EP0434980B1 - Device for spraying liquid or solid materials, preferably melted metals - Google Patents

Device for spraying liquid or solid materials, preferably melted metals Download PDF

Info

Publication number
EP0434980B1
EP0434980B1 EP90122347A EP90122347A EP0434980B1 EP 0434980 B1 EP0434980 B1 EP 0434980B1 EP 90122347 A EP90122347 A EP 90122347A EP 90122347 A EP90122347 A EP 90122347A EP 0434980 B1 EP0434980 B1 EP 0434980B1
Authority
EP
European Patent Office
Prior art keywords
fluid
nozzles
pulverizing
fluid jet
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90122347A
Other languages
German (de)
French (fr)
Other versions
EP0434980A2 (en
EP0434980A3 (en
Inventor
Klaus Prof. Dr.-Ing. Bauckhage
Peter Dipl.-Ing. Schreckenberg
Hermann Dr. Phil. Vetters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Branson Ultraschall Niederlassung der Emerson Technologies GmbH and Co OHG
Original Assignee
Branson Ultraschall Niederlassung der Emerson Technologies GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Branson Ultraschall Niederlassung der Emerson Technologies GmbH and Co OHG filed Critical Branson Ultraschall Niederlassung der Emerson Technologies GmbH and Co OHG
Publication of EP0434980A2 publication Critical patent/EP0434980A2/en
Publication of EP0434980A3 publication Critical patent/EP0434980A3/en
Application granted granted Critical
Publication of EP0434980B1 publication Critical patent/EP0434980B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance

Abstract

In a device for atomising at least one jet of a liquid or solid material, preferably molten metal, the atomising process takes place in a stationary ultrasonic field which is produced between at least one pair of ultrasonic vibrators. In order to increase performance, a plurality of atomising fluid jets, and in a complementary fashion thereto additional fluid jets (e.g. gas) are introduced from nozzles in each node point area of the stationary ultrasonic wave. In this way, the atomisation fluid mass throughput is very greatly increased and thus the atomisation power raised. In addition, special sonotrode shapes are proposed in order to increase the performance further. <IMAGE>

Description

Die Erfindung betrifft eine Vorrichtung zum Zerstäuben mindestens eines Strahls eines flüssigen oder festen Stoffes, vorzugsweise geschmolzenen Metalls nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a device for atomizing at least one jet of a liquid or solid substance, preferably molten metal, according to the preamble of patent claim 1.

Die Erfindung geht von einer bekannten Vorrichtung aus (EP-A1 0 308 933), bei der die abstrahlenden Sonotrodenflächen im Verjüngungsabschnitt einer Düse angeordnet sind, durch die ein Inert- oder Reaktionsgas in das Ulraschallfeld zwischen den Sonotrodenflächen eingeleitet wird. Dieser Gasstrom fördert den Zerstäubungsprozeß und erlaubt einen gezielten Partikeltransport aus dem Zerstäubungsbereich heraus.The invention is based on a known device (EP-A1 0 308 933), in which the radiating sonotrode surfaces are arranged in the tapered section of a nozzle, through which an inert or reaction gas is introduced into the ultrasonic field between the sonotrode surfaces. This gas flow promotes the atomization process and allows targeted particle transport out of the atomization area.

Bei einer bekannten Vorrichtung (DE-C-28 42 232) zum Zerstäuben von Kohlestaub für Heizungszwecke kann die Verbrennungsluft radial durch Schlitz- oder Ringdüsen in die Druckbäuche oder Knoten der stehenden Welle eines Ultraschallfeldes eingeblasen werden, das zwischen einer Sonotrode und einem Reflektor erzeugt wird.In a known device (DE-C-28 42 232) for atomizing coal dust for heating purposes, the combustion air can be blown radially through slot or ring nozzles into the pressure bellies or nodes of the standing wave of an ultrasonic field that is generated between a sonotrode and a reflector .

Es ist auch bekannt (EP-A-0 361 396 als Stand der Technik nach Artikel 54(3)EPÜ), eine Schmelze durch eine Sprühdüse in das von zwei Schallsendern erzeugte akustische Levitationsfeld einzusprühen und in dem Levitationsfeld durch ein durch Öffnungen um die Sprühdüse herum eingeblasenes Inertgas eine turbulente Strömung zu erzeugen, so daß die aus der Düse herausgesprühten Tröpfchen rasch abgekühlt werden und sich zu Körnern verfestigen.It is also known (EP-A-0 361 396 as prior art under Article 54 (3) EPC) to spray a melt through a spray nozzle into the acoustic levitation field generated by two sound transmitters and in the levitation field through an opening around the spray nozzle inert gas blown around to produce a turbulent flow so that the droplets sprayed out of the nozzle are rapidly cooled and solidified into grains.

Demgegenüber liegt der Erfindung die Aufgabe zugrunde, die Vorrichtung der eingangs geschilderten Art so auszubilden, daß der Zerstäubungsdurchsatz deutlich erhöht wird und der Zerstäubungsprozeß besser geregelt werden kann.In contrast, the invention has for its object to design the device of the type described so that the atomization throughput is significantly increased and the atomization process can be better controlled.

Die genannte Aufgabe ist erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst.The stated object is achieved according to the invention by the features of patent claim 1.

Erfindungsgemäß werden nicht nur der Zerstäubungsfluidstrahl, der im Regelfall flüssig ist, sondern auch das im Regelfall gasförmige Zusatzfluid über Düsen gezielt in die Druckknotenbereiche der stehenden Ultraschallwelle eingebracht. Der Durchsatz an Zusatzfluid durch die Düsen ist getrennt zum Zerstäubungsfluid einstellbar. Vorzugsweise werden mehrere Zerstäubungs- und Zusatzfluidstrahlen eingeleitet. Der Durchsatz an Zerstäubungsfluid soll einen oberen Grenzwert nicht überschreiten, da der Strahl dann im Zerstäubungsbereich durchschlägt und die Zerstäubungsleistung verkleinert. Wenn aber Zusatzfluidströme gleichzeitig und zusätzlich zum eigentlichen Zerstäubungsfluidstrahl in die Zerstäubungsbereiche im Druckknoten eingeleitet werden, so läßt sich der Zerstäubungs-Fluidmassendurchsatz wesentlich erhöhen. Dies läßt sich auf eine lokale Erhöhung der Gasdichte (Staudruck) im Zerstäubungsbereich der Druckknoten sowie durch die Turbulenzerhöhung im Zerstäubungsbereich infolge der gezielten Zusatzfluidmassenstromeinbringung zurückführen. Durch die gezielte und lokal eingegrenzte Einbringung der Zerstäubungsfluid-/Zusatzfluidströme wird eine Zweiphasen-Zerstäubung erzielt. Im Zerstäubungsbereich erfolgt zusätzlich zur Ultraschalleinwirkung ein Impulsübertrag von Seiten des unterstützenden Zusatzgases und damit eine wesentliche Leistungsverbesserung des Zerstäubungsprozesses. Ferner ergibt sich eine Verschiebung des Tropfengrößenspektrums bei der Zerstäubung zu kleineren Tropfen hin. Ferner ist die Regelmöglichkeit des Zerstäubungsprozesses durch Veränderung des Zusatzgasstromes verbessert. Im Zerstäubungsbereich wird eine größere Kühlwirkung und damit höhere Abkühlgeschwindigkeit erzielt und es erfolgt ein gezielter Partikeltransport aus dem Zerstäubungsbereich heraus.According to the invention, not only the atomizing fluid jet, which is generally liquid, but also the additional fluid, which is usually gaseous, are introduced into the pressure node areas of the standing ultrasonic wave in a targeted manner. The throughput of additional fluid through the nozzles can be set separately from the atomizing fluid. Preferably, several atomizing and additional fluid jets are introduced. The throughput of atomizing fluid should not exceed an upper limit, since the jet then breaks through in the atomizing area and reduces the atomizing power. However, if additional fluid flows are introduced into the atomization areas in the pressure node simultaneously and in addition to the actual atomization fluid jet, the atomization fluid mass throughput can be increased significantly. This can be attributed to a local increase in the gas density (dynamic pressure) in the atomization area of the pressure nodes and by the increase in turbulence in the atomization area as a result of the targeted introduction of additional fluid mass flow. A two-phase atomization is achieved through the targeted and locally restricted introduction of the atomizing fluid / additional fluid flows. In the atomization area, in addition to the effect of ultrasound, there is a pulse transmission on the part of the supporting additional gas and thus a significant improvement in the performance of the atomization process. There is also a shift in the droplet size spectrum during atomization towards smaller droplets. Furthermore, the control possibility of the atomization process is improved by changing the additional gas flow. A greater cooling effect and thus a higher cooling rate are achieved in the atomization area and there is a targeted transport of particles out of the atomization area.

Als Zerstäubungsfluid können Flüssigkeiten (insbesondere Schmelzen) und feste Stoffe (Minerale, Pulver, Schäume) Verwendung finden.Als Zusatzfluid kann Gas, Dampf, Nebel, Flüssigkeit, Pulver oder dergleichen Verwendung finden.Liquids (especially melts) and solid substances (minerals, powders, foams) can be used as atomizing fluid. Gas, steam, mist, liquid, powder or the like can be used as the additional fluid.

Vorteilhafte Weiterbildungen sind in den Unteransprüchen gekennzeichnet.Advantageous further developments are characterized in the subclaims.

Ausführungsbeispiele der Erfindung sind nachstehend anhand der Zeichnung näher erläutert. Es zeigen:

Fig. 1
eine Seitenansicht einer Vorrichtung zum Zerstäuben einer Schmelze in wenigstens drei Tiegeldüsen in drei Druckknotenbereichen
Fig. 2
einen Schnitt durch einen der Ultraschall schwinger,
Fig. 3
eine Anordnung mit in einem Druckknotenbereich liegenden Einzeldüsen zum Einleiten von Zerstäubungsfluid und Zusatzfluid,
Fig. 4
eine Anordnung mit in einem Druckknotenbereich liegenden Ringdüsen für Zerstäubungsfluid und Zusatzfluid,
Fig. 5
eine Seitenansicht der Figur 4,
Fig. 6
eine Seitenansicht mit einer Flachdüse in einem Drucknotenbereich
Fig. 7
eine Stirnansicht der Anordnung in Fig. 6
Fig. 8
eine Stirnansicht einer Düsenanordnung nach Fig. 3 oder Fig. 4 für eine rechteckige Sonotrode und
Fig. 9
eine Seitenansicht mit konkaven Sonotroden.
Embodiments of the invention are explained below with reference to the drawing. Show it:
Fig. 1
a side view of a device for atomizing a melt in at least three crucible nozzles in three pressure node areas
Fig. 2
a section through one of the ultrasonic transducers,
Fig. 3
an arrangement with individual nozzles located in a pressure node area for introducing atomizing fluid and additional fluid,
Fig. 4
an arrangement with ring nozzles for atomizing fluid and additional fluid located in a pressure node area,
Fig. 5
3 shows a side view of FIG. 4,
Fig. 6
a side view with a flat nozzle in a printing area
Fig. 7
6 shows an end view of the arrangement in FIG. 6
Fig. 8
an end view of a nozzle arrangement according to Fig. 3 or Fig. 4 for a rectangular sonotrode and
Fig. 9
a side view with concave sonotrodes.

Figur 1 zeigt die aus der EP-A 0 308 933 bekannte Vorrichtung, bei der zwischen zwei Sonotroden 1 und 2 ein Ultraschall-Stehfeld 3 mit Druckknoten und Druckbäuchen erzeugt wird. In die Knotenbereiche münden die Öffnungen von Schmelztiegeln 4, aus denen je ein oder mehrere Strahlen Schmelze austreten und in dem Ultraschallfeld eines zwischen den Sonotrodenflächen 5, 6 durchgeleiteten Gases zerstäubt werden.FIG. 1 shows the device known from EP-A 0 308 933, in which an ultrasound standing field 3 with pressure nodes and pressure bellies is generated between two sonotrodes 1 and 2. The openings of melting crucibles 4 open into the node areas, from which one or more jets of melt emerge and are atomized in the ultrasound field of a gas passed between the sonotrode surfaces 5, 6.

Die Sonotrode 2 gehört zu einem Ultraschallschwinger 10, der in Fig. 2 dargestellt ist, der einen Booster 11 und einen Konverter 12 aufweist. An einer Knotenstelle 14 des Boosters 11 ist ein den Konverter 12 und den Booster 11 umschließendes Gehäuse 15 druckdicht befestigt. Das Gehäuse 15 ist über eine ebenfalls mit Dichtungen 16 versehene Hülse 17 in einem Außengehäuse 18 angeordnet, das die Durchführung durch eine Wandung 19 bildet, die den Außenraum 20 vom Druckraum 21 trennt, in dem die Zerstäubung vorgenommen wird. Über das Gehäuse 18 erfolgt die Einführung des Kabels 22 an den Konverter 12. Das Gehäuse 15 ist über eine Verstelleinrichtung 23 axial einstellbar.The sonotrode 2 belongs to an ultrasonic vibrator 10, which is shown in FIG. 2, which has a booster 11 and a converter 12. At a node 14 of the booster 11, a housing 15 surrounding the converter 12 and the booster 11 is fastened in a pressure-tight manner. The housing 15 is arranged via a sleeve 17, which is also provided with seals 16, in an outer housing 18 which forms the passage through a wall 19 which separates the outer space 20 from the pressure space 21, in which the atomization is carried out. The cable 22 is introduced into the converter 12 via the housing 18. The housing 15 can be adjusted axially via an adjusting device 23.

In Figur 3 ist eine Stirnansicht der Sonotrodenfläche 5 der Sonotrode 1 dargestellt. Neben den Zerstäubungsfluid-Düsen 25 finden sich mehrere einzelne Zusatzfluid-Düsen 26, die an nicht dargestellte Druckmittelquellen für angeschlossen sind. Die Düsen 25 und 26 sind radial gerichtet und am Umfang versetzt angeordnet. Über die Düsen 25, 26 werden Fluidströme gezielt auf die Längsachse 7 der Schwingeranordnung geleitet. Vorzugsweise erfolgt die Einleitung in die Druckknotenbereiche des Ultraschallfeldes, wie dies auch aus Figur 5 hervorgeht. In Figur 3 sind die Düsen abwechselnd angeordnet, so daß jeweils neben einem Zerstäubungsfluidstrahl aus der Düse 25 ein Zusatzfluidstrahl aus der Düse 26 austritt. Durch die dargestellte kombinierte Düsenanordnung, die über den Umfang der Sonotrodenanordnung fortgesetzt werden kann läßt sich der Fluidmassendurchsatz wesentlich erhöhen und damit die Zerstäubungsleistung vergrößern.FIG. 3 shows an end view of the sonotrode surface 5 of the sonotrode 1. In addition to the atomizing fluid nozzles 25, there are several individual additional fluid nozzles 26 which are connected to pressure medium sources (not shown). The nozzles 25 and 26 are directed radially and offset on the circumference. Fluid flows are directed via the nozzles 25, 26 specifically onto the longitudinal axis 7 of the oscillator arrangement. The introduction into the pressure node regions of the ultrasound field is preferably carried out, as can also be seen from FIG. 5. In Figure 3, the nozzles are arranged alternately, so that in addition to an atomizing fluid jet from the nozzle 25, an additional fluid jet emerges from the nozzle 26. By the combined nozzle arrangement shown, which continues over the circumference of the sonotrode arrangement the fluid mass throughput can be increased significantly and thus the atomization performance can be increased.

In Figur 4 sind Ringdüsen 28 dargestellt, bei denen der Zerstäubungsfluidstrahl aus einer zentralen Öffnung 29 und der Zusatzfluidstrahl aus einer ringförmigen Öffnung 30 austritt, weiche die mittige Düse ringförmig umschließt. Alle diese Düsen sind in jeweils einen Druckknotenbereich der Stehwelle gerichtet.FIG. 4 shows ring nozzles 28 in which the atomizing fluid jet emerges from a central opening 29 and the additional fluid jet emerges from an annular opening 30, which surrounds the central nozzle in a ring. All of these nozzles are each directed into a pressure node area of the standing wave.

Figur 5 zeigt die Anordnung mehrerer solcher in Figur 3 oder 4 dargestellten Einzel- oder Ringdüsen 25,26,28 zum Einleiten von Zerstäubungs- und Zusatzfluidströmen in die einzelnen Druckknotenbereiche der Stehwelle. Für jeden Druckknotenbereich sind wiederum mehrere Düsen 25,26,28 vorgesehen, wie in Figur 3 oder 4 dargestellt ist.FIG. 5 shows the arrangement of several such individual or ring nozzles 25, 26, 28 shown in FIG. 3 or 4 for introducing atomizing and additional fluid flows into the individual pressure node areas of the standing wave. A plurality of nozzles 25, 26, 28 are again provided for each pressure node area, as shown in FIG. 3 or 4.

In Figur 6 ist eine Flachdüse 35 mit Einleitungen 36 für Zerstäubungsfluid und Einleitungen 37 für Zusatzgas dargestellt. Der Zusatzgasstrahl tritt beidseitig des mittig austretenden Zerstäubungsgasstrahls gezielt in den Zerstäubungsbereich der Ultraschallwelle ein.FIG. 6 shows a flat nozzle 35 with inlets 36 for atomizing fluid and inlets 37 for additional gas. The additional gas jet enters the atomizing area of the ultrasonic wave on both sides of the atomizing gas jet emerging in the center.

Figur 7 zeigt die Stirnansicht der rechteckigen Sonotroden 1, fläche 5, für die die Flachdüse 35 besonders geeignet ist. Mit einer derartigen großflächigen Sonotrode 1 läßt sich ebenfalls die Zerstäubungsleistung steigern. Dies trifft auch bei der Anordnung in Figur 8 zu, bei der in das von einer großflächigen, rechteckigen Sonotrode 1 erzeugte Ultraschallfeld mehrere in Reihen nebeneinander angeordnete Düsen 25, 26 beziehungsweise Ringdüsen 28 vorgesehen sind, die jeweils in den Ebenen der Druckknotenbereiche angeordnet sind.FIG. 7 shows the end view of the rectangular sonotrodes 1, area 5, for which the flat nozzle 35 is particularly suitable. With such a large-area sonotrode 1, the atomization performance can also be increased. This also applies to the arrangement in FIG. 8, in which a plurality of nozzles 25, 26 or ring nozzles 28 arranged in rows next to one another are provided in the ultrasound field generated by a large-area, rectangular sonotrode 1, which are each arranged in the planes of the pressure node areas.

Alle dargestellten Anordnungen können auch in einem Druckbehälter untergebracht werden, in dem eine Verdichtung der eingeleiteten Gasströme erfolgt, so daß die Energieübertragung in dem verdichteten Medium vergroßert wird.All arrangements shown can also be accommodated in a pressure vessel in which a compression of the introduced gas flows takes place so that the energy transfer in the compressed medium is increased.

Figur 9 zeigt eine weitere Maßnahme zur Verbesserung der Zerstäubungsleistung. Die Sonotrodenflächen 5 beziehungsweise 6 sind konkav ausgeführt, so daß die Energie im Knoten der Ultraschall-Stehwelle fokussiert und damit der Schallwechseldruck erhöht wird. Außerdem lassen sich die Sonotroden-Abstrahlflächen beschichten, um die Benetzbarkeit zu mindern. Dies kann beispielsweise durch Aufdampfen von BorNitrit, Titan-Nitrit oder durch Verchromen oder Eloxieren etc. erfolgen.FIG. 9 shows a further measure to improve the atomization performance. The sonotrode surfaces 5 and 6 are concave, so that the energy in the node of the ultrasonic standing wave is focused and thus the acoustic pressure is increased. In addition, the sonotrode radiation surfaces can be coated in order to reduce wettability. This can be done, for example, by evaporating boron nitrite, titanium nitrite or by chrome plating or anodizing, etc.

Claims (11)

  1. An apparatus for pulverizing at least a jet of a pulverizing fluid, preferably a molten metal, comprising at least a pair of ultrasonic devices provided opposite to each other on a common axis in spaced relationship to generate a standing ultrasonic field between the horns thereof, including nodal pressure areas in which said pulverizing fluid is pulverized by means of the ultrasonic energy and a supplementary fluid which is introduced under pressure through a nozzle into the ultrasonic field, characterized in that a plurality of pulverizing fluid jets and a plurality of supplementary fluid jets are introduced through separate nozzles into a nodal pressure area of the ultrasonic field.
  2. The apparatus of claim 1, characterized in that the pulverizing fluid is regularly liquid and the supplementary fluid is regularly gaseous.
  3. The apparatus of claim 1 or 2, characterized in that the fluid mass capacities are individually adjustable and controllable to said nozzles.
  4. The apparatus of one of claims 1 to 3, characterized in that for introducing the pulverizing fluid jet and the supplementary fluid jet individual nozzles (25,26) each are provided.
  5. The apparatus of one of claims 1 to 3, characterized in that for introducing the supplementary fluid jet annular nozzles (28) are provided from which the supplementary fluid jet emanates annularly surrounding the central pulverizing fluid jet.
  6. The apparatus of one of claims 1 to 5, characterized in that for introducing the pulverizing fluid jet and the supplementary fluid jet flat nozzles (35) are provided from which the supplementary fluid jet emanates at either side of the pulverizing fluid jet.
  7. The apparatus to one of claims 1 to 6, characterized in that the nozzles (25,26,28,35) for both fluid jets are provided off-set with respect to each other around the periphery.
  8. The apparatus to one of claims 1 to 7, characterized in that the nozzles are provided side by side in rows in alignment with a plurality of nodal areas which nozzles are arranged beyond each other seen from the face thereof and rotatably off-set to each other in said nodal areas.
  9. The apparatus of one of claims 1 to 6, characterized in that a plurality of nozzle devices are arranged side by side for each nodal area along large horn surfaces facing each other which nozzle devices are arranged one beyond each other as seen from the face thereof as well as off-set with respect to each other in said nodal areas.
  10. The apparatus of one of claims 1 to 9, characterized in that the horn emitting surfaces are shaped concave.
  11. The apparatus of one of claims 1 to 10, characterized in that the horn surfaces are coated.
EP90122347A 1989-11-27 1990-11-22 Device for spraying liquid or solid materials, preferably melted metals Expired - Lifetime EP0434980B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3939178A DE3939178A1 (en) 1989-11-27 1989-11-27 DEVICE FOR SPRAYING LIQUID AND SOLID MATERIALS, PREFERABLY MELTED METALS
DE3993178 1989-11-27

Publications (3)

Publication Number Publication Date
EP0434980A2 EP0434980A2 (en) 1991-07-03
EP0434980A3 EP0434980A3 (en) 1991-12-04
EP0434980B1 true EP0434980B1 (en) 1995-05-31

Family

ID=6394275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90122347A Expired - Lifetime EP0434980B1 (en) 1989-11-27 1990-11-22 Device for spraying liquid or solid materials, preferably melted metals

Country Status (5)

Country Link
US (1) US5122047A (en)
EP (1) EP0434980B1 (en)
JP (1) JPH03242257A (en)
AT (1) ATE123239T1 (en)
DE (2) DE3939178A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176874A (en) * 1991-11-05 1993-01-05 General Electric Company Controlled process for the production of a spray of atomized metal droplets
GB9207940D0 (en) * 1992-04-10 1992-05-27 Alcan Int Ltd Motors
US5794861A (en) * 1995-10-05 1998-08-18 D & R Recyclers, Inc. Process and apparatus for separating components of fragmented vehicle tires
DE10245324A1 (en) * 2002-09-27 2004-04-08 Abb Patent Gmbh Method for atomizing paint coating materials, using an ultrasonic generator and reflector with a paint delivery tube having a deflector to prevent paint drops moving up the tube
DE10245326A1 (en) * 2002-09-27 2004-04-08 Abb Patent Gmbh A method for atomizing paint coating materials has an ultrasonic generator and reflector setting up standing waves maximized at the center
DE10252437A1 (en) * 2002-11-12 2004-05-27 Abb Patent Gmbh Ultrasonic standing wave atomizer appliance for coating components e.g. in the motor vehicle industry has paint feeder with paint discharge pipe sections in area of selected maximum of sound particle velocity of vertical ultrasonic field
JP2004290877A (en) * 2003-03-27 2004-10-21 Toyota Motor Corp Rotation atomizing coating apparatus
DE10327429A1 (en) * 2003-06-18 2005-01-05 Abb Patent Gmbh Ultrasonic stationary wave atomizer for generating varnish spray for painting workpiece, has varnish nozzle with varnish disk positioned in space formed between sonotrode and reflector, atomizing varnish from the nozzle
DE10327431A1 (en) * 2003-06-18 2005-01-05 Abb Patent Gmbh Ultrasonic standing-wave atomizer
DE10327430A1 (en) * 2003-06-18 2005-01-05 Abb Patent Gmbh Ultrasonic standing-wave atomizer
US8893992B2 (en) * 2012-04-19 2014-11-25 General Electric Company System and method for pulverizing a substance
CN109622980A (en) * 2019-01-28 2019-04-16 哈尔滨工业大学 A kind of contactless powder by atomization device and method of molten metal ultrasonic standing wave

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274642A (en) * 1965-05-12 1966-09-27 Armour & Co Apparatus for prilling ammonium nitrate
GB1272229A (en) * 1968-11-27 1972-04-26 British Iron Steel Research Improvements in and relating to the treatment of molten material
US4153201A (en) * 1976-11-08 1979-05-08 Sono-Tek Corporation Transducer assembly, ultrasonic atomizer and fuel burner
DE2842232C2 (en) * 1978-09-28 1985-04-18 Battelle-Institut E.V., 6000 Frankfurt Method and device for atomizing liquids, suspensions and emulsions, agglomerated dusts or powders and mixtures thereof
CA1159356A (en) * 1979-10-25 1983-12-27 Kurt Skoog Method and device for producing microdroplets of fluid
DE3108481A1 (en) * 1980-04-17 1982-02-04 Hauni-Werke Körber & Co KG, 2050 Hamburg Device for applying softener liquid onto a moving web of fabric
DE3407059A1 (en) * 1984-02-27 1985-08-29 Siemens AG, 1000 Berlin und 8000 München Process for the production of reacted raw materials for electroceramics
DE3713253A1 (en) * 1986-07-23 1988-02-04 Bosch Gmbh Robert ULTRASONIC SPRAYER
DE3735787A1 (en) * 1987-09-22 1989-03-30 Stiftung Inst Fuer Werkstoffte METHOD AND DEVICE FOR SPRAYING AT LEAST ONE JET OF A LIQUID, PREFERABLY MOLTED METAL
DE3732325A1 (en) * 1987-09-25 1989-04-13 Battelle Institut E V DEVICE FOR SPRAYING A LIQUID MEDIUM WITH THE AID OF ULTRASOUND
LU87346A1 (en) * 1988-09-27 1990-04-06 Euratom METHOD AND DEVICE FOR PRODUCING A POWDER FROM AMORPHER CERAMIC OR METALLIC SUBSTANCE

Also Published As

Publication number Publication date
JPH03242257A (en) 1991-10-29
DE59009180D1 (en) 1995-07-06
EP0434980A2 (en) 1991-07-03
ATE123239T1 (en) 1995-06-15
EP0434980A3 (en) 1991-12-04
US5122047A (en) 1992-06-16
DE3939178A1 (en) 1991-05-29

Similar Documents

Publication Publication Date Title
EP0308933B1 (en) Process and device for the atomization of at least one jet of a liquid, preferably molten metal
EP0434980B1 (en) Device for spraying liquid or solid materials, preferably melted metals
US7118052B2 (en) Method and apparatus for atomising liquid media
US5366206A (en) Molten metal spray forming atomizer
US4575325A (en) Device for atomizing liquid metals for the purpose of producing a finely granular powder
EP0308600B1 (en) Apparatus for the ultrasonic atomization of a fluid
DE1803724A1 (en) Method and device for dividing liquids and for producing granules
US4646968A (en) Prilling apparatus
DE3942050A1 (en) METHOD AND DEVICE FOR LASER PLASMA SPRAYING WITH AXIAL FLOW
AU3767789A (en) Atomising apparatus and process
DE4242645C2 (en) Method and device for producing metal balls of approximately the same diameter
EP0871001A3 (en) Method and apparatus for producing frozen particles using an entrapment zone of atomized cryogenic liquid droplets
EP1337462B1 (en) METHOD AND DEVICE FOR PRODUCING GLOBULAR GRAINS OF HIGH-PURITY SILICON HAVING A DIAMETER OF BETWEEN 50 µm AND 300 µm, AND USE OF THE SAME
EP0361396B1 (en) Process and apparatus for preparing an amorphous powder of a ceramic or metallic material
DE2126856B2 (en) METAL POWDER MANUFACTURING METAL PROCESS AND DEVICE
DE2656330C2 (en) Process and device for the production of powders or granulates from metals and alloys
SE8500971D0 (en) METHOD OF ATOMIZATION OF MELT FROM A CLOSELY COUPLED NOZZLE, APPARATUS AND PRODUCT FORMED
DE19801832C2 (en) Method and device for producing spherical particles of almost the same diameter
DE3150221A1 (en) Process and equipment for producing metal powder from a melt
DE3112339C2 (en)
DE10237213B4 (en) Method and device for producing metal powder and ceramic powder
DE1964584A1 (en) Molten metal atomizing device
DE2260868A1 (en) METAL POWDER MANUFACTURING PROCESS AND DEVICE
SU977114A1 (en) Metallic powder production method
JPH093511A (en) Atomizing device of molten metal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920604

17Q First examination report despatched

Effective date: 19931202

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950531

REF Corresponds to:

Ref document number: 123239

Country of ref document: AT

Date of ref document: 19950615

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950605

REF Corresponds to:

Ref document number: 59009180

Country of ref document: DE

Date of ref document: 19950706

ITF It: translation for a ep patent filed

Owner name: INVENTION S.N.C.

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19951122

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971028

Year of fee payment: 8

Ref country code: DE

Payment date: 19971028

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971113

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980217

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051122