EP0433432A1 - Solid laser with a transmission wavelength of 0.5-0.65 micrometres - Google Patents

Solid laser with a transmission wavelength of 0.5-0.65 micrometres

Info

Publication number
EP0433432A1
EP0433432A1 EP90910784A EP90910784A EP0433432A1 EP 0433432 A1 EP0433432 A1 EP 0433432A1 EP 90910784 A EP90910784 A EP 90910784A EP 90910784 A EP90910784 A EP 90910784A EP 0433432 A1 EP0433432 A1 EP 0433432A1
Authority
EP
European Patent Office
Prior art keywords
laser
wavelength
laser diode
bar
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP90910784A
Other languages
German (de)
French (fr)
Inventor
Jean-Paul Pocholle
Claude Puech
Patrice Jano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0433432A1 publication Critical patent/EP0433432A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/162Solid materials characterised by an active (lasing) ion transition metal
    • H01S3/1623Solid materials characterised by an active (lasing) ion transition metal chromium, e.g. Alexandrite

Definitions

  • the invention relates to a solidp laser with an emission wavelength between 0.5 and 0.65 micrometers.
  • Such a laser can be used in particular in isotopic separation processes.
  • the methods of separation of isotopes of Uranium by laser have been studied for several years. Their implementation requires the selective excitation of the uranium isotopes from laser sources whose frequency must be particularly well adjusted and controlled.
  • laser sources whose frequency must be particularly well adjusted and controlled.
  • This last approach uses the copper vapor laser die pumping a dye laser, whose technology is quite critical.
  • the invention therefore relates to a laser emitting at a wavelength between 0.55 ⁇ m and O. G5 ⁇ m and solving these drawbacks.
  • the invention therefore relates to a solid laser with an emission wavelength 0.5 - 0.65 micrometers, characterized in that it comprises: - a laser bar based on HP Mg capitaSiO. doped chromium placed in a resonant cavity; - at least one laser diode emitting towards the bar a pump beam of wavelength between 0.75 and 0.8 micrometers; a frequency doubling crystal receiving a beam emitted by the laser bar and emitting in exchange a beam of wavelength 0.5-0.65 micrometers.
  • FIG. 1 a first embodiment of the device according to the invention
  • Figure 2 an alternative embodiment of the device of Figure 1
  • - Figure 3 a second embodiment of the device according to the invention
  • This type of laser diode was specially designed for the invention. It is produced from a ternary compound G AI A- 3 1-XX e t its composition is such that
  • This material is the site of laser emission by recombination of electron-hole pairs. This is assembled in a structure of the optical waveguide type by inserting an active layer of Ga 1_. - ⁇ Al x As between two layers of
  • Ga 1 _ Al As of aluminum composition such as 0.2 ⁇ y ⁇
  • the wave generated by the laser bar 1 excited by the laser diode has a wavelength covering the spectrum between 1, 1 and 1, 3 ⁇ m. This wave from the optical cavity is then doubled in frequency in a non-linear crystal.
  • the chrome doped Forsterite laser (Cr: Mg mannerSiO.) Has an emission spectrum at room temperature ranging from 1.167 ⁇ m to 1.345 ⁇ m with an emission peak centered on
  • the fluorescence lifetime is of the order of 15 ⁇ s, which is compatible with laser diodes. It is particularly suitable for pumping by laser diodes, especially when you want to work at high speed.
  • the filling rate (excitation time, repetition frequency) is an important parameter that should be taken into account.
  • Such a source doubled in frequency makes it possible to adapt the emission wavelength to that to be implemented in operations of selective excitation of isotopes of Uranium, in the band 0.55 - 0.65 ⁇ m.
  • Figure 1 shows a first embodiment of the laser device according to the invention.
  • a chromed doped Forsterite bar 1 (Mg DepositSi 0.) is placed in an optical cavity constituted by one of the two mirrors 3 and 4.
  • the optical cavity can also be produced by two opposite faces of the bar.
  • the laser diodes 2.0, 2.1 to 2.n light the rod 1 with beams of wavelength 0, 8 ⁇ m. These laser diodes are supplied with current by a modulator 7.
  • the light beam generated by the bar 1 and leaving the laser cavity 3, 4 is transmitted to a frequency doubler 5 in LiNb0_ or in BBO for example.
  • the laser diodes are made up as follows:
  • the active part consists of an alloy based on
  • GaAIAs with an aluminum concentration which allows to have a laser emission for the pump . either at 0.8 ⁇ m (Ga
  • a laser comprising the rod 1 made of chromium doped Forsterite, laser diodes
  • n in GaAIAs and of the frequency doubler 5 makes it possible to obtain a light beam of wavelength between 1, 167 ⁇ m and 1, 345 ⁇ m which doubled by the frequency doubler gives a beam of length wave of approximately 0.6 ⁇ m (between 0.5 and 0.65 ⁇ m).
  • optical cavity 3 comprises a triggering device (Q s itch in English terminology).
  • FIG. 3 represents an exemplary embodiment comprising a laser diode 2 illuminating the laser bar 1 by one of the. ends of the cavity.
  • the laser diode 2 has the same constitution as the laser diodes 2.0, 2.1 to 2.n) of FIGS. 1 and 2 and emits an excitation light beam of wavelength 0.8 ⁇ m towards the laser bar 1 in Forsterite.
  • the device 6 is a triggering device.
  • the beam leaving the cavity 3, 4 containing the laser bar 1 and the triggering device 6, is transmitted to a frequency doubler 5 which provides a beam of double frequency (wavelength 0.6 ⁇ m).
  • the laser diode 2 could be controlled by a modulator.
  • the optical cavity 3, 4 could then be constituted by two opposite cleaved faces of the laser bar 1.
  • the frequency doubling crystal 5 located outside the cavity is provided, but as shown, it can also be placed in the laser cavity, preferably between the laser bar 1 and the trigger cell 6
  • the laser diodes can also be on either side of the laser bar 1 or can surround the laser bar.

Abstract

L'invention concerne un laser solide à longueur d'onde d'émission comprise entre 0,5 et 0,65 mum. Un barreau laser (1) en Mg2SiO4 (Forstérite) dopé chrome est pompé par une diode laser (2) émettant entre 0,75 et 0,8 mum, cette diode laser étant à base de Ga1-xAlxAss avec x compris entre 0,1 et 0,18.The invention relates to a solid-state laser with an emission wavelength of between 0.5 and 0.65 µm. A chrome-doped Mg2SiO4 (Forsterite) laser bar (1) is pumped by a laser diode (2) emitting between 0.75 and 0.8 mum, this laser diode being based on Ga1-xAlxAss with x between 0.1 and 0.18.

Description

LASER SOLIDE A LONGUETTR D'ONDE D'EMISSION 0,5 - 0,65 MICROMETRES SOLID EMITTING WAVELENGTH LASER 0.5 - 0.65 MICROMETERS
L'invention concerne un laser solidp à longueur d'onde d'émission comprise entre 0, 5 et 0, 65 micromptres .The invention relates to a solidp laser with an emission wavelength between 0.5 and 0.65 micrometers.
Un tel laser est utilisable notamment dans les procédés de séparation isotopiques. Les procédés de séparation d'isotopes d'Uranium par laser sont étudiés depuis plusieurs années . Leur mise en oeuvre nécessite l'excitation sélective des isotopes d'Uranium à partir de sources lasers dont la fréquence doit ôfre particulièrement bien ajustée et contrôlée. Parmi les solutions qui ont όté étudiées jusqu'à présent, il y a celles qui font appel à des sources émettant aux alentours de 16 μm et celles qui émettent entre 0, 55 μm et 0,65 μm. Cette dernière approche fait appel à la filière laser à vapeur de cuivre pompant un laser à colorant, dont la technologie est assez critique.Such a laser can be used in particular in isotopic separation processes. The methods of separation of isotopes of Uranium by laser have been studied for several years. Their implementation requires the selective excitation of the uranium isotopes from laser sources whose frequency must be particularly well adjusted and controlled. Among the solutions which have been studied so far, there are those which use sources emitting around 16 μm and those which emit between 0, 55 μm and 0.65 μm. This last approach uses the copper vapor laser die pumping a dye laser, whose technology is quite critical.
Le renouveau d'intérêt des lasers solides, en particulier grâce aux possibilités offertes par le pompage par diodes lasers (rendement, compacité, durpe de vie, fiabilité . . . . ) ouvre la voie à des solutions nouvelles pour la séparation des isotopes d'Uranium. Certaines solutions à base de lasers solides ont d'ores et déjà été proposées.The renewed interest in solid lasers, particularly through the possibilities offered by the pumping laser diodes (performance, compactness, hard w service life and reliability....) Opens up new solutions for the separation of isotopes of Uranium. Certain solutions based on solid lasers have already been proposed.
Cependant ces solutions conduispnt à des dispositifs encombrants et coûteux.However, these solutions lead to bulky and expensive devices.
L'invention concerne donc un laser émettant à une longueur d'onde comprise entre 0,55 μm et O. G5 μm et résolvant ces inconvénients.The invention therefore relates to a laser emitting at a wavelength between 0.55 μm and O. G5 μm and solving these drawbacks.
L'invention concerne donc un laser solide à longueur d'onde d'émission 0,5 - 0,65 micromètres , caractérisé en ce qu'il comporte : - un barreau laser à base HP Mg„ SiO. dopé chrome placé dans une cavité résonante ; - au moins une diode laser émettant vers le barreau un faisceau de pompe de longueur d'onde comprise entre 0, 75 et 0, 8 micromètres ; un cristal doubleur de fréquence recevant un faisceau émis par le barreau laser et émettant en échange un faisceau de longueur d'onde 0,5 - 0, 65 micromètres .The invention therefore relates to a solid laser with an emission wavelength 0.5 - 0.65 micrometers, characterized in that it comprises: - a laser bar based on HP Mg „SiO. doped chromium placed in a resonant cavity; - at least one laser diode emitting towards the bar a pump beam of wavelength between 0.75 and 0.8 micrometers; a frequency doubling crystal receiving a beam emitted by the laser bar and emitting in exchange a beam of wavelength 0.5-0.65 micrometers.
Les différents objets et caractéristiques de l'invention apparaîtront plus clairement dans la description qui va suivre faite à titre d'exemple en se reportant aux figures annexées qui représentent :The various objects and characteristics of the invention will appear more clearly in the description which follows, given by way of example with reference to the appended figures which represent:
- la figure 1, un premier exemple de réalisation du dispositif selon l'invention ; la figure 2, une variante de réalisation du dispositif de la figure 1 ; - la figure 3, un deuxième exemple de réalisation du dispositif selon l'invention ;- Figure 1, a first embodiment of the device according to the invention; Figure 2, an alternative embodiment of the device of Figure 1; - Figure 3, a second embodiment of the device according to the invention;
- la figure 4, une autre variante de réalisation de l'invention .- Figure 4, another alternative embodiment of the invention.
Selon l'invention, on prévoit de placer un barreau deAccording to the invention, it is planned to place a bar of
Forsterite (M 2 Si 0.) dopé chrome dans une cavité optique et de l'exciter à l'aide d'une diode laser émettant à 0,8 μm. Ce type de diode laser a été conçu spécialement pour l'invention. Il est réalisé à partir d'un composé ternaire G AI A-3 1-X X et sa composition est telle queForsterite (M 2 Si 0.) doped chromium in an optical cavity and to excite it using a laser diode emitting at 0.8 μm. This type of laser diode was specially designed for the invention. It is produced from a ternary compound G AI A- 3 1-XX e t its composition is such that
0, 1 < x < 0, 180, 1 <x <0.18
Ce matériau est le siège de l'émission laser par recombinaison de paire d'électrons-trous. Celui-ci est assemblé dans une structure de type guide d'onde optique en insérant une couche active de Ga 1_. -χ Al x As entre deux couches deThis material is the site of laser emission by recombination of electron-hole pairs. This is assembled in a structure of the optical waveguide type by inserting an active layer of Ga 1_. -χ Al x As between two layers of
Ga1_ Al As de composition en aluminium telle que 0,2 < y <Ga 1 _ Al As of aluminum composition such as 0.2 <y <
*-** -y -y 0,4.* - * * -y -y 0.4.
L'onde générée par le barreau laser 1 excité par la diode laser a une longueur d'onde couvrant le spectre compris entre 1, 1 et 1, 3 μm. Cette onde issue de la cavité optique est ensuite doublée en fréquence dans un cristal non linéaire.The wave generated by the laser bar 1 excited by the laser diode has a wavelength covering the spectrum between 1, 1 and 1, 3 μm. This wave from the optical cavity is then doubled in frequency in a non-linear crystal.
Le laser Forsterite dopé chrome (Cr : Mg„ SiO.) présente un spectre d'émission à température ambiante allant de 1.167 μm à 1.345 μm avec un pic d'émission centré surThe chrome doped Forsterite laser (Cr: Mg „SiO.) Has an emission spectrum at room temperature ranging from 1.167 μm to 1.345 μm with an emission peak centered on
1.221 μm. Son spectre d'absorption va de 0.4 à 1.1 μm avec un maximum situé autour de 0.75 μm. Son pompage par une diode laser émettant à la longueur d'onde de 0,8 μm convient donc parfaitement. De plus, un pompage direct par diodes lasers opérant vers 0.8 μm permet de réaliser une source "état solide" à haut rendement.1.221 μm. Its absorption spectrum goes from 0.4 to 1.1 μm with a maximum located around 0.75 μm. Its pumping by a laser diode emitting at a wavelength of 0.8 μm is therefore perfectly suitable. In addition, direct pumping by laser diodes operating around 0.8 μm makes it possible to produce a "solid state" source with high efficiency.
En effet, la durée de vie de fluorescence est de l'ordre de 15 μs, ce qui est compatible avec les diodes lasers . Elle est particulièrement adaptée pour le pompage par diodes lasers surtout lorsque l'on veut travailler à haute cadence. Dans ce cas, le taux de remplissage (durée d'excitation, fréquence de répétition) est un paramètre important qu'il convient de prendre en compte. Une telle source doublée en fréquence permet d'adapter la longueur d'onde d'émission à celle devant être mise en oeuvre dans des opérations d'excitation sélective d'isotopes d'Uranium, dans la bande 0.55 - 0.65 μm.Indeed, the fluorescence lifetime is of the order of 15 μs, which is compatible with laser diodes. It is particularly suitable for pumping by laser diodes, especially when you want to work at high speed. In this case, the filling rate (excitation time, repetition frequency) is an important parameter that should be taken into account. Such a source doubled in frequency makes it possible to adapt the emission wavelength to that to be implemented in operations of selective excitation of isotopes of Uranium, in the band 0.55 - 0.65 μm.
Plusieurs cristaux peuvent être envisagés dans cette opération de doublage tel que par exemple :Several crystals can be considered in this doubling operation such as for example:
- du LiNb03 - LiNb0 3
- du KTiOPO. connu sous le nom de KTP- KTiOPO. known as KTP
- du phosphate arginine - 1 et son composé deutéré D - LAP connu sous le nom LAP Ce cristal présente donc potentiellement l'immense avantage d'être accordable sur la fenêtre spectrale du proche infrarouge qui doublée en fréquence couvre le domaine spectral devant être exploré pour l'application mentionnée précédemment.- arginine phosphate - 1 and its deuterated compound D - LAP known as LAP This crystal therefore potentially has the immense advantage of being tunable on the near infrared spectral window which doubled in frequency covers the spectral domain to be explored for the previously mentioned application.
La figure 1 représente un premier exemple de réalisation du dispositif laser selon l'invention. Un barreau 1 en Forsterite (Mg„Si 0.) dopé chrome est placé dans une cavité optique constituée par l'une des deux miroirs 3 et 4. La cavité optique peut être également réalisée par deux faces opposées du barreau. Les diodes lasers 2.0, 2.1 à 2.n éclairent le barreau 1 à l'aide de faisceaux de longueur d'onde 0, 8 μm. Ces diodes lasers sont alimentées en courant par un modulateur 7.Figure 1 shows a first embodiment of the laser device according to the invention. A chromed doped Forsterite bar 1 (Mg „Si 0.) is placed in an optical cavity constituted by one of the two mirrors 3 and 4. The optical cavity can also be produced by two opposite faces of the bar. The laser diodes 2.0, 2.1 to 2.n light the rod 1 with beams of wavelength 0, 8 μm. These laser diodes are supplied with current by a modulator 7.
Le faisceau lumineux généré par le barreau 1 et sortant de la cavité laser 3, 4 est transmis à un doubleur de fréquence 5 en LiNb0_ ou en BBO par exemple .The light beam generated by the bar 1 and leaving the laser cavity 3, 4 is transmitted to a frequency doubler 5 in LiNb0_ or in BBO for example.
Les diodes lasers sont constituée de la manière suivante :The laser diodes are made up as follows:
La partie active est constituée d'un alliage à base deThe active part consists of an alloy based on
GaAIAs avec une concentration en aluminium qui permet d'avoir une émission laser pour la pompe à . . soit à 0, 8 μm (Ga GaAIAs with an aluminum concentration which allows to have a laser emission for the pump. . either at 0.8 μm (Ga
As) ou à 0, 75 μm (Ga 8„A1 J QAS) .As) or at 0.75 μm (Ga 8 „A1 J Q AS).
Selon l'invention la combinaison d'un laser comprenant le barreau 1 en Forsterite dopé chrome, des diodes lasersAccording to the invention the combination of a laser comprising the rod 1 made of chromium doped Forsterite, laser diodes
2.0 à 2 ,n en GaAIAs et du doubleur de fréquence 5 permet d'obtenir un faisceau lumineux de longueur d'onde comprise entre 1, 167 μm et 1, 345 μm qui doublé par le doubleur de fréquences donne un faisceau de longueur d'onde d'environ 0, 6 μm (comprise entre 0, 5 et 0, 65 μm) .2.0 to 2, n in GaAIAs and of the frequency doubler 5 makes it possible to obtain a light beam of wavelength between 1, 167 μm and 1, 345 μm which doubled by the frequency doubler gives a beam of length wave of approximately 0.6 μm (between 0.5 and 0.65 μm).
La figure 2 représente une variante de réalisation du dispositif de la figure 1. Selon cette variante la cavité optique 3, 4 comporte un dispositif de déclenchement (Q s itch en terminologie anglo saxonne) .2 shows an alternative embodiment of the device of Figure 1. According to this variant the optical cavity 3, 4 comprises a triggering device (Q s itch in English terminology).
La figure 3 représente un exemple de réalisation comportant une diode laser 2 éclairant le barreau laser 1 par l'une des. extrémités de la cavité.FIG. 3 represents an exemplary embodiment comprising a laser diode 2 illuminating the laser bar 1 by one of the. ends of the cavity.
La diode laser 2 a la même constitution que les diodes lasers 2.0, 2.1 à 2.n) des figures 1 et 2 et émet un faisceau lumineux d'excitation de longueur d'onde 0,8 μm vers le barreau laser 1 en Forsterite. Le dispositif 6 est un dispositif de déclenchement. Le faisceau sortant de la cavité 3, 4 contenant le barreau laser 1 et le dispositif de déclenchement 6, est transmis à un doubleur de fréquence 5 en qui fournit un faisceau de fréquence double (longueur d'onde 0, 6 μm) . Comme les diodes lasers de la figure 1, la diode laser 2 pourrait être commandée par un modulateur . La cavité optique 3, 4 pourrait alors être constituée par deux faces opposées clivées du barreau laser 1.The laser diode 2 has the same constitution as the laser diodes 2.0, 2.1 to 2.n) of FIGS. 1 and 2 and emits an excitation light beam of wavelength 0.8 μm towards the laser bar 1 in Forsterite. The device 6 is a triggering device. The beam leaving the cavity 3, 4 containing the laser bar 1 and the triggering device 6, is transmitted to a frequency doubler 5 which provides a beam of double frequency (wavelength 0.6 μm). Like the laser diodes in FIG. 1, the laser diode 2 could be controlled by a modulator. The optical cavity 3, 4 could then be constituted by two opposite cleaved faces of the laser bar 1.
Dans ce qui précède on a prévu le cristal doubleur de fréquence 5 situé à l'extérieur de la cavité, mais comme cela est représenté on peut également le placer dans la cavité laser, de préférence entre le barreau laser 1 et la cellule de déclenchement 6. Selon cette variante, les diodes lasers peuvent également être de part et d'autre du barreau laser 1 ou peuvent entourer le barreau laser.In the foregoing, the frequency doubling crystal 5 located outside the cavity is provided, but as shown, it can also be placed in the laser cavity, preferably between the laser bar 1 and the trigger cell 6 According to this variant, the laser diodes can also be on either side of the laser bar 1 or can surround the laser bar.
Il est bien évident que la description qui précède n'a été faite qu'à titre d'exemple non limitatif et que d'autres variantes peuvent être envisagées sans sortir du cadre de l'invention. Les exemples numériques et la nature des matériaux indiqués n'ont été fournis que pour illustrer la description. It is obvious that the above description has been given only by way of nonlimiting example and that other variants can be envisaged without departing from the scope of the invention. The numerical examples and the nature of the materials indicated have been provided only to illustrate the description.

Claims

REVENDICATIONS
1. Laser solide à longueur d'onde d'émission 0, 5 - 0, 65 μm caractérisé en ce qu'il comporte :1. Solid laser with emission wavelength 0.5 - 0.65 μm, characterized in that it comprises:
- un barreau laser (1) à base de Mg„ Si 0. dopé chrome placé dans une cavité résonante (3, 4) ; - au moins une diode laser 2, 2.0 à 2.n) émettant vers le barreau (1) un faisceau de pompe de longueur d'onde compris entre 0,75 et 0,8 micromètres environ ;- a laser rod (1) based on Mg „Si 0. chromium doped placed in a resonant cavity (3, 4); - at least one laser diode 2, 2.0 to 2.n) emitting towards the bar (1) a pump beam of wavelength between 0.75 and 0.8 micrometers approximately;
- un cristal doubleur de fréquence (5) recevant un faisceau émis par le barreau laser (1) et émettant en échange un faisceau de longueur d'onde 0,5 - 0,65 micromètres.- a frequency doubling crystal (5) receiving a beam emitted by the laser bar (1) and emitting in exchange a beam of wavelength 0.5 - 0.65 micrometers.
2. Laser selon la revendication 1, caractérisé en ce que ladite diode laser (2, 2.0 à 2.n) est une diode laser dont la couche active est à base de GaAIAs .2. Laser according to claim 1, characterized in that said laser diode (2, 2.0 to 2.n) is a laser diode whose active layer is based on GaAIAs.
3. f Laser selon la revendication 2, caractérisé en ce que la couche active de la diode laser (2, 2.0 à 2.n) a pour composition Ga_. _ Al A avec x compris entre 0, 1 et 0, 18 et que cette couche active est enserrée entre deux couches de confinement de composition Ga, A As avec y compris entre 0,2 et 0,4. 3. f Laser according to claim 2, characterized in that the active layer of the laser diode (2, 2.0 to 2.n) has the composition Ga_. _ Al A with x between 0.1 and 0.18 and that this active layer is sandwiched between two confinement layers of composition Ga, A As with including between 0.2 and 0.4.
4. Laser selon la revendication 1, caractérisé en ce que le cristal doubleur de fréquence est à base de BB0 ou de LiNbOg.4. Laser according to claim 1, characterized in that the frequency doubling crystal is based on BB0 or LiNbOg.
5. Laser selon la revendication 1, caractérisé en ce qu'il comporte un dispositif de déclenchement (6) placé dans la cavité laser (3, 4) placé sur le trajet du faisceau lumineux.5. Laser according to claim 1, characterized in that it comprises a triggering device (6) placed in the laser cavity (3, 4) placed on the path of the light beam.
6. Laser selon la revendication 1, caractérisé en ce que la diode laser (2, 2.0, 2.n) est commandée par un courant de commande fourni par un modulateur de courant de commande.6. Laser according to claim 1, characterized in that the laser diode (2, 2.0, 2.n) is controlled by a control current supplied by a control current modulator.
7. Laser selon la revendication 5, caractérisé en ce que le cristal doubleur de fréquence (5) est situé dans la cavité (3, 4) . 7. Laser according to claim 5, characterized in that the frequency doubling crystal (5) is located in the cavity (3, 4).
EP90910784A 1989-07-06 1990-06-28 Solid laser with a transmission wavelength of 0.5-0.65 micrometres Ceased EP0433432A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8909109 1989-07-06
FR8909109A FR2649548B1 (en) 1989-07-06 1989-07-06 SOLID EMITTING WAVELENGTH LASER 0.5-0.65 MICROMETERS

Publications (1)

Publication Number Publication Date
EP0433432A1 true EP0433432A1 (en) 1991-06-26

Family

ID=9383544

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90910784A Ceased EP0433432A1 (en) 1989-07-06 1990-06-28 Solid laser with a transmission wavelength of 0.5-0.65 micrometres

Country Status (6)

Country Link
US (1) US5173910A (en)
EP (1) EP0433432A1 (en)
JP (1) JPH04500746A (en)
CA (1) CA2035889A1 (en)
FR (1) FR2649548B1 (en)
WO (1) WO1991001055A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04352483A (en) * 1991-05-30 1992-12-07 Tosoh Corp All-solid variable wavelength pulse laser
FR2681988A1 (en) * 1991-09-27 1993-04-02 Thomson Csf DEFLECTION POWER LASER.
US5761227A (en) * 1994-08-23 1998-06-02 Laser Power Corporation Efficient frequency-converted laser
US5721749A (en) * 1996-01-30 1998-02-24 Trw Inc. Laser pulse profile control by modulating relaxation oscillations
FR2751797B1 (en) * 1996-07-23 1999-02-05 Thomson Csf DEVICE FOR MEASURING THE ALIGNMENT OF A LASER AMPLIFICATION CHAIN
FR2759208B1 (en) * 1997-01-31 1999-05-07 Thomson Csf LASER CHANNELS POINTING AND FOCUSING CONTROL DEVICE ON A TARGET
FR2784185B1 (en) 1998-10-06 2001-02-02 Thomson Csf DEVICE FOR THE HARMONIZATION BETWEEN A LASER EMISSION CHANNEL AND A PASSIVE OBSERVATION CHANNEL
FR2811148B1 (en) 2000-06-30 2006-07-21 Thomson Csf PUMP LASER AND OPTIMIZED LASER MEDIA
JP2002033538A (en) * 2000-07-13 2002-01-31 Mitsubishi Electric Corp Semiconductor laser excitation solid-state laser device
FR2814281B1 (en) * 2000-09-19 2003-08-29 Thomson Lcd ACTIVE TFT MATRIX FOR OPTICAL SENSOR COMPRISING A PHOTOSENSITIVE SEMICONDUCTOR LAYER, AND OPTICAL SENSOR COMPRISING SUCH A MATRIX
FR2825463B1 (en) * 2001-05-30 2003-09-12 Thales Sa SOLID STATE LASER GYROMETER COMPRISING A RESONATOR BLOCK

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809291A (en) * 1984-11-26 1989-02-28 Board Of Trustees, Of Leland Stanford Jr U. Diode pumped laser and doubling to obtain blue light
US4653056A (en) * 1985-05-01 1987-03-24 Spectra-Physics, Inc. Nd-YAG laser
JP2679057B2 (en) * 1987-09-10 1997-11-19 セイコーエプソン株式会社 Manufacturing method of semiconductor laser
DE3888799T2 (en) * 1987-12-04 1994-11-17 Robert R Alfano Chromium-doped forsterite laser system.
US4932031A (en) * 1987-12-04 1990-06-05 Alfano Robert R Chromium-doped foresterite laser system
US5025446A (en) * 1988-04-01 1991-06-18 Laserscope Intra-cavity beam relay for optical harmonic generation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9101055A1 *

Also Published As

Publication number Publication date
WO1991001055A1 (en) 1991-01-24
CA2035889A1 (en) 1991-01-07
FR2649548B1 (en) 1994-08-26
JPH04500746A (en) 1992-02-06
US5173910A (en) 1992-12-22
FR2649548A1 (en) 1991-01-11

Similar Documents

Publication Publication Date Title
EP0408406A1 (en) Tunable high power laser source
EP0433432A1 (en) Solid laser with a transmission wavelength of 0.5-0.65 micrometres
FR2751796A1 (en) SOILDE MICROLASER, OPTICALLY PUMPED BY VERTICAL CAVITY SEMICONDUCTOR LASER
EP0460978B1 (en) High power laser with active mirror
EP1285479B1 (en) Single photon source based on transmitters with selectively distributed frequencies
EP3338330B1 (en) Terahertz laser, terahertz source and use of such a terahertz laser
EP1756920B1 (en) Tunable laser source with optical wavelength addressing
EP0430783B1 (en) Long wavelength laser device
FR2885265A1 (en) LASER DEVICE DISCHARGED WITH PHOTONIC FIBER
EP2018687B1 (en) High-power fiberoptic pulsed laser device
EP0806065A1 (en) Active q-switching microchip laser
EP0534820A1 (en) Fiber optic single frequency medium power source
FR2888409A1 (en) MULTI-WAVE LASER SOURCE IN INFRARED
US20100020832A1 (en) Wavelength selectable laser systems and related methods
EP1262036B1 (en) Controllable low photon source
FR2681738A1 (en) SEMICONDUCTOR FILTER POWER LASERS.
EP0402249B1 (en) Wavelength stabilized semiconductor laser
EP1454394B1 (en) Micro-cavity light emitting device and method for making same
FR2751480A1 (en) Solid state cavity micro-laser applicable in telemetry and automobile industries
Fujii et al. Polarized fluorescence spectra of high-chromium-doped forsterite
FR2542104A1 (en) Method and device for creating short light pulses
EP0767519A1 (en) Device for optical amplification
DIODE II. QUANTUM ELECTRONICS
FR2574602A1 (en) Semiconductor laser allowing stimulated emission of light in the ultraviolet and the visible
FR2691588A1 (en) Power laser source.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19941027

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19951019