Inc. System for controlling recirculated exhaust gas temperature in an internal combustion engine
DE19719254B4 (de) * 1997-05-07 2005-08-18 Valeo Klimatechnik Gmbh & Co. Kg Sammler eines Wärmetauschers für Kraftfahrzeuge mit Kammerunterteilung aus sich kreuzenden Flachstegen
DE19817659C1 (de) * 1998-04-21 2000-05-11 Centeon Pharma Gmbh Mehrwege-Wärmeaustauscher
JP2001349641A (ja) * 2000-06-07 2001-12-21 Mitsubishi Heavy Ind Ltd 凝縮器および冷凍機
JP3572250B2 (ja) * 2000-10-24 2004-09-29 三菱重工業株式会社 冷凍機用凝縮器
US6422219B1 (en) 2000-11-28 2002-07-23 Detroit Diesel Corporation Electronic controlled engine exhaust treatment system to reduce NOx emissions
US6532763B1 (en) * 2002-05-06 2003-03-18 Carrier Corporation Evaporator with mist eliminator
DE102004021423A1 (de) * 2004-04-30 2005-12-01 Siemens Ag Verfahren und Einrichtung zur Ermittlung der Leistungsfähigkeit eines Wärmetauschers
US6899169B1 (en) 2004-07-02 2005-05-31 Richard D. Cox Plastic heat exchanger
WO2006044448A2 (en) * 2004-10-13 2006-04-27 York International Corporation Falling film evaporator
US7261148B2 (en) * 2005-05-31 2007-08-28 York International Corporation Direct expansion cooler high velocity dished head
DE102006023855A1 (de) * 2006-05-19 2007-11-22 Mahle International Gmbh Abgasrückführeinrichtung
WO2008080085A2 (en) * 2006-12-21 2008-07-03 Johnson Controls Technology Company Falling film evaporator with a hood and a flow distributor
JP2010529399A (ja) * 2007-05-31 2010-08-26 アメリファブ,インコーポレイテッド 調節可能な熱交換器及び使用方法
FR2918904B1 (fr) * 2007-07-20 2011-07-15 Inst Francais Du Petrole Reacteur echangeur a tube baionnette permettant de fonctionner avec des differences de pression de l'ordre de 100 bars entre le cote tube et le cote calandre.
DE102007040793A1 (de) * 2007-08-28 2009-03-05 Behr Gmbh & Co. Kg Wärmetauscher
WO2009089460A2 (en) * 2008-01-09 2009-07-16 International Mezzo Technologies, Inc. Corrugated micro tube heat exchanger
EP2232167A1 (de) 2008-01-11 2010-09-29 Johnson Controls Technology Company Wärmetauscher
US8177932B2 (en) 2009-02-27 2012-05-15 International Mezzo Technologies, Inc. Method for manufacturing a micro tube heat exchanger
AU2010273345B2 (en) 2009-07-16 2013-02-21 Lockheed Martin Corporation Helical tube bundle arrangements for heat exchangers
EP2454548B1 (de) 2009-07-17 2020-04-01 Lockheed Martin Corporation Wärmetauscher und herstellungsverfahren dafür
US20110056664A1 (en) * 2009-09-08 2011-03-10 Johnson Controls Technology Company Vapor compression system
US9777971B2 (en) 2009-10-06 2017-10-03 Lockheed Martin Corporation Modular heat exchanger
US20110290460A1 (en) * 2010-05-28 2011-12-01 Chevron U.S.A. Inc. Multipass tubular heat exchanger and associated pass partition plate, channel cover, and methods
DE102010027338B4 (de) * 2010-07-15 2012-04-05 Benteler Automobiltechnik Gmbh Wärmeaustauscher in einem Kraftfahrzeug
US10209013B2 (en) 2010-09-03 2019-02-19 Johnson Controls Technology Company Vapor compression system
US9670911B2 (en) 2010-10-01 2017-06-06 Lockheed Martin Corporation Manifolding arrangement for a modular heat-exchange apparatus
US9388798B2 (en) 2010-10-01 2016-07-12 Lockheed Martin Corporation Modular heat-exchange apparatus
JP5761960B2 (ja) * 2010-10-29 2015-08-12 三菱重工業株式会社 熱源装置
JP5777370B2 (ja) * 2011-03-30 2015-09-09 三菱重工業株式会社 リボイラ
US9885523B2 (en) * 2013-03-15 2018-02-06 Caloris Engineering, LLC Liquid to liquid multi-pass countercurrent heat exchanger
US9733023B2 (en) 2013-07-31 2017-08-15 Trane International Inc. Return waterbox for heat exchanger
JP6244606B2 (ja) * 2013-08-07 2017-12-13 三菱日立パワーシステムズ環境ソリューション株式会社 熱交換器の補修方法
CN104197750B (zh) * 2014-09-23 2017-11-21 大连葆光节能空调设备厂 楔形管式换热器
US10295266B2 (en) * 2015-07-14 2019-05-21 Holtec International Tubular heat exchanger having multiple shell-side and tube-side fluid passes
KR101859160B1 (ko) 2015-09-01 2018-06-28 주식회사 엘지화학 코폴리카보네이트 및 이의 제조방법
WO2017127790A1 (en) * 2016-01-21 2017-07-27 Fulton Group N.A., Inc. Baffle assembly for a heat exchanger, heat exchanger including the baffle assembly, fluid heating system including the same, and methods of manufacture thereof
NO342528B1 (no) * 2016-01-29 2018-06-11 Sperre Coolers As System for varmeveksling
US10871328B2 (en) 2017-01-30 2020-12-22 Amerifab, Inc. Top loading roof for electric arc, metallurgical or refining furnaces and system thereof
DK3406999T3 (da) * 2017-05-26 2021-02-01 Alfa Laval Olmi S P A Rørkedelvarmeveksler
US20190024980A1 (en) * 2017-07-18 2019-01-24 Amerifab, Inc. Duct system with integrated working platforms
CN108800994B (zh) * 2018-06-15 2022-03-29 淮阴工学院 卧式换热器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2061980A (en) * 1931-12-10 1936-11-24 Griscom Russell Co Heat exchanger
US2213410A (en) * 1938-12-15 1940-09-03 Westinghouse Electric & Mfg Co High pressure closure for pressure vessels
US2492409A (en) * 1946-07-31 1949-12-27 Lummus Co Heat exchanger
US2900173A (en) * 1957-02-18 1959-08-18 Braun & Co C F Pass-rib gasket for heat exchanger
GB1081991A (en) * 1963-03-06 1967-09-06 J & E Hall Ltd Improvements in and relating to shell and tube heat exchangers
US4105065A (en) * 1977-03-07 1978-08-08 Ecodyne Corporation Heat exchanger
DE3110489C2 (de) * 1981-03-18 1984-07-19 Kühlerfabrik Längerer & Reich GmbH & Co KG, 7024 Filderstadt Wärmeaustauscher

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110016367A (zh) * 2019-05-13 2019-07-16 西安交通大学 一种热进料水煤浆煤气化系统

Also Published As

Publication number Publication date
DE69102556T2 (de) 1994-10-13
DE69102556D1 (de) 1994-07-28
DK0443340T3 (da) 1994-08-22
CA2024491C (en) 1994-03-15
JPH0739916B2 (ja) 1995-05-01
FI93774C (fi) 1995-05-26
CA2024491A1 (en) 1991-07-26
FI910369A0 (fi) 1991-01-24
US4972903A (en) 1990-11-27
ATE107765T1 (de) 1994-07-15
FI93774B (fi) 1995-02-15
JPH04214191A (ja) 1992-08-05
ES2055459T3 (es) 1994-08-16
FI910369A (fi) 1991-07-26
EP0443340A1 (de) 1991-08-28

Similar Documents

Publication Publication Date Title
EP0443340B1 (de) Wärmetauscher
US5386073A (en) HF alkylation process
US7219718B2 (en) Reduced vibration tube bundle device
US6808017B1 (en) Heat exchanger
EP1061319B1 (de) Flüssigkeitsführendes Rohr und seine Verwendung in einem Kraftfahrzeugkühler
EP2577207A2 (de) Röhrenförmiger multipass-wärmetauscher sowie zugehörige durchgangspartitionsplatte, kanalabdeckung und verfahren dafür
EP0030012B1 (de) Verfahren zur Verbesserung des Wärmeübertragungs-Koeffizienten, Verfahren zur Herstellung eines Rohrbündels und Vorrichtung mit einer Vielzahl von parallelen Rohren
US4289198A (en) Heat exchanger
EP1347261B1 (de) Wärmetauscher mit verringerter Verschmutzung
GB2095389A (en) Shell and tube exchanger
US5894883A (en) Shell and tube heat exchanger
EP0117820B1 (de) Segmentlenkbleche für einen Hochleistungs-Mantel-mit-Rohren-Wärmetauscher
US4413394A (en) Method of constructing a tube bundle
EP0706415B1 (de) Mehrzelliges heizungssystem
KR100494185B1 (ko) 실리콘 카바이드 튜브가 구비된 열교환기
WO2015048013A1 (en) Heat exchanger
US20230013237A1 (en) Deflector And Grid Support Assemblies For Use In Heat Exchangers And Heat Exchangers Having Such Assemblies Therein
KR20240051934A (ko) 열교환기용 디플렉터 및 그리드 서포트 어셈블리 및 해당 어셈블리를 가지는 열교환기
WO2002029349A1 (en) Heat exchanger
CN112334730A (zh) 热交换器
GB2284472A (en) Spirally wound plate heat exchanger
Razi et al. Review of Helical Baffle Component Design and Analysis of Shell and Tube Heat Exchanger
JPH01300195A (ja) 伝熱管支持構造
CS269165B1 (cs) Výměník tepla
AU6921094A (en) Multi-cell heating system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE DK ES FR GB GR IT NL SE

17P Request for examination filed

Effective date: 19920130

17Q First examination report despatched

Effective date: 19930223

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE DK ES FR GB GR IT NL SE

REF Corresponds to:

Ref document number: 107765

Country of ref document: AT

Date of ref document: 19940715

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69102556

Country of ref document: DE

Date of ref document: 19940728

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2055459

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3013328

EAL Se: european patent in force in sweden

Ref document number: 91100895.1

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001211

Year of fee payment: 11

Ref country code: DK

Payment date: 20001211

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20001212

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20001222

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010103

Year of fee payment: 11

Ref country code: FR

Payment date: 20010103

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010126

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20010129

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010326

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020124

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020125

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

BERE Be: lapsed

Owner name: PHILLIPS PETROLEUM CY

Effective date: 20020131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020801

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020812

EUG Se: european patent has lapsed

Ref document number: 91100895.1

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020801

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050124