EP0402249B1 - Wavelength stabilized semiconductor laser - Google Patents

Wavelength stabilized semiconductor laser Download PDF

Info

Publication number
EP0402249B1
EP0402249B1 EP90401538A EP90401538A EP0402249B1 EP 0402249 B1 EP0402249 B1 EP 0402249B1 EP 90401538 A EP90401538 A EP 90401538A EP 90401538 A EP90401538 A EP 90401538A EP 0402249 B1 EP0402249 B1 EP 0402249B1
Authority
EP
European Patent Office
Prior art keywords
semiconductor laser
crystal
wavelength
laser according
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90401538A
Other languages
German (de)
French (fr)
Other versions
EP0402249A1 (en
Inventor
François Auzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP0402249A1 publication Critical patent/EP0402249A1/en
Application granted granted Critical
Publication of EP0402249B1 publication Critical patent/EP0402249B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency

Definitions

  • the subject of the present invention is a wavelength stabilized semiconductor laser.
  • Frequency stabilization of lasers in general and of semiconductor lasers in particular is a technique widely known today.
  • Several solutions have been proposed: slaving the frequency to a resonance mode of a Fabry-Pérot standard or to a gas absorption line, synchronization on another laser, itself stabilized, etc.
  • the laser to be stabilized is chosen or modified to already have a certain frequency stability. It is thus possible to operate by sorting double heterostructures in order to retain only the components whose alloy leads to the desired central frequency; it is also possible to reduce the natural emission width by lengthening the resonant cavity by means of an external auxiliary mirror (optical feedback); we can finally use a diffraction grating placed along the active area (laser called “DFB” for "Distributed Feed-Back” or “DBR” for “Distributed Bragg Reflection”).
  • DFB distributed Feed-Back
  • DBR distributed Bragg Reflection
  • the heterostructure sorting method leads to low manufacturing yields.
  • the use of optical feedback by external auxiliary mirror poses difficult mechanical problems and leads to complex and cumbersome structures to implement.
  • the lasers with networks distributed along the active area they are obtained only at the cost of a complication of the manufacturing processes, due to epitaxial resumptions.
  • the object of the present invention is precisely to remedy all of these drawbacks. To this end, it offers a stabilization means which is particularly simple to implement and which avoids all the pitfalls of the prior art.
  • a crystal doped with rare earth ions is added to the laser cavity to stabilize. It is recalled in this connection that such ions have a ground state and a first excited electronic state. Due to the electric field created by the crystal lattice, these levels are broken down into sub-levels (Stark effect). The ions then have series of absorption lines corresponding to transitions from the ground state to the excited state and emission lines corresponding to reverse transitions. These two series of lines are slightly offset from each other, the emission lines being located at a slightly lower energy, therefore at a slightly longer wavelength.
  • the inventor of the present invention has clearly shown (in an article published in the journal Journal of Applied Physics, vol. 66, 3952, 1989) that the rare earth ions enter only a low concentration in the semiconductor (case of Yb3+) or remaining outside of it (case of Er3+), the gains obtained at the frequency of the transition of the rare earth are negligible (10 ⁇ 1 to 10 ⁇ 2cm ⁇ 1) compared to those of semiconductor (about 102cm ⁇ 1). There is therefore hardly any modification of this gain by the addition of earth ions. rare.
  • the present invention overcomes all these drawbacks. It allows much higher concentrations of rare earth ions to be used than in the prior art (1020 to 1022cm ⁇ 3), which makes it possible to considerably modify the gain of the semiconductor and to truly benefit from the great stability. in wavelength of the transition of the rare earth ion (instability of the order of 10 ⁇ 2 ⁇ / ° C).
  • the composition of the crystal and the nature of the ions are chosen so that one of the transitions of the rare earth ion (absorption and / or emission) falls into the spontaneous emission band of the semiconductor amplifying medium. . There is then a transfer of energy from the shortest wavelengths to the longest wavelengths, as will be better understood later.
  • the transition of the rare earth ion happens to be privileged and it is on the wavelength of this transition that the laser will oscillate.
  • the subject of the present invention is a semiconductor laser comprising an amplifying medium with a semiconductor junction and at least one mirror, the junction being joined to a current source and having an emission band.
  • spontaneous this laser being characterized by the fact that it further comprises, to stabilize it in wavelength, a crystal doped with rare earth ions having a transition falling in the spontaneous emission band of the amplifying medium, this crystal being placed between the mirror and the amplifying medium, the laser then emitting at a wavelength corresponding to the transition of the rare earth ion.
  • the value of the stabilized wavelength depends first of all on the rare earth ion used, and to a lesser extent on the crystal lattice, which imposes an electric field on the ions, thus displacing the levels by Stark effect.
  • the intensity of the crystal field can thus vary by more than a factor of 3 between NdCl3 and Y3Al5O12: Nd for example.
  • the crystal is given a shape such that it produces a mode selection.
  • this standard may have only one longitudinal mode in the atomic line.
  • the free spectral interval conventionally given by the formula c / 2nL where c is the speed of light, n the index of the crystal and L the thickness of the plate, must be close to or greater at the width ⁇ F of the emission line of the rare earth ion.
  • FIG. 1 shows schematically the absorption spectrum (A) of a crystal doped with rare earth ions and the emission spectrum (E).
  • the abscissa axis corresponds to the wavelength.
  • the absorption peaks correspond to the different atomic transitions from the ground state (separated by the Stark effect) to the first excited electronic state (also separated by the Stark effect) and the emission peaks to the transitions from the excited state to the ground state.
  • the shift towards the long wavelengths of the emission compared to the absorption is traditional (Stokes effect).
  • a crystal thus doped, placed in the cavity of a laser, will modify the gain of the amplifying medium according to the diagram in FIG. 2.
  • the gain curve G represents the variations in gain as a function of the wavelength for a medium classic semiconductor amplifier.
  • the presence of the doped crystal decreases the gain in the absorption zone and increases it in the emission zone to give a curve G ′ which is, roughly speaking, below the curve G for low wavelengths and above G for the longer wavelengths.
  • the invention is not limited to operation on an emission line such as the line with ⁇ o shown, but extends to the case of any transition of the rare earth ion. At low excitation levels, even the "negative" part of the gain curve can be used to stabilize the laser.
  • FIGS 3 to 5 show some embodiments of lasers according to the invention.
  • the laser illustrated in FIG. 3 comprises an amplifying medium 10 in the form of a double heterostructure with PN junction referenced 12.
  • the semiconductor structure is supplied with current by a source 14.
  • the front face 16 of the heterostructure is cleaved.
  • the rear face is covered with an anti-reflection layer 18.
  • a thin plate 20 of crystal doped with rare earth ions is placed between the anti-reflection layer 18 and a spherical mirror 22.
  • the coherent emission stabilized in length wave is carried out from the front (reference 23).
  • the doped crystalline thin plate 20 is pressed against the anti-reflection layer 18 and a reflective layer 24 is deposited on the rear face of the blade.
  • FIG. 5 differs from the previous ones by the use of an optical fiber 26 disposed between the crystal plate 20 and the reflective layer 24. This fiber is advantageously self-focusing.
  • a second blade 20 ′ made of a crystal different from that of the blade 20 but doped with the same ions.
  • a laser according to the invention will be described, emitting in a single longitudinal mode ("single mode” or “single frequency”) stabilized at 1.5335 ⁇ m.
  • the amplifying medium consists of a double heterostructure in quaternary alloy whose active zone is in InGaAsP.
  • the natural emission of such a structure is between 1.480 and 1.525 ⁇ m depending on the composition.
  • the structure is stabilized by a crystal of LiYF4 doped with erbium, of formula LiY 1-x Er X F4 where x is between 10 ⁇ 4 and 1.
  • the value of x depends both on the power available in the cavity , the thickness of the crystal plate and the concentration of Er3+ ions. The higher the power, the more x can deviate from the unit and the smaller the thickness of the crystal can be chosen.
  • Such a thin blade can be obtained by polishing.
  • One reflective gold layer is deposited on one of its faces intended to play the role of mirror with high reflectivity at the wavelength of 1.5335 ⁇ m.
  • the rear face of the double heterostructure in InGaAsP is treated with anti-reflection by a layer of SiO producing a reflection of less than 10 ⁇ 2.
  • the assembly according to FIG. 4 is carried out using thin adhesives so as not to destroy the parallelism of the surfaces.
  • Adhesives of the cyanoacrylate or epoxy type called "for IR optics" are very suitable.

Description

La présente invention a pour objet un laser à semi-conducteur stabilisé en longueur d'onde.The subject of the present invention is a wavelength stabilized semiconductor laser.

Elle trouve une application en télécommunications optiques. Elle s'applique à tous les lasers à semi-conducteur et notamment aux lasers à simple ou double hétérostructure en alliage III-V. Il peut s'agir par exemple, mais non exclusivement, de lasers à GaAs, GaAlAs, InGaAs, GaAsP, InGaAsP, InP, etc...It finds an application in optical telecommunications. It applies to all semiconductor lasers and in particular to lasers with single or double heterostructure in III-V alloy. It may, for example, but not exclusively, be lasers with GaAs, GaAlAs, InGaAs, GaAsP, InGaAsP, InP, etc.

Dans le domaine des télécommunications optiques, il existe un réel besoin de sources laser offrant une grande stabilité de fréquence. Ce n'est qu'à cette condition qu'on pourra mettre en oeuvre les techniques de la radioélectricité comme la modulation, la démodulation, etc...In the field of optical telecommunications, there is a real need for laser sources offering high frequency stability. It is only on this condition that we will be able to implement radioelectricity techniques such as modulation, demodulation, etc.

La stabilisation en fréquence des lasers en général et des lasers à semi-conducteur en particulier, est une technique largement connue aujourd'hui. Plusieurs solutions ont été proposées : asservissement de la fréquence à un mode de résonance d'un étalon Fabry-Pérot ou à une raie d'absorption d'un gaz, synchronisation sur un autre laser, lui-même stabilisé, etc...Frequency stabilization of lasers in general and of semiconductor lasers in particular is a technique widely known today. Several solutions have been proposed: slaving the frequency to a resonance mode of a Fabry-Pérot standard or to a gas absorption line, synchronization on another laser, itself stabilized, etc.

Pour faciliter l'obtention de cette stabilité, le laser à stabiliser est choisi ou modifié pour présenter déjà une certaine stabilité de fréquence. On peut ainsi opérer par tri de doubles hétérostructures pour ne retenir que les composants dont l'alliage conduit à la fréquence centrale souhaitée ; il est également possible de réduire la largeur propre d'émission en allongeant la cavité résonnante au moyen d'un miroir auxiliaire extérieur (contre-réaction optique) ; on peut enfin avoir recours à un réseau de diffraction disposé le long de la zone active (laser dit "DFB" pour "Distributed Feed-Back" ou encore "DBR" pour "Distributed Bragg Reflection").To facilitate obtaining this stability, the laser to be stabilized is chosen or modified to already have a certain frequency stability. It is thus possible to operate by sorting double heterostructures in order to retain only the components whose alloy leads to the desired central frequency; it is also possible to reduce the natural emission width by lengthening the resonant cavity by means of an external auxiliary mirror (optical feedback); we can finally use a diffraction grating placed along the active area (laser called "DFB" for "Distributed Feed-Back" or "DBR" for "Distributed Bragg Reflection").

Cet état de la technique est décrit par exemple dans l'article de Motoichi OHTSU intitulé "Frequency Stabilization in Semi-Conductor Lasers" publié dans la revue "Optical and Quantum Electronics", vol. 20, (1988), pages 283-300.This state of the art is described for example in the article by Motoichi OHTSU entitled "Frequency Stabilization in Semi-Conductor Lasers" published in the journal "Optical and Quantum Electronics", vol. 20, (1988), pages 283-300.

Cependant, ces techniques connues présentent des inconvénients. La méthode du tri des hétérostructures conduit à des rendements de fabrication bas. Le recours à la contre-réaction optique par miroir auxiliaire externe pose des problèmes mécaniques difficiles et conduit à des structures complexes et lourdes de mise en oeuvre. Quant aux lasers à réseaux distribués le long de la zone active, ils ne sont obtenus qu'au prix d'une complication des procédés de fabrication, due à des reprises d'épitaxie.However, these known techniques have drawbacks. The heterostructure sorting method leads to low manufacturing yields. The use of optical feedback by external auxiliary mirror poses difficult mechanical problems and leads to complex and cumbersome structures to implement. As for the lasers with networks distributed along the active area, they are obtained only at the cost of a complication of the manufacturing processes, due to epitaxial resumptions.

La présente invention a justement pour but de remédier à tous ces inconvénients. A cette fin, elle propose un moyen de stabilisation particulièrement simple à mettre en oeuvre et qui évite tous les écueils de l'art antérieur.The object of the present invention is precisely to remedy all of these drawbacks. To this end, it offers a stabilization means which is particularly simple to implement and which avoids all the pitfalls of the prior art.

Selon l'invention, on ajoute à la cavité du laser à stabiliser un cristal dopé en ions de terre rare. On rappelle à ce sujet que de tels ions possèdent un état fondamental et un premier état électronique excité. Du fait du champ électrique créé par le réseau cristallin, ces niveaux sont décomposés en sous-niveaux (effet Stark). Les ions présentent alors des séries de raies d'absorption correspondant à des transitions de l'état fondamental vers l'état excité et des raies d'émission correspondant à des transitions inverses. Ces deux séries de raies sont légèrement décalées l'une par rapport à l'autre, les raies d'émission se situant à une énergie un peu plus faible, donc à une longueur d'onde un peu plus grande.According to the invention, a crystal doped with rare earth ions is added to the laser cavity to stabilize. It is recalled in this connection that such ions have a ground state and a first excited electronic state. Due to the electric field created by the crystal lattice, these levels are broken down into sub-levels (Stark effect). The ions then have series of absorption lines corresponding to transitions from the ground state to the excited state and emission lines corresponding to reverse transitions. These two series of lines are slightly offset from each other, the emission lines being located at a slightly lower energy, therefore at a slightly longer wavelength.

On a déjà pensé à utiliser les terres rares dans les lasers à semi-conducteurs. L'article de W.T. TSANG et al. intitulé "Observation of enhanced single longitudinal mode of operation in 1.5 µm GaInAsP erbium-doped semiconductor injection lasers" publié dans la revue "Applied Physics Letters", vol. 49, (25), 22 décembre 1986, pp. 1686-1688, décrit une technique consistant à introduire les ions de terre rare dans la zone active du laser.We have already thought about using rare earths in semiconductor lasers. The article by W.T. TSANG et al. entitled "Observation of enhanced single longitudinal mode of operation in 1.5 µm GaInAsP erbium-doped semiconductor injection lasers" published in the journal "Applied Physics Letters", vol. 49, (25), December 22, 1986, pp. 1686-1688, describes a technique of introducing rare earth ions into the active area of the laser.

En réalité, une telle manière de procéder conduit à des difficultés. Tout d'abord, il est difficile d'introduire des terres rares dans les semi-conducteurs (concentration maximum de l'ordre de 10¹⁶-10¹⁸ cm⁻³) car elles ont tendance à y précipiter. On obtient en fait une cavité multiple aléatoire, qui donne bien un fonctionnement monofréquence mais à une fréquence imprévisible. Par ailleurs, l'instabilité en température observée par les auteurs W.T. TSANG et al. reste élevée :Δλ/ΔT=1,1Å/°C, (1Å=10⁻¹⁰m.) ce qui montre bien que ce ne sont pas les ions terre rare qui stabilise l'émission car l'instabilité propre à ces ions est beaucoup plus faible et de l'ordre de 10⁻²Å/°C.In reality, such a procedure leads to difficulties. First of all, it is difficult to introduce rare earths into the semiconductors (maximum concentration of the order of 10¹⁶-10¹⁸ cm⁻³) because they tend to precipitate there. We actually get a random multiple cavity, which gives a monofrequency operation but at an unpredictable frequency. Furthermore, the temperature instability observed by the authors W.T. TSANG et al. remains high: Δλ / ΔT = 1.1Å / ° C, (1Å = 10⁻¹⁰m.) which clearly shows that it is not the rare earth ions which stabilize the emission because the instability proper to these ions is much lower and around 10⁻²Å / ° C.

L'inventeur de la présente invention a bien montré (dans un article publié dans la revue Journal of Applied Physics, vol. 66, 3952, 1989) que les ions terre rare ne rentrant qu'en faible concentration dans le semi-conducteur (cas de Yb³⁺) ou restant à l'extérieur de celui-ci (cas de Er³⁺), les gains obtenus à la fréquence de la transition de la terre rare sont négligeables (10⁻¹ à 10⁻²cm⁻¹) devant ceux du semi-conducteur (environ 10²cm⁻¹). Il n'y a donc guère de modification de ce gain par l'adjonction d'ions terre rare.The inventor of the present invention has clearly shown (in an article published in the journal Journal of Applied Physics, vol. 66, 3952, 1989) that the rare earth ions enter only a low concentration in the semiconductor (case of Yb³⁺) or remaining outside of it (case of Er³⁺), the gains obtained at the frequency of the transition of the rare earth are negligible (10⁻¹ to 10⁻²cm⁻¹) compared to those of semiconductor (about 10²cm⁻¹). There is therefore hardly any modification of this gain by the addition of earth ions. rare.

Un article de VAN DER ZIEL publié dans la revue Applied Physics Letters, vol. 50, 1313, 1987 a confirmé qu'il fallait remettre en cause les interprétations données préalablement dans l'article de W.T. TSANG.An article by VAN DER ZIEL published in the journal Applied Physics Letters, vol. 50, 1313, 1987 confirmed that it was necessary to question the interpretations given previously in the article by W.T. TSANG.

La présente invention permet de remédier à tous ces inconvénients. Elle permet d'utiliser des concentrations d'ions de terre rare beaucoup plus importantes que dans l'art antérieur (10²⁰ à 10²²cm⁻³), ce qui permet de modifier considérablement le gain du semi-conducteur et de bénéficier véritablement de la grande stabilité en longueur d'onde de la transition de l'ion terre rare (instabilité de l'ordre de 10⁻²Å/°C).The present invention overcomes all these drawbacks. It allows much higher concentrations of rare earth ions to be used than in the prior art (10²⁰ to 10²²cm⁻³), which makes it possible to considerably modify the gain of the semiconductor and to truly benefit from the great stability. in wavelength of the transition of the rare earth ion (instability of the order of 10⁻²Å / ° C).

Ce résultat est obtenu grâce à l'invention en utilisant un cristal dopé en ions terre rare disposé en dehors du semi-conducteur. Les ions terre rare ne sont donc plus situés dans le milieu actif semi-conducteur.This result is obtained thanks to the invention by using a crystal doped with rare earth ions placed outside the semiconductor. The rare earth ions are therefore no longer located in the semiconductor active medium.

Selon l'invention, on choisit la composition du cristal et la nature des ions pour que l'une des transitions de l'ion terre rare (absorption et/ou émission) tombe dans la bande d'émission spontanée du milieu amplificateur semi-conducteur. Il se produit alors un transfert d'énergie des plus courtes longueurs d'onde vers les plus grandes longueurs d'onde, comme on le comprendra mieux par la suite. La transition de l'ion terre rare se trouve être privilégiée et c'est sur la longueur d'onde de cette transition que le laser va osciller.According to the invention, the composition of the crystal and the nature of the ions are chosen so that one of the transitions of the rare earth ion (absorption and / or emission) falls into the spontaneous emission band of the semiconductor amplifying medium. . There is then a transfer of energy from the shortest wavelengths to the longest wavelengths, as will be better understood later. The transition of the rare earth ion happens to be privileged and it is on the wavelength of this transition that the laser will oscillate.

De façon précise, la présente invention a pour objet un laser à semi-conducteur comprenant un milieu amplificateur à jonction semi-conductrice et au moins un miroir, la jonction étant réunie à une source de courant et présentant une bande d'émission spontanée, ce laser étant caractérisé par le fait qu'il comprend en outre, pour le stabiliser en longueur d'onde, un cristal dopé avec des ions de terre rare ayant une transition tombant dans la bande d'émission spontanée du milieu amplificateur, ce cristal étant disposé entre le miroir et le milieu amplificateur, le laser émettant alors à une longueur d'onde correspondant à la transition de l'ion terre rare.Specifically, the subject of the present invention is a semiconductor laser comprising an amplifying medium with a semiconductor junction and at least one mirror, the junction being joined to a current source and having an emission band. spontaneous, this laser being characterized by the fact that it further comprises, to stabilize it in wavelength, a crystal doped with rare earth ions having a transition falling in the spontaneous emission band of the amplifying medium, this crystal being placed between the mirror and the amplifying medium, the laser then emitting at a wavelength corresponding to the transition of the rare earth ion.

La valeur de la longueur d'onde stabilisée dépend d'abord de l'ion de terre rare utilisé, et dans une mesure moindre du réseau cristallin, lequel impose un champ électrique aux ions, déplaçant ainsi les niveaux par effet Stark. L'intensité du champ cristallin peut ainsi varier de plus d'un facteur 3 entre NdCl₃ et Y₃Al₅O₁₂:Nd par exemple.The value of the stabilized wavelength depends first of all on the rare earth ion used, and to a lesser extent on the crystal lattice, which imposes an electric field on the ions, thus displacing the levels by Stark effect. The intensity of the crystal field can thus vary by more than a factor of 3 between NdCl₃ and Y₃Al₅O₁₂: Nd for example.

Ainsi, pour ce qui est de l'ion terre rare, on pourra utiliser :

  • Sm²⁺ pour une longueur d'onde voisine de 0,65 µm à 0,7 µm,
  • Nd³⁺, Yb³⁺ pour une longueur d'onde voisine de 0,81 µm à 1 µm,
  • Tm²⁺ pour une longueur d'onde voisine de 1,2 µm,
  • Er³⁺ pour une longueur d'onde voisine de 1,5 µm,
  • Tm³⁺, Ho³⁺ pour une longueur d'onde voisine de 2 µm.
Thus, for the rare earth ion, we can use:
  • Sm²⁺ for a wavelength close to 0.65 µm to 0.7 µm,
  • Nd³⁺, Yb³⁺ for a wavelength close to 0.81 µm to 1 µm,
  • Tm²⁺ for a wavelength close to 1.2 µm,
  • Er³⁺ for a wavelength close to 1.5 µm,
  • Tm³⁺, Ho³⁺ for a wavelength close to 2 µm.

Pour ce qui est du cristal, une grande variété de matériaux est possible. On peut citer : Y₃Al₅O₁₂, LaCl₃, LaF₃, LaP₅O₁₄, CaWO₄, LiYF₄, Na₅La(WO₄)₄, LiLaP₄O₁₂, KLaP₄O₁₂, etc...As for crystal, a wide variety of materials is possible. We can cite: Y₃Al₅O₁₂, LaCl₃, LaF₃, LaP₅O₁₄, CaWO₄, LiYF₄, Na₅La (WO₄) ₄, LiLaP₄O₁₂, KLaP₄O₁₂, etc ...

Les propriétés des cristaux dopés en ions de terre rare sont étudiées dans un article de l'inventeur de la présente invention, F. AUZEL, article intitulé "A Scalar Crystal Field Parameter for Rare Earth Ions ; Meaning and Application to Energy Transfer", publié dans l'ouvrage "Energy Transfer Processes in Condensed Matter", édité par B. Di BARTOLO, (PLENNUM), 1984.The properties of crystals doped with rare earth ions are studied in an article by the inventor of the present invention, F. AUZEL, article entitled "A Scalar Crystal Field Parameter for Rare Earth Ions; Meaning and Application to Energy Transfer", published in the book "Energy Transfer Processes in Condensed Matter", edited by B. Di BARTOLO, (PLENNUM), 1984.

Selon une autre disposition avantageuse de l'invention, on donne au cristal une forme telle qu'il produise une sélection de mode. En donnant au cristal stabilisateur la forme d'une lame mince apte à jouer le rôle d'étalon Fabry-Pérot, cet étalon pourra ne présenter qu'un seul mode longitudinal dans la raie atomique. En d'autres termes, l'intervalle spectral libre, donné classiquement par la formule c/2nL où c est la vitesse de la lumière, n l'indice du cristal et L l'épaisseur de la lame, devra être proche de ou supérieure à la largeur ΔF de la raie d'émission de l'ion de terre rare.According to another advantageous arrangement of the invention, the crystal is given a shape such that it produces a mode selection. By giving the stabilizing crystal the shape of a thin blade capable of playing the role of Fabry-Pérot standard, this standard may have only one longitudinal mode in the atomic line. In other words, the free spectral interval, conventionally given by the formula c / 2nL where c is the speed of light, n the index of the crystal and L the thickness of the plate, must be close to or greater at the width ΔF of the emission line of the rare earth ion.

On s'efforcera donc de prendre une épaisseur L supérieure ou égale à c/2n ΔF.We will therefore endeavor to take a thickness L greater than or equal to c / 2n ΔF.

Pour n=1,5, ΔF=1cm⁻¹, on obtient une épaisseur L de 1 mm.For n = 1.5, ΔF = 1cm⁻¹, we obtain a thickness L of 1 mm.

Selon une autre disposition avantageuse de l'invention, on utilise plusieurs cristaux de composition différente dopés avec la même terre rare. Pour les raisons évoquées plus haut, on obtiendra plusieurs longueurs d'onde priviligiées. Le laser sera alors multilongueur d'onde et trouvera une application en multiplexage optique.According to another advantageous arrangement of the invention, several crystals of different composition doped with the same rare earth are used. For the reasons mentioned above, several preferred wavelengths will be obtained. The laser will then be multi-wavelength and find an application in optical multiplexing.

De toute façon, les caractéristiques de l'invention apparaîtront mieux à la lumière de la description qui va suivre. Cette description porte sur des exemples non limitatifs et se réfère à des dessins annexés sur lesquels :

  • la figure 1 montre schématiquement un spectre d'absorption-émission d'un ion terre rare dans un cristal,
  • la figure 2 montre la courbe de gain d'un milieu aplificateur semi-conducteur et celle d'un ensemble composite comprenant un amplificateur semi-conducteur et un cristal dopé stabilisateur,
  • la figure 3 illustre un premier mode de réalisation d'un laser conforme à l'invention,
  • la figure 4 illustre un deuxième mode de réalisation d'un laser conforme à l'invention,
  • la figure 5 illustre un troisième mode de réalisation d'un laser conforme à l'invention.
In any case, the characteristics of the invention will appear better in the light of the description which follows. This description relates to nonlimiting examples and refers to the attached drawings in which:
  • FIG. 1 schematically shows an absorption-emission spectrum of a rare earth ion in a crystal,
  • FIG. 2 shows the gain curve of a semiconductor amplifier medium and that of a composite assembly comprising a semiconductor amplifier and a stabilized doped crystal,
  • FIG. 3 illustrates a first embodiment of a laser according to the invention,
  • FIG. 4 illustrates a second embodiment of a laser according to the invention,
  • FIG. 5 illustrates a third embodiment of a laser according to the invention.

On a représenté sur la figure 1, de manière schématique, le spectre d'absorption (A) d'un cristal dopé avec des ions terre rare et le spectre d'émission (E). L'axe des abscisses correspond à la longueur d'onde. Les pics d'absorption correspondent aux différentes transitions atomiques de l'état fondamental (séparé par effet Stark) vers le premier état électronique excité (également séparé par effet Stark) et les pics d'émission aux transitions de l'état excité vers l'état fondamental. Le décalage vers les grandes longueurs d'onde de l'émission par rapport à l'absorption est classique (effet Stokes).FIG. 1 shows schematically the absorption spectrum (A) of a crystal doped with rare earth ions and the emission spectrum (E). The abscissa axis corresponds to the wavelength. The absorption peaks correspond to the different atomic transitions from the ground state (separated by the Stark effect) to the first excited electronic state (also separated by the Stark effect) and the emission peaks to the transitions from the excited state to the ground state. The shift towards the long wavelengths of the emission compared to the absorption is traditional (Stokes effect).

Un cristal ainsi dopé, placé dans la cavité d'un laser, va modifier le gain du milieu amplificateur selon le schéma de la figure 2. La courbe de gain G représente les variations du gain en fonction de la longueur d'onde pour un milieu amplificateur à semi-conducteur classique. La présence du cristal dopé diminue le gain dans la zone d'absorption et l'augmente dans la zone d'émission pour donner une courbe G′ qui est, grosso modo, au-dessous de la courbe G pour les basses longueurs d'onde et au-dessus de G pour les plus grandes longueurs d'onde.A crystal thus doped, placed in the cavity of a laser, will modify the gain of the amplifying medium according to the diagram in FIG. 2. The gain curve G represents the variations in gain as a function of the wavelength for a medium classic semiconductor amplifier. The presence of the doped crystal decreases the gain in the absorption zone and increases it in the emission zone to give a curve G ′ which is, roughly speaking, below the curve G for low wavelengths and above G for the longer wavelengths.

Si le résonateur présente des pertes P, l'oscillation ne sera possible que pour la longueur d'onde où le gain l'emportera sur ces pertes. L'oscillation se produira ainsi à la longueur d'onde λ o, qui n'est plus définie par le sommet de la courbe de gain du milieu amplificateur à semi-conducteur, avec toutes les fluctuations qui peuvent en résulter, mais par la raie d'émission propre à l'ion terre rare, avec la stabilité qu'on connaît aux raies atomiques.If the resonator has losses P, oscillation will only be possible for the wavelength where the gain will outweigh these losses. The oscillation will thus occur at the wavelength λ o, which is no longer defined by the top of the curve. gain of the semiconductor amplifying medium, with all the fluctuations which may result therefrom, but by the emission line specific to the rare earth ion, with the stability that is known to atomic lines.

L'invention n'est pas limitée au fonctionnement sur une raie d'émission telle que la raie à λo représentée, mais s'étend au cas de toute transition de l'ion terre rare. A bas niveau d'excitation, même la partie "négative" de la courbe de gain peut être utilisée pour stabiliser le laser.The invention is not limited to operation on an emission line such as the line with λo shown, but extends to the case of any transition of the rare earth ion. At low excitation levels, even the "negative" part of the gain curve can be used to stabilize the laser.

Les figures 3 à 5 montrent quelques exemples de réalisation de lasers conformes à l'invention.Figures 3 to 5 show some embodiments of lasers according to the invention.

Le laser illustré sur la figure 3 comprend un milieu amplificateur 10 en forme de double hétérostructure avec jonction PN référencée 12. La structure semi-conductrice est alimentée en courant par une source 14. La face avant 16 de l'hétérostructure est clivée. La face arrière est recouverte d'une couche anti-reflet 18. Une lame mince 20 de cristal dopé en ions de terre rare est disposée entre la couche anti-reflet 18 et un miroir sphérique 22. L'émission cohérente stabilisée en longueur d'onde s'effectue par l'avant (référence 23).The laser illustrated in FIG. 3 comprises an amplifying medium 10 in the form of a double heterostructure with PN junction referenced 12. The semiconductor structure is supplied with current by a source 14. The front face 16 of the heterostructure is cleaved. The rear face is covered with an anti-reflection layer 18. A thin plate 20 of crystal doped with rare earth ions is placed between the anti-reflection layer 18 and a spherical mirror 22. The coherent emission stabilized in length wave is carried out from the front (reference 23).

Dans une variante plus compacte illustrée par la figure 4, la lame mince cristalline dopée 20 est plaquée sur la couche anti-reflet 18 et une couche réfléchissante 24 est déposée sur la face arrière de la lame.In a more compact variant illustrated in FIG. 4, the doped crystalline thin plate 20 is pressed against the anti-reflection layer 18 and a reflective layer 24 is deposited on the rear face of the blade.

La variante illustrée sur la figure 5 diffère des précédentes par l'utilisation d'une fibre optique 26 disposée entre la lame cristalline 20 et la couche réfléchissante 24. Cette fibre est avantageusement autofocalisante. Sur cette figure, on a représenté en outre une deuxième lame 20′ faite d'un cristal différent de celui de la lame 20 mais dopée par les mêmes ions.The variant illustrated in FIG. 5 differs from the previous ones by the use of an optical fiber 26 disposed between the crystal plate 20 and the reflective layer 24. This fiber is advantageously self-focusing. In this figure, there is also shown a second blade 20 ′ made of a crystal different from that of the blade 20 but doped with the same ions.

A titre d'exemple non limitatif, on va décrire un laser conforme à l'invention émettant sur un seul mode longitudinal ("monomode" ou "monofréquence") stabilisé à 1,5335 µm.By way of nonlimiting example, a laser according to the invention will be described, emitting in a single longitudinal mode ("single mode" or "single frequency") stabilized at 1.5335 μm.

Le milieu amplificateur est constitué d'une double hétérostructure en alliage quaternaire dont la zone active est en InGaAsP. L'émission naturelle d'une telle structure se situe entre 1,480 et 1,525 µm selon la composition. La structure est stabilisée par un cristal de LiYF₄ dopé à l'erbium, de formule LiY1-xErXF₄ où x est compris entre 10⁻⁴ et 1. La valeur de x dépend à la fois de la puissance disponible dans la cavité, de l'épaisseur de la lame cristalline et de la concentration en ions Er³⁺. Plus la puissance est importante et plus x peut s'écarter de l'unité et plus l'épaisseur du cristal peut être choisie faible.The amplifying medium consists of a double heterostructure in quaternary alloy whose active zone is in InGaAsP. The natural emission of such a structure is between 1.480 and 1.525 µm depending on the composition. The structure is stabilized by a crystal of LiYF₄ doped with erbium, of formula LiY 1-x Er X F₄ where x is between 10⁻⁴ and 1. The value of x depends both on the power available in the cavity , the thickness of the crystal plate and the concentration of Er³⁺ ions. The higher the power, the more x can deviate from the unit and the smaller the thickness of the crystal can be chosen.

De façon plus précise, dans le cas d'une absorption uniforme dans le cristal stabilisateur on a la relation approchée : φLN > 1 2T hF sr

Figure imgb0001


   T désigne la durée de vie du niveau excité de la terre rare et est pris égal à 10 ms,
   F est la fréquence, soit 2x10¹⁴s⁻¹ pour une longueur d'onde de 1,54 µm,
   s est la section efficace d'absorption et est prise égale à 10⁻²⁰cm⁻²,
   φ est le flux optique incident sur le cristal en Wcm⁻²,
   N est la densité d'ions,
   L est l'épaisseur du cristal stabilisateur,
   h est la constante de Planck,
   r est le rendement quantique qui peut être pris égal à l'unité.
Le second membre de l'inégalité est donc sensiblement égal à 6,6x10²² (Wcm⁻⁴).

  • a) En prenant x=1, on a N=1,4x10²²cm⁻³ ; en conséquence, L doit être supérieur à 5Wcm⁻¹.
    Pour un laser ayant une puissance de 5mW dans la cavité, avec une zone active de 50 µmx0,1 µm, soit 5.10⁻⁸( µm)², le flux sera de 10⁵W/cm². L'épaisseur L du cristal devra donc être supérieure à 5.10⁻⁵cm, soit supérieure à un demi micromètre.
    Cet exemple montre que si le cristal stabilisateur a une grande concentration en ions de terre rare, il peut être très mince (0,5 µm) et constitué par exemple d'une couche disposée sur la face anti-reflet de l'hétérostructure. Mais la qualité du matériau ainsi déposé peut laisser à désirer et le rendement quantique diminuer.
    On peut donc préférer choisir une concentration en ions plus faible (x inférieur à 1).
  • b) A l'autre extrémité de la plage offerte à x on peut choisir x=0,001, ce qui correspond à N=1,4x10¹⁹cm⁻³ et, avec les mêmes hypothèses sur la puissance, l'épaisseur L doit alors être supérieure à 100 µm.
    Si le flux lumineux correspond à une puissance 10 fois plus faible, l'épaisseur L devient au minimum égale à 1000 µm.
    Si l'on veut simultanément que la lame cristalline agisse comme sélecteur de mode longitudinal, il conviendra de ne pas lui donner une épaisseur supérieure à la valeur qui donne à l'intervalle spectral libre la valeur de la largeur de raie d'émission, à savoir sensiblement 3,3 cm⁻¹. On a vu que l'épaisseur limite est de l'ordre du millimètre.
  • c) Entre ces deux extrêmes (x=1 et x=0,001), on pourra prendre par exemple x=0,1, soit N=1,4x10²¹cm⁻³, ce qui donne une épaisseur de L=0,3 mm.
More precisely, in the case of a uniform absorption in the stabilizing crystal, we have the approximate relation: φLN> 1 2T hF sr
Figure imgb0001

or
T designates the lifetime of the excited level of the rare earth and is taken equal to 10 ms,
F is the frequency, i.e. 2x10¹⁴s⁻¹ for a wavelength of 1.54 µm,
s is the effective absorption section and is taken equal to 10⁻²⁰cm⁻²,
φ is the incident optical flux on the crystal in Wcm⁻²,
N is the density of ions,
L is the thickness of the stabilizing crystal,
h is Planck's constant,
r is the quantum yield which can be taken equal to unity.
The second member of the inequality is therefore substantially equal to 6.6x10²² (Wcm⁻⁴).
  • a) Taking x = 1, we have N = 1.4x10²²cm⁻³; consequently, L must be greater than 5Wcm⁻¹.
    For a laser with a power of 5mW in the cavity, with an active area of 50 µmx0.1 µm, or 5.10⁻⁸ (µm) ², the flux will be 10⁵W / cm². The thickness L of the crystal must therefore be greater than 5.10⁻⁵cm, ie greater than half a micrometer.
    This example shows that if the stabilizing crystal has a large concentration of rare earth ions, it can be very thin (0.5 μm) and consists for example of a layer placed on the anti-reflection face of the heterostructure. However, the quality of the material thus deposited may leave something to be desired and the quantum yield may decrease.
    We may therefore prefer to choose a lower ion concentration (x less than 1).
  • b) At the other end of the range offered to x we can choose x = 0.001, which corresponds to N = 1.4x10¹⁹cm⁻³ and, with the same assumptions on the power, the thickness L must then be greater than 100 µm.
    If the luminous flux corresponds to a power 10 times lower, the thickness L becomes at least equal to 1000 μm.
    If we simultaneously want the crystal plate to act as a longitudinal mode selector, it should not be given a thickness greater than the value which gives the free spectral interval the value of the emission line width, at know substantially 3.3 cm⁻¹. We have seen that the limit thickness is of the order of a millimeter.
  • c) Between these two extremes (x = 1 and x = 0.001), we can take for example x = 0.1, or N = 1.4x10²¹cm⁻³, which gives a thickness of L = 0.3 mm.

Une telle lame mince peut être obtenue par polissage. On dépose sur l'une de ses faces une couche d'or réfléchissante destinée à jouer le rôle de miroir à haute réflectivité à la longueur d'onde de 1,5335 µm. La face arrière de la double hétérostructure en InGaAsP est traitée anti-reflet par une couche de SiO produisant une réflexion inférieure à 10⁻². L'assemblage selon la figure 4 s'effectue à l'aide de collages minces de manière à ne pas détruire le parallélisme des surfaces. Des colles de type cyanoacrylate ou époxy dites "pour optiques IR" conviennent bien.Such a thin blade can be obtained by polishing. One reflective gold layer is deposited on one of its faces intended to play the role of mirror with high reflectivity at the wavelength of 1.5335 μm. The rear face of the double heterostructure in InGaAsP is treated with anti-reflection by a layer of SiO producing a reflection of less than 10⁻². The assembly according to FIG. 4 is carried out using thin adhesives so as not to destroy the parallelism of the surfaces. Adhesives of the cyanoacrylate or epoxy type called "for IR optics" are very suitable.

Claims (11)

  1. Semiconductor laser including an amplifier medium (10) with a semiconductive junction (12) and at least one mirror (22), the junction (12) being joined to a current source (14) and having one spontaneous emission band, characterized in that to wavelength-stabilize the same, it further includes a crystal doped with rare earth ions having a transition within the spontaneous emission band of the amplifier medium, said crystal (20) being disposed between the mirror (22) and the amplifier medium (10), the laser then transmitting on a wavelength corresponding to the transition of the rare earth ion.
  2. Semiconductor laser according to claim 1, characterized in that the rare earth ions are selected from the group constituted by:
    - Sm²⁺ for a wavelength of between 0.65 µm and 0.7 µm,
    - Nd³⁺, Yb³⁺ for a wavelength of between 0.81 µm and 1 µm,
    - Tm²⁺ for a wavelength of about 1.2 µm,
    - Er³⁺ for a wavelength of about 1.5 µm,
    - Tm³⁺, Ho³⁺ for a wavelength of about 2 µm.
  3. Semiconductor laser according to claim 1, characterized in that the crystal is taken from the group constituted by LiYF₃, Y₃ Al₅ O₁₂, LaCl₃, LaF₃, LaP₅ O₁₄, CaWO₄, LiYF₄, Na₅La(WO₄)₄. LiLaP₄ O₁₂, KLaP₄ O₁₂.
  4. Semiconductor laser according to claims 2 and 3, characterized in that the formula of the doped crystal is LiY1-xErx F₄ where x is between 0 and 1 (lower limit excluded).
  5. Semiconductor laser according to claim 1, characterized in that the doped crystal has the shape of a thin plate (20) cut from a monocrystal, this thin plate constituting a Fabry-Pérot standard having a thickness less than the value giving this standard a free spectral interval of about the width of the emission line of the rare earth ion.
  6. Semiconductor laser according to claim 1, characterized in that the doped crystal has the shape of a thin plate.
  7. Semiconductor laser according to claim 1, characterized in that the amplifier medium (10) includes a heterostructure having one split face (16) and one face covered with an anti-reflection coating (18), the crystal (20) being disposed between the coating (18) and the mirror (22).
  8. Semiconductor laser according to claim 7, characterized in that the crystal (20) is in contact with the anti-reflection coating (18).
  9. Semiconductor laser according to claim 7, characterized in that the doped crystal (20) is in contact with the mirror (24).
  10. Semiconductor laser according to claim 8, characterized in that it further includes an optical fibre (26) disposed between the doped crystal (20) and the mirror (24).
  11. Semiconductor laser according to claim 1, characterized in that it includes several crystals (20,20') having a different chemical nature, but containing the same rare earth ions, the laser then being stabilized on several wavelengths.
EP90401538A 1989-06-08 1990-06-06 Wavelength stabilized semiconductor laser Expired - Lifetime EP0402249B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8907595 1989-06-08
FR8907595A FR2648281B1 (en) 1989-06-08 1989-06-08 WAVELENGTH STABILIZED SEMICONDUCTOR LASER

Publications (2)

Publication Number Publication Date
EP0402249A1 EP0402249A1 (en) 1990-12-12
EP0402249B1 true EP0402249B1 (en) 1993-10-06

Family

ID=9382517

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90401538A Expired - Lifetime EP0402249B1 (en) 1989-06-08 1990-06-06 Wavelength stabilized semiconductor laser

Country Status (5)

Country Link
US (1) US5052007A (en)
EP (1) EP0402249B1 (en)
JP (1) JPH0323689A (en)
DE (1) DE69003743T2 (en)
FR (1) FR2648281B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2700894B1 (en) * 1993-01-26 1995-03-03 France Telecom Semiconductor laser with passive wavelength selector.
US7111767B2 (en) * 1997-04-24 2006-09-26 Simpson Strong-Tie Company, Inc. Power actuated fastener system
DE19849869A1 (en) * 1998-10-29 2000-05-11 Deutsche Telekom Ag Method and device for the coherent addition of the emission of semiconductor lasers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1614648C3 (en) * 1967-11-03 1974-05-02 Siemens Ag, 1000 Berlin U. 8000 Muenchen Optical transmitter
US4573156A (en) * 1983-09-16 1986-02-25 At&T Bell Laboratories Single mode laser emission
US4785462A (en) * 1985-09-18 1988-11-15 Siemens Aktiengesellschaft Dynamically one-mode semiconductor laser
US4787086A (en) * 1986-05-19 1988-11-22 American Telephone And Telegraph Company, At&T Bell Laboratories High-power, fundamental transverse mode laser
US4737960A (en) * 1986-09-26 1988-04-12 American Telephone And Telegraph Company, At&T Bell Laboratories Rare earth doped semiconductor laser

Also Published As

Publication number Publication date
DE69003743D1 (en) 1993-11-11
FR2648281B1 (en) 1993-12-24
FR2648281A1 (en) 1990-12-14
EP0402249A1 (en) 1990-12-12
DE69003743T2 (en) 1994-05-05
JPH0323689A (en) 1991-01-31
US5052007A (en) 1991-09-24

Similar Documents

Publication Publication Date Title
EP0821451A1 (en) Solid state microlaser optically pumped by a vertical cavity semiconductor laser
KR20160030196A (en) High-coherence semiconductor light sources
EP0639876A1 (en) Optical semiconductor amplifier with reduced non-linearity
FR3053538A1 (en) LASER SOURCE WITH SEMICONDUCTOR
EP0402249B1 (en) Wavelength stabilized semiconductor laser
EP1397851B1 (en) Frequency-stabilized laser source
EP0158565B1 (en) Construction process of a semiconductor laser mirror by ion etching
EP1717915B1 (en) Optical pump system for a laser source, and laser source comprising such an optical pump system
EP0993088B1 (en) Semiconductor laser with tunable gain
WO1997003488A1 (en) Stabilised broad-spectrum light source and related fibre-optic gyroscope
WO2002013335A2 (en) Edge-emitting semiconductor tunable laser
FR2950164A1 (en) ALL-OPTICAL POLARIZATION CONTROL SYSTEM WITH CONTRA-PROPAGATIVE PUMP BEAM
EP0664588A1 (en) Semiconductor structure with virtual diffraction lattice
EP0534821B1 (en) High power laser with semi-conductor filter
EP1031172B1 (en) Production of microwave transmitters and applications to radar and telecommunications
EP0609126B1 (en) Semiconductor laser with two passive wavelength selectors
EP1673839A1 (en) Laser diode-pumped monolithic solid state laser device and method for application of said device
CA1270932A (en) Electro-optic device having a semiconductor, and method for emitting light
EP1038342A1 (en) Method for controlling a unipolar semiconductor laser
FR2831005A1 (en) Short optical pulse generator for optical communication has sample grating distributed Bragg reflector
FR3114887A1 (en) TRAVELING WAVE OPTICAL AMPLIFIER WHOSE AMPLIFICATION IS CONTROLLED BY FIELD-EFFECT TRANSISTORS
FR2744225A1 (en) PROCESS FOR THE REALIZATION OF A 45 DEGREE INCLINED PLANE ON A 3-5 CRYSTALLINE COMPONENT AND OPTICAL COMPONENT
FR2843494A1 (en) Digital word optical transmission tunable laser structure having central amplifier section with resonant cavity reflectors and hole sets forming trapezoid through outer layers/side upper etched track.
FR2777710A1 (en) Semiconductor laser capable of reducing coupling losses to optical fiber, such as in local area network
FR2782869A1 (en) MULTI-FREQUENCY OPTICAL SOURCE FOR TELECOMMUNICATIONS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19910515

17Q First examination report despatched

Effective date: 19930204

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRANCE TELECOM

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 69003743

Country of ref document: DE

Date of ref document: 19931111

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960630

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19980101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980101

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060530

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060608

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070606