EP0438971B1 - Coated metallic substrate - Google Patents

Coated metallic substrate Download PDF

Info

Publication number
EP0438971B1
EP0438971B1 EP90810867A EP90810867A EP0438971B1 EP 0438971 B1 EP0438971 B1 EP 0438971B1 EP 90810867 A EP90810867 A EP 90810867A EP 90810867 A EP90810867 A EP 90810867A EP 0438971 B1 EP0438971 B1 EP 0438971B1
Authority
EP
European Patent Office
Prior art keywords
substrate
layer
melting
protective layer
sigma phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90810867A
Other languages
German (de)
French (fr)
Other versions
EP0438971A1 (en
Inventor
James Dr. Simpson
Roger Dr. Dekumbis
Michel Dr. Les Hauts De Garenne Pierantoni
Roberto Busin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Markets and Technology AG
Original Assignee
Sulzer Innotec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Innotec AG filed Critical Sulzer Innotec AG
Priority to AT9090810867T priority Critical patent/ATE105594T1/en
Publication of EP0438971A1 publication Critical patent/EP0438971A1/en
Application granted granted Critical
Publication of EP0438971B1 publication Critical patent/EP0438971B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the invention relates to a coated metallic substrate according to the preamble of claim 1 and - according to claim 6 - a method for producing such a coated substrate.
  • JP-A-61-253 357 a method is known in which a substrate made of steel is thermally coated with metals such as Cu, Ni, Co, Cr, Ti or Mo or their alloys.
  • the adhesion of the coating is improved with laser treatment, although this results in reduced hardness.
  • a thermal aftertreatment is carried out by heating the coated substrate to a temperature in the range from 200 to 700 ° C. and then cooling it again with air.
  • the object of the invention is to create and produce a protective layer for a metallic substrate, which has a high hardness of at least 800 HV0.1. This object is solved by the characterizing features of claims 1 and 6, respectively.
  • the protective effect is achieved by the formation of a sigma phase, the proportion of which is at least 5% by volume in order to achieve the required minimum hardness, and by its high chromium (or chromium and molybdenum) content.
  • the sigma phase contains approximately 55% iron and 45% chromium; it is characterized by high hardness and very low plastic deformability.
  • too other phases such as Chi, Alpha-prime and Gamma-prime, and excretions, such as carbides and nitrides, contribute to the increased hardness.
  • the proportion of the sigma phase in the structure is increased; this can advantageously be, for example, at least 50% by volume.
  • the layer material is blown into the melt bath as a powder through a nozzle, the layer material being remelted at the same time and metallurgically bonded to the substrate;
  • the layer material can also be supplied as a rod or wire.
  • precoat the substrate with the layer material and then to connect the two materials to one another metallurgically by remelting.
  • the precoating is advantageously carried out galvanically or by a thermal spraying process, such as, for example, vacuum plasma spraying CVD or PVD.
  • a thermal spraying process such as, for example, vacuum plasma spraying CVD or PVD.
  • the melting and remelting can be carried out, for example, with a laser beam or an arc.
  • a laser beam or an arc With pre-coated substrates it is also possible to use an electron beam as the energy source for the melting.
  • the substrate can optionally be preheated before the precoating and / or before the melting process.
  • the heat treatment to form the sigma phase is carried out at about 700 ° C. for at least six hours.
  • the surface of the substrate to be coated is first degreased and galvanically coated with an approximately 80 ⁇ m thick coating of pure chrome.
  • the galvanically chromed substrate is then subjected to a heat treatment in air at about 200 ° C. for 4 to 6 hours.
  • the protective layer is produced by remelting the chrome-plated surface using a laser beam.
  • a laser beam with a power of 1500 W and a beam diameter on the surface to be remelted of 1.23 mm - which results in a power density of 1260 W / mm2 - is row by row under a helium protective gas atmosphere with a lateral offset of 0.2 mm per line performed in three passes over the surface of the chromium-plated substrate to be remelted, the feed speeds being 1900, 1500 and 1000 mm / min; from this, exposure times of 31, 39 and 58 ms can be calculated, which, in this case, results in a cooling rate of at least 2000 K / sec given the total mass of the substrate used and its thermal conductivity.
  • the multiple melting serves the purpose of the protective layer metallurgically connected to the substrate by the melting, which after the melting has the required composition of about 45% chromium and 55% iron in addition has low proportions of carbon, silicon, manganese and other trace elements from the steel St37.
  • the layer After the laser treatment, the layer has an intermediate hardness of HV0.1 240-260 and its structure does not contain a sigma phase.
  • a partial transformation of the structure into a sigma phase is achieved by a subsequent heat treatment, which is carried out at about 700 ° C. in an oven in air for about 12 hours, with neither the heating rate nor the cooling rate being critical parameters; it is only necessary to ensure that the necessary holding time at the treatment temperature is observed.
  • the protective layer has proven to be particularly resistant to corrosion, which is confirmed by corrosion tests in 5% NaCl, whereby the resistance to local forms of corrosion (pitting or crevice corrosion) after heat treatment is better than that of austenitic stainless steel DIN 1.4435 (X2 CrNiMo 18 12. AISI 316L); the critical pitting temperatures determined were for a Fe-44% Cr heat-treated, laser-remelted protective layer on St 37 or for a 1.4435 stainless steel 16 or 11.5 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Heat Treatment Of Articles (AREA)
  • Chemically Coating (AREA)

Abstract

A protective layer for a metal substrate is metallurgically bonded to the substrate and contains (as a percentage by mass) 35 to 50% chromium, up to 10% of which can be replaced by molybdenium, and at least iron, the proportion of iron being at least 25%. The minimum hardness is 800 HVO.1, obtained by a structure having a minimum content of 5% by volume as sigma phase. The sigma phase is obtained by heat-treatment of the coated substrate. The protective layer is particularly resistant to corrosion and also has good resistance to erosion and wear.

Description

Die Erfindung betrifft ein beschichtetes metallisches Substrat gemäss Oberbegriff von Anspruch 1 sowie - gemäss Anspruch 6 - ein Verfahren zum Herstellen eines derartigen beschichteten Substrats.The invention relates to a coated metallic substrate according to the preamble of claim 1 and - according to claim 6 - a method for producing such a coated substrate.

Aus der JP-A-61-253 357 ist ein Verfahren bekannt, bei dem ein Substrat aus Stahl mit Metallen wie Cu, Ni, Co, Cr, Ti oder Mo oder deren Legierungen thermisch beschichtet wird. Mit einer Laserbehandlung wird die Haftung der Beschichtung verbessert, wobei sich allerdings eine verringerte Härte ergibt. Zur Verbesserung der Härte wird eine thermische Nachbehandlung durchgeführt, indem das beschichtete Substrat auf eine Temperatur im Bereich von 200 - 700°C aufgewärmt und anschliessend mit Luft wieder abgekühlt wird.From JP-A-61-253 357 a method is known in which a substrate made of steel is thermally coated with metals such as Cu, Ni, Co, Cr, Ti or Mo or their alloys. The adhesion of the coating is improved with laser treatment, although this results in reduced hardness. To improve the hardness, a thermal aftertreatment is carried out by heating the coated substrate to a temperature in the range from 200 to 700 ° C. and then cooling it again with air.

Aufgabe der Erfindung ist, eine Schutzschicht für ein metallisches Substrat zu schaffen und herzustellen, die eine hohe Härte von mindestens 800 HV0.1 aufweist. Diese Aufgabe wird durch die kennzeichnenden Merkmale der Ansprüche 1 bzw. 6 gelöst.The object of the invention is to create and produce a protective layer for a metallic substrate, which has a high hardness of at least 800 HV0.1. This object is solved by the characterizing features of claims 1 and 6, respectively.

Die Schutzwirkung wird erreicht durch die Ausbildung einer Sigma-Phase, deren Anteil mindestens 5 Vol.-% beträgt, um die geforderte Mindesthärte zu erreichen, und durch ihren hohen Chrom (oder Chrom und Molybdän) -Gehalt. Die Sigma-Phase enthält circa 55 % Eisen und 45% Chrom; sie zeichnet sich durch hohe Härte und sehr geringe plastische Verformbarkeit aus. Neben der Sigma-Phase können - nach geeigneten Wärmebehandlungen - auch andere Phasen, wie Chi, Alpha-prime und Gamma-prime und Ausscheidungen, wie Karbide und Nitride, zu der erhöhten Härte beitragen.The protective effect is achieved by the formation of a sigma phase, the proportion of which is at least 5% by volume in order to achieve the required minimum hardness, and by its high chromium (or chromium and molybdenum) content. The sigma phase contains approximately 55% iron and 45% chromium; it is characterized by high hardness and very low plastic deformability. In addition to the sigma phase, after suitable heat treatments, too other phases, such as Chi, Alpha-prime and Gamma-prime, and excretions, such as carbides and nitrides, contribute to the increased hardness.

Unter Wahrung des vorgeschriebenen Minimalanteils an Eisen können andere Elemente das Eisen teilweise ersetzen, um bestimmte Wirkungen zu erreichen. So bewirkt beispielsweise eine Zugabe von Kohlenstoff eine Erhöhung der Umwandlungsgeschwindigkeit, d.h. der Bildung der Sigma-Phase; andere Elemente, wie Silizium, Niob und Titan fördern die Ausbildung der Sigma-Phase ebenfalls, insbesondere bei relativ niedrigem Chrom-Gehalt.While maintaining the prescribed minimum amount of iron, other elements can partially replace the iron in order to achieve certain effects. For example, adding carbon increases the rate of conversion, i.e. the formation of the sigma phase; other elements, such as silicon, niobium and titanium also promote the formation of the sigma phase, in particular if the chromium content is relatively low.

Soll die maximale Mindesthärte der Schutzschicht, die aus einer oder mehreren Lagen bestehen kann, erhöht werden, so erhöht man den Anteil der Sigma-Phase an den Gefügen; diese kann mit Vorteil beispielsweise mindestens 50 Vol.-% betragen.If the maximum minimum hardness of the protective layer, which can consist of one or more layers, is increased, the proportion of the sigma phase in the structure is increased; this can advantageously be, for example, at least 50% by volume.

Eine gute Haftung der Schutzschicht, die zweckmässigerweise Schichtdicken zwischen 0,1 und 3 mm aufweisen kann, wird erreicht, wenn Schicht und Substrat metallurgisch verbunden sind. Als Substrat eigenen sich alle Metalle mit ausreichend hohem Schmelzpunkt; bevorzugt werden als Subtrate Eisen-Basislegierungen verwendet.Good adhesion of the protective layer, which can expediently have layer thicknesses between 0.1 and 3 mm, is achieved if the layer and the substrate are metallurgically bonded. All metals are suitable as substrates with a sufficiently high melting point; iron base alloys are preferably used as substrates.

Für die Herstellung der Schutzschicht hat es sich besonders bewährt, wenn das Schichtmaterial als Pulver durch eine Düse in das Schmelzbad eingeblasen wird, wobei das Schichtmaterial gleichzeitig umgeschmolzen und mit dem Substrat metallurgisch verbunden wird; selbstverständlich kann das Schichtmaterial dabei auch als Stange oder Draht zugeführt werden.For the production of the protective layer, it has proven particularly useful if the layer material is blown into the melt bath as a powder through a nozzle, the layer material being remelted at the same time and metallurgically bonded to the substrate; Of course, the layer material can also be supplied as a rod or wire.

Es ist weiterhin auch möglich, das Substrat mit dem Schichtmaterial vorzubeschichten und anschliessend beide Materialien durch Umschmelzen metallurgisch miteinander zu verbinden. Die Vorbeschichtung erfolgt dabei vorteilhafterweise galvanisch oder durch ein thermisches Spritzverfahren, wie beispielsweise durch Vakuum-Plasmaspritzen CVD oder PVD. Schliesslich ist es noch möglich, die Oberfläche des Substrates einfach mit dem Schichtmaterial in Form von Pulver, Draht, dünnen Streifen oder Plättchen zu "belegen", wobei der Belag dann gemeinsam mit der Substrat-Oberfläche aufgeschmolzen wird.It is furthermore also possible to precoat the substrate with the layer material and then to connect the two materials to one another metallurgically by remelting. The precoating is advantageously carried out galvanically or by a thermal spraying process, such as, for example, vacuum plasma spraying CVD or PVD. Finally, it is still possible to simply "coat" the surface of the substrate with the layer material in the form of powder, wire, thin strips or platelets, the covering then being melted together with the substrate surface.

Bei der Zuführung des Schichtmaterials als Pulver, Draht oder Stange kann das Auf- und Umschmelzen beispielsweise mit einem Laserstrahl oder einem Lichtbogen durchgeführt werden. Bei vorbeschichteten Substraten ist es zusätzlich auch möglich, als Energiequelle für das Schmelzen einen Elektronenstrahl zu benutzen. Weiterhin kann das Substrat gegebenenfalls vor der Vorbeschichtung und/oder vor dem Schmelzverfahren vorgewärmt werden.When the layer material is fed in as powder, wire or rod, the melting and remelting can be carried out, for example, with a laser beam or an arc. With pre-coated substrates it is also possible to use an electron beam as the energy source for the melting. Furthermore, the substrate can optionally be preheated before the precoating and / or before the melting process.

Schliesslich ist es vorteilhaft, wenn die Wärmebehandlung zur Ausbildung der Sigma-Phase bei etwa 700° C während mindestens sechs Stunden durchgeführt wird.Finally, it is advantageous if the heat treatment to form the sigma phase is carried out at about 700 ° C. for at least six hours.

Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels näher erläutert.The invention is explained in more detail below using an exemplary embodiment.

Zu beschichten ist ein Substrat aus Kohlenstoff-Stahl St 37 mit einer 0,15 bis 0,2 mm dicken Schicht, die neben Eisen etwa 45 % Chrom enthält.To be coated is a substrate made of carbon steel St 37 with a 0.15 to 0.2 mm thick layer that contains about 45% chromium in addition to iron.

Die zu beschichtende Oberfläche des Substrates wird zunächst entfettet und galvanisch mit einem etwa 80 µm dicken Belag aus reinem Chrom versehen. Um in der späteren Schutzschicht Gaseinschlüsse zu vermeiden, wird das galvanisch verchromte Substrat anschliessend einer Wärmebehandlung in Luft bei etwa 200° C für 4 bis 6 Stunden unterworfen.The surface of the substrate to be coated is first degreased and galvanically coated with an approximately 80 µm thick coating of pure chrome. In order to avoid gas inclusions in the later protective layer, the galvanically chromed substrate is then subjected to a heat treatment in air at about 200 ° C. for 4 to 6 hours.

Die Herstellung der Schutzschicht erfolgt durch Umschmelzen der verchromten Oberfläche mit Hilfe eines Laserstrahls. Ein Laserstrahl mit einer Leistung von 1500 W und einem Strahldurchmesser auf der umzuschmelzenden Oberfläche von 1,23 mm - was eine Leistungsdichte von 1260 W/mm² ergibt - wird unter einer Helium-Schutzgasatmosphäre mit je einer seitlichen Versetzung von 0,2 mm pro Zeile zeilenweise in drei Durchgängen über die umzuschmelzende Oberfläche des verchromten Substrates geführt, wobei die Vorschubgeschwindigkeiten 1900, 1500 und 1000 mm/min betragen; daraus lassen sich Einwirkzeiten von 31, 39 und 58 ms errechnen, was bei der Gesamtmasse des verwendeten Substrates und dessen Wärmeleitfähigkeit in diesem Fall eine Abkühlgeschwindigkeit von mindestens 2000 K/sec ergibt.The protective layer is produced by remelting the chrome-plated surface using a laser beam. A laser beam with a power of 1500 W and a beam diameter on the surface to be remelted of 1.23 mm - which results in a power density of 1260 W / mm² - is row by row under a helium protective gas atmosphere with a lateral offset of 0.2 mm per line performed in three passes over the surface of the chromium-plated substrate to be remelted, the feed speeds being 1900, 1500 and 1000 mm / min; from this, exposure times of 31, 39 and 58 ms can be calculated, which, in this case, results in a cooling rate of at least 2000 K / sec given the total mass of the substrate used and its thermal conductivity.

Das mehrfache Aufschmelzen dient dazu, die durch das Umschmelzen mit dem Substrat metallurgisch verbundene Schutzschicht, die nach dem Umschmelzen die geforderte Zusammensetzung von etwa 45 % Chrom und 55 % Eisen neben geringen Anteilen von Kohlenstoff, Silizium, Mangan und anderen Spurenelementen aus dem Stahl St37 aufweist, zu homogenisieren. Nach der Laserbehandlung hat die Schicht als Zwischenprodukt eine Härte von HV0.1 240-260 und ihr Gefüge enthält keine Sigma-Phase.The multiple melting serves the purpose of the protective layer metallurgically connected to the substrate by the melting, which after the melting has the required composition of about 45% chromium and 55% iron in addition has low proportions of carbon, silicon, manganese and other trace elements from the steel St37. After the laser treatment, the layer has an intermediate hardness of HV0.1 240-260 and its structure does not contain a sigma phase.

Eine teilweise Umwandlung des Gefüges in eine Sigma-Phase wird durch eine anschliessende Wärmebehandlung, die bei etwa 700° C in einem Ofen in Luft für etwa 12 Stunden durchgeführt wird, erreicht, wobei weder die Aufheizgeschwindigkeit noch die Abkühlgeschwindigkeit kritische Parameter sind; es ist lediglich darauf zu achten, dass die notwendige Haltezeit bei Behandlungstemperatur eingehalten wird.A partial transformation of the structure into a sigma phase is achieved by a subsequent heat treatment, which is carried out at about 700 ° C. in an oven in air for about 12 hours, with neither the heating rate nor the cooling rate being critical parameters; it is only necessary to ensure that the necessary holding time at the treatment temperature is observed.

In metallurgischen Untersuchungen ist bei der so behandelten Schutzschicht ein Anteil von mehr als 80 Vol.-% an Sigma-Phase ermittelt worden; die Härte der Schicht beträgt HV0.1 1200-1400.In metallurgical investigations, a proportion of more than 80% by volume of sigma phase was determined in the protective layer treated in this way; the hardness of the layer is HV0.1 1200-1400.

Die Schutzschicht hat sich als besonders widerstandsfähig gegen Korrosion erwiesen, was belegt wird durch Korrosionsprüfungen in 5% NaCl, wobei die Beständigkeit gegen lokale Korrosionsformen (Lochfrass oder Spaltkorrosion) nach der Wärmebehandlung besser ist als bei austenitischem rostfreien Stahl DIN 1.4435 (X2 CrNiMo 18 12. AISI 316L); die ermittelten kritischen Lochfrasstemperaturen waren für eine Fe-44%Cr wärmebehandelte, laserumgeschmolzene Schutzschicht auf St 37 bzw. für einen 1.4435 rostfreien Stahl 16 bzw. 11,5° C.The protective layer has proven to be particularly resistant to corrosion, which is confirmed by corrosion tests in 5% NaCl, whereby the resistance to local forms of corrosion (pitting or crevice corrosion) after heat treatment is better than that of austenitic stainless steel DIN 1.4435 (X2 CrNiMo 18 12. AISI 316L); the critical pitting temperatures determined were for a Fe-44% Cr heat-treated, laser-remelted protective layer on St 37 or for a 1.4435 stainless steel 16 or 11.5 ° C.

Claims (12)

  1. A coated metal substrate having a coating for protection more particularly against corrosion, erosion and/or wear, characterised in that the protective coating has a minimum hardness of 800 HVO.1 as a result of the formation of very hard phases, mainly a sigma phase, and that it is composed of the following elements (in mass-%):
    35 - 50% chromium (Cr) + molybdenum (Mo), with an Mo content of 0 - 10%, at least 25% iron (Fe) remainder Fe and/or at least one of the following elements:
    Figure imgb0002
  2. A coated substrate according to claim 1 or 2, characterised in that thickness of the protective layer is 0.1 to 3 mm.
  3. A coated substrate according to claim 1 or 2, characterised in that at least 5% by volume of the layer is present in the form of a sigma phase.
  4. A coated substrate according to any of claims 1 to 3, characterised in that the proportion of sigma phase is at least 50% by volume.
  5. A coated substrate according to any of claims 1 to 4, characterised in that the layer and the substrate are metallurgically bonded to one another.
  6. A method of producing a coated substrate according to any one of claims 1 to 5, in which method the coating material together with the substrate surface for coating is melted by means of a thermal melting process and then heat-treated after cooling to at least a temperature of 500°C, characterised in that after melting cooling is carried out at a minimum cooling rate of 100 K/sec to at least 500°C, a metallurgically bonded protective layer being produced having a hardness less than 500 HVO.1, and the protective layer is then heat-treated at a temperature of 950°C maximum until the hardness is at least 800 HVO.1.
  7. A method according to claim 6, characterised in that the layer material is blown in the form of a powder through a nozzle into the melt, the layer material being simultaneously melted and metallurgically bonded to the substrate.
  8. A method according to claim 6, characterised in that the substrate is precoated with the layer material and subsequently the two materials are metallurgically bonded to one another by melting.
  9. A method according to any of claims 6 to 8, characterised in that fusion or melting is brought about by a laser beam or an electron beam or an arc.
  10. A method according to claim 8 or 9, characterised in that the substrate is preheated before precoating.
  11. A method according to any of claims 8 to 10, characterised in that the substrate is precoated galvanically or by a thermal spray process.
  12. A method according to any of claims 6 to 11, characterised in that the heat treatment is carried out at a temperature of 700 ± 25°C, kept up for at least 6 hours.
EP90810867A 1990-01-22 1990-11-12 Coated metallic substrate Expired - Lifetime EP0438971B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT9090810867T ATE105594T1 (en) 1990-01-22 1990-11-12 COATED METALLIC SUBSTRATE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH18190 1990-01-22
CH181/90 1990-01-22

Publications (2)

Publication Number Publication Date
EP0438971A1 EP0438971A1 (en) 1991-07-31
EP0438971B1 true EP0438971B1 (en) 1994-05-11

Family

ID=4181121

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90810867A Expired - Lifetime EP0438971B1 (en) 1990-01-22 1990-11-12 Coated metallic substrate

Country Status (6)

Country Link
US (1) US5230755A (en)
EP (1) EP0438971B1 (en)
JP (1) JP3065674B2 (en)
AT (1) ATE105594T1 (en)
DE (1) DE59005683D1 (en)
ES (1) ES2053163T3 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198268A (en) * 1991-11-14 1993-03-30 Xaloy, Incorporated Method for preparing a feed screw for processing plastics
WO1995029274A1 (en) * 1994-04-26 1995-11-02 Igenwert Gmbh Process for incorporating material into the surface of a solid body and altering it, in particular the surface of a material
US6350326B1 (en) 1996-01-15 2002-02-26 The University Of Tennessee Research Corporation Method for practicing a feedback controlled laser induced surface modification
DE19740696A1 (en) * 1997-09-16 1999-03-18 Bayerische Motoren Werke Ag Method for producing and treating metal layers
DK1045175T3 (en) * 1999-04-12 2007-02-19 Waertsilae Nsd Schweiz Ag Outer Thread
US6294225B1 (en) 1999-05-10 2001-09-25 The University Of Tennessee Research Corporation Method for improving the wear and corrosion resistance of material transport trailer surfaces
US6299707B1 (en) 1999-05-24 2001-10-09 The University Of Tennessee Research Corporation Method for increasing the wear resistance in an aluminum cylinder bore
US6173886B1 (en) 1999-05-24 2001-01-16 The University Of Tennessee Research Corportion Method for joining dissimilar metals or alloys
US6497985B2 (en) 1999-06-09 2002-12-24 University Of Tennessee Research Corporation Method for marking steel and aluminum alloys
US6423162B1 (en) 1999-07-02 2002-07-23 The University Of Tennesse Research Corporation Method for producing decorative appearing bumper surfaces
US6284067B1 (en) 1999-07-02 2001-09-04 The University Of Tennessee Research Corporation Method for producing alloyed bands or strips on pistons for internal combustion engines
US6229111B1 (en) 1999-10-13 2001-05-08 The University Of Tennessee Research Corporation Method for laser/plasma surface alloying
US6328026B1 (en) 1999-10-13 2001-12-11 The University Of Tennessee Research Corporation Method for increasing wear resistance in an engine cylinder bore and improved automotive engine
JP2004342845A (en) * 2003-05-15 2004-12-02 Kobe Steel Ltd Cleaning device for fine structure body
US7141110B2 (en) * 2003-11-21 2006-11-28 General Electric Company Erosion resistant coatings and methods thereof
US20050112399A1 (en) * 2003-11-21 2005-05-26 Gray Dennis M. Erosion resistant coatings and methods thereof
US7458358B2 (en) * 2006-05-10 2008-12-02 Federal Mogul World Wide, Inc. Thermal oxidation protective surface for steel pistons
JP2013241635A (en) * 2012-05-18 2013-12-05 National Institute Of Advanced Industrial Science & Technology Iron chromium alloy
BR102014016213A2 (en) * 2014-06-30 2016-02-10 Mahle Int Gmbh internal combustion engine valve and process for obtaining a valve
CN104894560A (en) * 2015-04-27 2015-09-09 苏州统明机械有限公司 Metal surface strong oxidation resistant coating and preparation method thereof
CN113549915B (en) * 2021-06-16 2023-01-24 太原理工大学 Wear-resistant composite coating for toothed rail of mining scraper conveyor and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0266149A2 (en) * 1986-10-27 1988-05-04 Hitachi, Ltd. High wear-resistant member, method of producing the same, and valve gear using the same for use in internal combustion engine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3187717A (en) * 1957-06-12 1965-06-08 Gen Motors Corp Method of coating aluminum
LU63431A1 (en) * 1971-06-29 1973-01-22
DE2200003B2 (en) * 1972-01-03 1977-09-15 Karl Schmidt Gmbh, 7107 Neckarsulm PROCESS FOR SURFACE FINISHING OF LIGHT ALLOY PISTONS
US4015100A (en) * 1974-01-07 1977-03-29 Avco Everett Research Laboratory, Inc. Surface modification
US4212900A (en) * 1978-08-14 1980-07-15 Serlin Richard A Surface alloying method and apparatus using high energy beam
US4451299A (en) * 1982-09-22 1984-05-29 United Technologies Corporation High temperature coatings by surface melting
DE3715325A1 (en) * 1987-05-08 1988-11-24 Castolin Sa METHOD FOR PRODUCING SLIDING SURFACES ON PARTS OF VEHICLE ENGINES
GB8719716D0 (en) * 1987-08-20 1987-09-30 Whitford Plastics Ltd Thermal spraying of stainless steel
US5093207A (en) * 1988-04-23 1992-03-03 Glyco Aktiengesellschaft Laminate material or laminate workpiece with a functional layer, especially a friction bearing layer, disposed on a backing layer
JPH01319658A (en) * 1988-06-20 1989-12-25 Sumitomo Metal Ind Ltd Surface hardening method for titanium product
DE3821896A1 (en) * 1988-06-25 1989-12-28 Castolin Sa Pulverulent metal-containing material and process therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0266149A2 (en) * 1986-10-27 1988-05-04 Hitachi, Ltd. High wear-resistant member, method of producing the same, and valve gear using the same for use in internal combustion engine

Also Published As

Publication number Publication date
ATE105594T1 (en) 1994-05-15
EP0438971A1 (en) 1991-07-31
JPH04214879A (en) 1992-08-05
ES2053163T3 (en) 1994-07-16
US5230755A (en) 1993-07-27
DE59005683D1 (en) 1994-06-16
JP3065674B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
EP0438971B1 (en) Coated metallic substrate
DE2632739C3 (en) Process for the thermal spraying of a self-adhesive nickel-aluminum or nickel-titanium coating on a metal substrate
DE69218061T2 (en) Maintenance of workpieces made of corroded super alloys or corroded heat-resistant steel and parts repaired in this way
EP0915184B1 (en) Process for producing a ceramic layer on a metallic substrate
EP1851352B1 (en) Coated steel plate
DE3839775C2 (en) Cathode sputtering target and process for its manufacture
DE69102420T2 (en) PLASMA SPRAYING OF FAST-SOLID ALUMINUM BASE ALLOYS.
DE2829369B2 (en) Process for forming hard, wear-resistant coatings containing metallic carbides
DE3030961A1 (en) COMPONENTS OF SUPER ALLOYS WITH AN OXIDATION AND / OR SULFIDATION RESISTANT COATING AND COMPOSITION OF SUCH A COATING.
WO2012000742A1 (en) Process for producing an adhesion- and scratch-resistant protective layer on a metallic workpiece
DE1521369B2 (en) POWDER-SHAPED, SELF-FLOWING FLAME INJECTION COMPOUND
DE2744189A1 (en) METHOD FOR IMPROVING THE WEAR PROPERTIES OF IRON METAL PARTS
DE60216751T2 (en) METAL ZIRCONIUM COMPOSITE COATING
DE102012013020B3 (en) Function layer comprises an iron based alloy having a martensitic structure, and alloy components indicated in characteristics consisting of nickel equivalent and chromium equivalent
DE4203869A1 (en) HIGHLY DURABLE, COATED COMPONENTS FROM THE INTERMETALLIC PHASE TITANIUM ALUMINID AS A MATERIAL
DE19935164C2 (en) Process for simultaneous cleaning and flux treatment of aluminum engine block cylinder bore surfaces for fastening thermally sprayed coatings
CH616960A5 (en) Components resistant to high-temperature corrosion.
DE19722023B4 (en) Surface treated ferrous material and process for surface treatment of ferrous material
EP3877564A1 (en) Hardened component, comprising a steel substrate and an anti-corrosion coating, corresponding component for producing the hardened component, production method, and use
DE102007016411B4 (en) Molybdenum semi-finished product provided with a protective layer and method for its production
AT400726B (en) METAL COMPONENT FOR USE IN A METAL BATH
DE3715327C2 (en)
EP0352220B1 (en) Surface coating with an aluminium based alloy
EP0571796B1 (en) Surface protective coating and process for the manufacture thereof
DE69022064T2 (en) METHOD FOR CHANGING A SURFACE AREA OF A WORKPIECE.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

17Q First examination report despatched

Effective date: 19930430

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SULZER INNOTEC AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 105594

Country of ref document: AT

Date of ref document: 19940515

Kind code of ref document: T

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940506

REF Corresponds to:

Ref document number: 59005683

Country of ref document: DE

Date of ref document: 19940616

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2053163

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20021017

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20021029

Year of fee payment: 13

Ref country code: AT

Payment date: 20021029

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021030

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021104

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021111

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20021114

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021115

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031112

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

BERE Be: lapsed

Owner name: *SULZER INNOTEC A.G.

Effective date: 20031130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040602

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040730

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051112