EP0418409B1 - Method and device to avoid prevailing weather effects on automatic fire alarms - Google Patents

Method and device to avoid prevailing weather effects on automatic fire alarms Download PDF

Info

Publication number
EP0418409B1
EP0418409B1 EP89117327A EP89117327A EP0418409B1 EP 0418409 B1 EP0418409 B1 EP 0418409B1 EP 89117327 A EP89117327 A EP 89117327A EP 89117327 A EP89117327 A EP 89117327A EP 0418409 B1 EP0418409 B1 EP 0418409B1
Authority
EP
European Patent Office
Prior art keywords
detector
fire
temperature
values
ambient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89117327A
Other languages
German (de)
French (fr)
Other versions
EP0418409A1 (en
Inventor
Helfried Dipl.-Ing. Lappe
Otfried Dipl.-Ing. Post
Peer Dr.-Ing. Thilo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to ES89117327T priority Critical patent/ES2081296T3/en
Priority to DE58909561T priority patent/DE58909561D1/en
Priority to EP89117327A priority patent/EP0418409B1/en
Priority to AT89117327T priority patent/ATE132642T1/en
Publication of EP0418409A1 publication Critical patent/EP0418409A1/en
Application granted granted Critical
Publication of EP0418409B1 publication Critical patent/EP0418409B1/en
Priority to GR950403659T priority patent/GR3018599T3/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion

Definitions

  • the invention relates to a method for taking climatic environmental influences on automatic fire detectors of a fire alarm system according to the preamble of claim 1.
  • analog detector measured values corresponding to the fire parameter are transmitted to the control center and processed and evaluated there, as is done in the known pulse detection technology with the principle of chain synchronization.
  • a high false alarm rate is particularly due to the fact that the response threshold of the fire detectors is changed by long-term influences such as component aging and sensor contamination. Long-term drifts in detector sensitivity were therefore compensated for by adjusting the detector idle value, so that an almost constant detector sensitivity is guaranteed.
  • Such a rest value tracking is described for example in DE-OS 31 27 324.
  • the sensitivity of today's automatic fire detectors is changed by climatic factors, such as changes in the ambient temperature, relative humidity and absolute air pressure, which represent environmental parameters.
  • climatic factors such as changes in the ambient temperature, relative humidity and absolute air pressure
  • the problem of the climatic influence on the detector sensitivity has hitherto been solved only incompletely, for example by means of temperature compensation measures in the electronic part of the detectors, ie a temperature drift of electronic components is compensated for.
  • Influences of environmental factors, such as air humidity and air pressure have so far only been taken into account for ionization detectors.
  • US-A-4,282,520 describes an ionization smoke detector which has two ionization chambers, a measuring chamber for the detection of smoke and a reference chamber which communicates with the atmosphere via an "air tube" (breathertube) is connected, but into which no smoke can enter.
  • This connection rapidly compensates for the air humidity and the air pressure between the interior of the reference chamber and the surrounding atmosphere.
  • the measured value of the ionization reference chamber is used to take into account the environmental variable, ie the measured value of the measuring chamber is compensated with the measured value of the reference chamber.
  • climatic environmental influences are taken into account, but no environmental parameters (air pressure, humidity, temperature) are measured and compensation values are determined from them.
  • a reduced detection sensitivity leads to a delayed response in case of damage fires or to the failure of the detector, e.g. in smoldering fires.
  • An increased detector sensitivity leads to an increased response to faults and deceptive variables and thus to an increased false alarm.
  • the method according to the invention has the advantage that the detector measured values, which are used to form alarm criteria, are cleaned of the disturbing environmental influences, the ambient temperature, the relative atmospheric humidity and the absolute air pressure in the area of the fire detector being measured and using a microcomputer with the aid of Algorithms or conversion tables the respective compensation values are calculated. It is expedient to convert the conversion tables for a respective fire detector type, for example an ionization detector or an optical smoke detector, in a climate chamber to be determined under the influence of temperature, humidity and air pressure and to be written into the designated read-only memory.
  • a respective fire detector type for example an ionization detector or an optical smoke detector
  • the compensation can either be carried out in the respective fire detector itself, or the compensation can be carried out in the fire alarm control panel.
  • the respective analog measured values of the environmental parameters are regularly transmitted to the control center.
  • the compensation of the environmental parameters in the fire detector has the advantage that a rest value adjustment carried out in the control center, as mentioned at the beginning, only has to take into account the long-term influences such as aging and contamination, but not those for the individual detector types and different locations different environmental influences.
  • the environmental parameter temperature can be recorded with a temperature sensor, the relative air humidity with a humidity sensor and the absolute air pressure with an air pressure meter, the respective individual signals being converted into a frequency-analog signal by means of an oscillator circuit, ie into one Frequency signal, the frequency of which corresponds to the value of the sensor signal in an analog manner.
  • the value of the respective environmental parameter and thus the compensation value are then determined from each of these frequency signals using a quartz-controlled time base counter and by means of the conversion or linearization tables.
  • the fire parameter and smoke density can be compensated with the ambient parameters temperature, humidity and air pressure in a smoke detector.
  • the fire parameter heat can be compensated with the ambient parameter air pressure and / or the relative air humidity, expediently the fire parameter heat is derived from the temperature measurement for the ambient temperature.
  • the compensated analog measured value or the analog measured values of the fire parameter and the environmental parameters are advantageously transmitted to the control center according to the pulse reporting method with the principle of chain synchronization, in order to be processed there accordingly.
  • the object of the invention is achieved with respect to a device in that a fire detector with its sensor for the fire parameter together with the sensors for detecting the ambient parameters, temperature, air humidity and air pressure forms a multi-sensor that the temperature sensor of a temperature-dependent resistor with a subsequent oscillator circuit is formed that the moisture sensor is formed by a variable capacitance with a downstream oscillator circuit, that the air pressure sensor is formed by a silicon pressure measuring bridge with a downstream amplifier and voltage-frequency converter, that the environmental characteristic sensors have a measurement data acquisition device and this a measurement variable linearization device, which is associated with at least one read-only memory, is connected downstream that the multi-sensor detector has a compensation circuit which contains the measurement signals of the fire parameter and the linearized environment parameter sizes (the compensation values for temperature, humidity and air pressure) are supplied, and that the compensation circuit is followed by a line connection which is connected to the signal line via an input / output circuit.
  • the measurement data acquisition device, the measurement variable linearization device, the read-only memory, the compensation circuit and the line connection can
  • a fire alarm system that works according to the pulse alarm principle is shown in principle. It has a central station Z to which the individual detectors M1 to Mn are connected in a chain-like manner via a two-wire (a, b) primary signal line ML.
  • the detectors on the line are e.g. polled once a second by the control panel for its respective detector measured value by the control panel briefly reducing the line voltage to zero and then increasing it to a query voltage.
  • the fire detectors respond in sequence with a current pulse and simultaneously switch the b-wire through to the next detector. Due to the chain synchronization principle used, the detectors of the line can be individually addressed from the control center. After each complete round, i.e. In this example, every second, the control panel compares the number of current pulses received with a target number stored in a read-only memory, which corresponds to the number of detectors connected to the detector line.
  • a line fault can be signaled in the event of inequality.
  • the analog measured values to be transmitted influence the response time of the detector with the help of a timer, i.e. the duration of the current pulse.
  • the analog measured variable is fed to the control center, which records the measured values, as a pulse modulated signal.
  • the response times for a detector are in the range of a few milliseconds.
  • the respective analog measured variables, which correspond to the pulse duration are measured in the control center, for example with a counter with a quartz-stable time base, and converted into digital measured values for further processing.
  • the digital measured values of all connected detectors on a line are available in the control center. They are then sent to a further processing unit as a serial data telegram.
  • a multiplicity of multisensor detectors MSM are connected to a detection line M, for example MSM1 to MSM8.
  • This multi-sensor detector is modified so that it works like a normal fire detector can be queried for the respective measured values according to the principle of pulse signaling technology. For example, with a multi-sensor detector MSM, first the smoke density R, then the temperature T, then the air humidity F and the air pressure L are measured. In principle, this means that in a multisensor detector MSM1, a smoke detector RM, a temperature detector TM, a moisture detector FM and an air pressure detector LM are connected in a chain-like manner and emit their respective analog detector measurement values when they are queried.
  • FIG. 3 shows an example of a moisture detector FM which has a moisture sensor FS with a downstream oscillator circuit OSZ.
  • the frequency-analog signal obtained in this way is measured with a measured value detection device ERF.
  • this frequency signal is switched to the input of a counter.
  • the counter reading is cached.
  • the measured variables are linearized in a measured variable linearization device LIN.
  • the determined meter readings serve as addresses for linearization tables, which were stored individually for each detector for environmental parameters in a read-only memory ROM during the calibration.
  • For the humidity detector there is a linearization table for the humidity sensor which describes the non-linear behavior between the relative humidity and the frequency.
  • the linearization tables also contain information about the tolerance of the frequency-determining components in addition to the characteristic data of the specific sensor. This measure ensures that the moisture detector secondarily transmits the measured relative air humidity linearly as a pulse-phase-modulated current pulse via the line connection LA and the detection line ML to the control center Z.
  • MSM1 as it is shown schematically in Fig. 2, first the measured value for the smoke density MWR, then the measured value for the temperature MWT, then the measured value for the relative humidity MWF and then the measured value for the (absolute) air pressure MWL is transmitted to the control center Z.
  • Fig. 4 it is shown using the example of a multi-sensor detector MSM1 that the compensation takes place in the detector itself. It is shown schematically there that a number of multisensor detectors MSM1 to MSMn are connected to the center Z via the two-wire (a, b) primary signal line ML.
  • the first multi-sensor detector MSM1 is shown in more detail as a block diagram.
  • the fire parameter smoke density RD is recorded with the smoke sensor RS.
  • the environmental parameters are recorded with the temperature sensor TS, the humidity sensor FS and the air pressure sensor LS.
  • a respective frequency-analog signal is generated with the help of oscillator circuits for the respective environmental parameter, which signal is measured with the detection device ERF with a quartz-controlled time base counter.
  • the respective linearized measured values for the ambient temperature T, the relative humidity F and the absolute atmospheric pressure L are determined via a downstream linearization table LIN, to which a read-only memory ROM is assigned, and are fed as a respective compensation value to the compensation device KOM, in which the analog measurement value for the smoke density MWD is compensated.
  • the compensated measured value for the smoke density KMWR i.e. the measured value, which has been cleaned of the environmental influences, is transmitted to the control center Z when queried via the line interface LA.
  • the undistorted measured values for the smoke density KMWR detected at the reporting location are processed in a known manner for alarm generation.
  • the invention therefore largely eliminates interferences resulting from environmental conditions, so that false alarms which arise due to environmental conditions are largely avoided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Abstract

In addition to the fire characteristics (BKG), e.g. smoke density (RD), heat or warmth (temperature T) and flame, environmental characteristics (UKG) such as temperature (T), atmospheric humidity (F) and atmospheric pressure (L) are continuously measured and used to determine the respective compensation values with which the alarm measured values are compensated, the compensated alarm measured values being further processed to form alarm criteria. In this case, the compensation can take place in the respective fire alarm itself, or be carried out in the control centre of the fire alarm system, it being the case that in addition to the analog alarm measured value the analog measured values of the environmental characteristics are regularly transmitted to the control centre. The environmental characteristics (UKG) are measured in the region of the fire alarm. A microcomputer is used to calculate the respective compensation values therefrom with the aid of algorithms or conversion tables. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Verfahren zur Berücksichtigung klimatischer Umgebungseinflüsse auf automatische Brandmelder einer Brandmeldeanlage gemaß dem Oberbegriff des Anspruchs 1.The invention relates to a method for taking climatic environmental influences on automatic fire detectors of a fire alarm system according to the preamble of claim 1.

Bei heutigen automatischen Brandmeldeanlagen wird das wünschenswerte frühzeitige Erkennen von Schadensfeuern oft durch eine hohe Fehlalarmrate erkauft. Das heißt, ein schnelles Erkennen ist vielfach ein unsicheres Erkennen.In today's automatic fire alarm systems, the desirable early detection of damage fires is often bought through a high false alarm rate. This means that quick recognition is often uncertain recognition.

Besonders störend wurde dieses Problem bei Brandmeldeanlagen, die mit vielen Schwellwertmeldern ausgerüstet waren. Bei ihnen konnte der Schwellwertmelder aufgrund einer kurzfristigen Störung oder einer Täuschungsgröße, die beispielsweise durch eine Rauchschwade hervorgerufen wurde, vom Ruhezustand in den Alarmzustand kippen. Das führte über die angeschlossene Brandmeldezentrale zur Auslösung eines falschen Alarms.This problem became particularly disturbing in fire alarm systems that were equipped with many threshold detectors. In the case of them, the threshold value detector was able to tip over from the idle state to the alarm state due to a short-term malfunction or a delusion caused, for example, by a swath of smoke. This led to the triggering of a false alarm via the connected fire alarm control panel.

Die Nachteile dieser bekannten Anlage wurden dadurch überwunden, daß analog arbeitende Brandsensoren mit periodischer Übertragung ihres analogen Meßwertes in einer Mikroprozessor gestützten Brandmeldezentrale eingesetzt wurden, die mit geeigneten, leistungsfähigen Brandentdeckungsverfahren ausgestattet ist. Diese Maßnahmen haben zu einer spürbaren Reduzierung der Fehlalarme geführt. Ein derartiges Brandmeldesystem ist aus der DE-OS 25 33 382 bekannt und in einem Artikel im TELCOM REPORT, Band 6, Heft 2, April 1983, Seiten 82-87 Passau, DE, beschrieben: J.Tussing: "Pulsmeldetechnik setzt neue Maßstäbe im Brandschutz".The disadvantages of this known system were overcome in that analog fire sensors with periodic transmission of their analog measured value were used in a microprocessor-based fire alarm center which is equipped with suitable, powerful fire detection methods. These measures have led to a noticeable reduction in false alarms. Such a fire detection system is known from DE-OS 25 33 382 and in an article in TELCOM REPORT, Volume 6, Issue 2, April 1983, pages 82-87 Passau, DE, described: J.Tussing: "Pulse detection technology sets new standards in fire protection".

Bei der bekannten Brandmeldeanlage werden analoge Meldermeßwerte, die der Brandkenngröße entsprechen, zur Zentrale übertragen und dort verarbeitet und ausgewertet, wie dies bei der bekannten Pulsmeldetechnik mit dem Prinzip der Kettensynchronisation erfolgt.In the known fire detection system, analog detector measured values corresponding to the fire parameter are transmitted to the control center and processed and evaluated there, as is done in the known pulse detection technology with the principle of chain synchronization.

Ferner ist eine hohe Fehlalarmrate besonders dadurch bedingt, daß die Ansprechschwelle der Brandmelder durch Langzeiteinflüsse, wie Bauteilealterung und Sensorverschmutzung, verändert wird. Daher wurden Langzeittriften der Melderempfindlichkeit durch Nachführen des Melderruhewertes kompensiert, so daß eine annähernd gleichbleibende Melderempfindlichkeit gewährleistet ist. Eine derartige Ruhewertnachführung ist beispielsweise in der DE-OS 31 27 324 beschrieben. Bei der Nachführung des Melderruhewertes wird jedoch in nachteiliger Weise weder Rücksicht auf den eingesetzten Meldertyp genommen, noch werden die auf ihn einwirkenden Umgebungseinflüsse berücksichtigt.Furthermore, a high false alarm rate is particularly due to the fact that the response threshold of the fire detectors is changed by long-term influences such as component aging and sensor contamination. Long-term drifts in detector sensitivity were therefore compensated for by adjusting the detector idle value, so that an almost constant detector sensitivity is guaranteed. Such a rest value tracking is described for example in DE-OS 31 27 324. When tracking the detector idle value, however, no consideration is given to the type of detector used, nor are the environmental influences acting on it taken into account.

Insbesondere wird die Empfindlichkeit heutiger automatischer Brandmelder durch klimatisch bedingte Einflüsse, wie Änderung der Umgebungstemperatur, der relativen Luftfeuchtigkeit und des absoluten Luftdrucks, die Umgebungskenngrößen darstellen, verändert. Das Problem der klimatischen Beeinflussung der Melderempfindlichkeit wurde bisher nur unvollkommen gelöst, wie beispielsweise durch Temperaturkompensationsmaßnahmen im Elektronikteil der Melder, d.h. eine Temperaturtrift elektronischer Bauelemente wird ausgeglichen. Einflüsse von Umgebungsgrößen, wie Luftfeuchtigkeit und Luftdruck, wurden bisher nur bei Ionisations-Meldern berücksichtigt. Beispielsweise ist in der US-A-4 282 520 ein Ionisations-Rauchdetektor beschrieben, der zwei Ionisationskammern aufweist, eine Meßkammer für die Detektion des Rauchs und eine Referenzkammer, welche mit der Atmosphäre über eine "Luftröhre" (breathertube) in Verbindung steht, in welche jedoch kein Rauch eindringen kann. Durch diese Verbindung erfolgt ein rascher Ausgleich der Luftfeuchtigkeit und des Luftdrucks zwischen dem Inneren der Referenzkammer und der umgebenden Atmosphäre. Der Meßwert der Ionisations-Referenzkammer wird dabei zur Berücksichtigung der Umgebungsgröße herangezogen, d.h., mit dem Meßwert der Referenzkammer wird der Meßwert der Meßkammer kompensiert. Bei dem bekannten Ionisationsmelder werden klimatische Umgebungseinflüsse berücksichtigt, es werden jedoch keine Umgebungskenngrößen (Luftdruck, -feuchte, Temperatur) gemessen und daraus Kompensationswerte ermittelt.In particular, the sensitivity of today's automatic fire detectors is changed by climatic factors, such as changes in the ambient temperature, relative humidity and absolute air pressure, which represent environmental parameters. The problem of the climatic influence on the detector sensitivity has hitherto been solved only incompletely, for example by means of temperature compensation measures in the electronic part of the detectors, ie a temperature drift of electronic components is compensated for. Influences of environmental factors, such as air humidity and air pressure, have so far only been taken into account for ionization detectors. For example, US-A-4,282,520 describes an ionization smoke detector which has two ionization chambers, a measuring chamber for the detection of smoke and a reference chamber which communicates with the atmosphere via an "air tube" (breathertube) is connected, but into which no smoke can enter. This connection rapidly compensates for the air humidity and the air pressure between the interior of the reference chamber and the surrounding atmosphere. The measured value of the ionization reference chamber is used to take into account the environmental variable, ie the measured value of the measuring chamber is compensated with the measured value of the reference chamber. In the known ionization detector, climatic environmental influences are taken into account, but no environmental parameters (air pressure, humidity, temperature) are measured and compensation values are determined from them.

Eine verringerte Meldeempfindlichkeit führt zum verzögerten Ansprechen bei Schadensfeuern oder zum Versagen des Melders, z.B. bei Schwelbränden. Eine erhöhte Melderempfindlichkeit führt zum vermehrten Ansprechen auf Störungen und Täuschungsgrößen und damit zu einer erhöhten Fehlalarmierung.A reduced detection sensitivity leads to a delayed response in case of damage fires or to the failure of the detector, e.g. in smoldering fires. An increased detector sensitivity leads to an increased response to faults and deceptive variables and thus to an increased false alarm.

Aufgabe der Erfindung ist es daher, für Brandmeldeanlagen ein Verfahren und eine Vorrichtung hierzu anzugeben, welches gestattet, Schadensfeuer frühzeitig und sicher zu erkennen und dabei dennoch die Fehlalarmrate zu reduzieren.It is therefore an object of the invention to provide a method and a device for fire alarm systems for this, which allows damage fires to be detected early and reliably and still reduce the false alarm rate.

Diese Aufgabe wird bei dem eingangs genannten Verfahren mit den kennzeichnenden Merkmalen des Anspruchs 1 und bezüglich der Vorrichtung mit den Merkmalen des Anspruchs 8 gelöst.This object is achieved in the method mentioned at the outset with the characterizing features of claim 1 and with respect to the device with the features of claim 8.

Das erfindungsgemäße Verfahren hat den Vorteil, daß die Meldermeßwerte, die zur Bildung von Alarmkriterien herangezogen werden, von den störenden Umgebungseinflüssen bereinigt sind, wobei die Umgebungstemperatur, die relative Luftfeuchte und der absolute Luftdruck im Bereich des Brandmelders gemessen und daraus mit einem Mikrorechner mit Hilfe von Algorithmen oder Umrechnungstabellen die jeweiligen Kompensationswerte berechnet werden. Dabei ist es zweckmäßig, die Umrechnungstabellen für einen jeweiligen Brandmeldertyp, z.B. einen Ionisationsmelder oder einen optischen Rauchmelder, in einer Klimakammer unter definierten Temperatur-, Feucht- und Luftdruckeinfluß zu ermitteln und in dafür vorgesehene Festwertspeicher einzuschreiben.The method according to the invention has the advantage that the detector measured values, which are used to form alarm criteria, are cleaned of the disturbing environmental influences, the ambient temperature, the relative atmospheric humidity and the absolute air pressure in the area of the fire detector being measured and using a microcomputer with the aid of Algorithms or conversion tables the respective compensation values are calculated. It is expedient to convert the conversion tables for a respective fire detector type, for example an ionization detector or an optical smoke detector, in a climate chamber to be determined under the influence of temperature, humidity and air pressure and to be written into the designated read-only memory.

Hierbei kann die Kompensation entweder im jeweiligen Brandmelder selbst durchgeführt werden, oder aber die Kompensation wird in der Brandmeldezentrale durchgeführt. Hierzu werden zusätzlich zu den analogen Meldermeßwerten die jeweiligen analogen Meßwerte der Umgebungskenngrößen regelmäßig zur Zentrale übertragen. Die Kompensation der Umgebungskenngrößen im Brandmelder hat dabei noch den Vorteil, daß eine in der Zentrale durchgeführte Ruhewertsnachführung, wie eingangs erwähnt, nur die auf den Meldermeßwert einwirkenden Langzeiteinflüsse, wie Alterung und Verschmutzung, berücksichtigen muß, nicht aber die für die einzelnen Meldertyen und verschiedenen Einsatzorte unterschiedlich wirksam werdenden Umgebungseinflüsse.The compensation can either be carried out in the respective fire detector itself, or the compensation can be carried out in the fire alarm control panel. For this purpose, in addition to the analog detector measured values, the respective analog measured values of the environmental parameters are regularly transmitted to the control center. The compensation of the environmental parameters in the fire detector has the advantage that a rest value adjustment carried out in the control center, as mentioned at the beginning, only has to take into account the long-term influences such as aging and contamination, but not those for the individual detector types and different locations different environmental influences.

Bei dem erfindungsgemäßen Verfahren können in einer besonderen Ausgestaltung die Umgebungskenngröße Temperatur mit einem Temperatursensor, die relative Luftfeuchte mit einem Feuchtesensor und der absolute Luftdruck mit einem Luftdruckmesser erfaßt werden, wobei die jeweiligen Einzelsignale mittels einer Oszillatorschaltung in ein frequenzanaloges Signal umgewandelt werden, d.h., in ein Frequenzsignal, dessen Frequenz dem Wert des Sensorsignals in analoger Weise entspricht. Aus jedem dieser Frequenzsignale wird dann mit einem quarzgesteuerten Zeitbasiszähler und mittels der Umrechnungs- bzw. Linearisierungstabellen der Wert der jeweiligen Umgebungskenngröße und damit der Kompensationswert ermittelt.In a special embodiment of the method according to the invention, the environmental parameter temperature can be recorded with a temperature sensor, the relative air humidity with a humidity sensor and the absolute air pressure with an air pressure meter, the respective individual signals being converted into a frequency-analog signal by means of an oscillator circuit, ie into one Frequency signal, the frequency of which corresponds to the value of the sensor signal in an analog manner. The value of the respective environmental parameter and thus the compensation value are then determined from each of these frequency signals using a quartz-controlled time base counter and by means of the conversion or linearization tables.

In einer zweckmäßigen Ausgestaltung der Erfindung kann bei einem Rauchmelder die Brandkenngröße und Rauchdichte mit den Umgebungskenngrößen Temperatur, Feuchte und Luftdruck kompensiert werden. Bei einem Wärmemelder kann die Brandkenngröße Wärme mit der Umgebungskenngröße Luftdruck und/oder der relativen Luftfeuchte kompensiert werden, wobei zweckmäßigerweise die Brandkenngröße Wärme aus der Temperaturmessung für die Umgebungstemperatur abgeleitet wird.In an expedient embodiment of the invention, the fire parameter and smoke density can be compensated with the ambient parameters temperature, humidity and air pressure in a smoke detector. In the case of a heat detector, the fire parameter heat can be compensated with the ambient parameter air pressure and / or the relative air humidity, expediently the fire parameter heat is derived from the temperature measurement for the ambient temperature.

In vorteilhafter Weise wird bei dem erfindungsgemäßen Verfahren der kompensierte analoge Meßwert bzw. werden die analogen Meßwerte der Brandkenngröße und der Umgebungskenngrößen nach dem Pulsmeldeverfahren mit dem Prinzip der Kettensynchronisation zur Zentrale übertragen, um dort entsprechend weiterverarbeitet zu werden.In the method according to the invention, the compensated analog measured value or the analog measured values of the fire parameter and the environmental parameters are advantageously transmitted to the control center according to the pulse reporting method with the principle of chain synchronization, in order to be processed there accordingly.

Die Aufgabe der Erfindung wird bezüglich einer Vorrichtng dadurch gelöst, daß ein Brandmelder mit seinem Sensor für die Brandkenngröße zusammen mit den Sensoren zur Erfassung der Umgebungskenngrößen, Temperatur, Luftfeuchte und Luftdruck, einen Multisensor bildet, daß der Temperatursensor von einem temperaturabhängigen Widerstand mit einer nachgeschalteten Oszillatorschaltung gebildet ist, daß der Feuchtesensor von einer veränderbaren Kapazität mit nachgeordneter Oszillatorschaltung gebildet ist, daß der Luftdrucksensor von einer Siliziumdruckmeßbrücke mit nachgeschaltetem Verstärker und Spannungs-Frequenz-Wandler gebildet ist, daß den Umgebungskenngrößen-Sensoren eine Meßdaten-Erfassungseinrichtung und dieser eine Meßgrößen-Linearisierungseinrichtung, der zumindest ein Festwertspeicher zugeordnet ist, nachgeschaltet ist, daß der Multisensormelder eine Kompensationsschaltung aufweist, der die Meßsignale der Brandkenngröße und die linearisierten Umgebungskenngrößen (die Kompensationswerte für Temperatur, Feuchte und Luftdruck) zugeführt werden, und daß der Kompensationsschaltung eine Linienanschaltung nachgeschaltet ist, die über einen Ein/Ausgangs-Kreis mit der Meldeleitung verbunden ist. Dabei können die Meßdatenerfassungseinrichtung, die Meßgrößenlinearisierungseinrichtung, der Festwertspeicher, die Kompensationsschaltung und die Linienanschaltung von einem Mikrocomputer gebildet sein.The object of the invention is achieved with respect to a device in that a fire detector with its sensor for the fire parameter together with the sensors for detecting the ambient parameters, temperature, air humidity and air pressure forms a multi-sensor that the temperature sensor of a temperature-dependent resistor with a subsequent oscillator circuit is formed that the moisture sensor is formed by a variable capacitance with a downstream oscillator circuit, that the air pressure sensor is formed by a silicon pressure measuring bridge with a downstream amplifier and voltage-frequency converter, that the environmental characteristic sensors have a measurement data acquisition device and this a measurement variable linearization device, which is associated with at least one read-only memory, is connected downstream that the multi-sensor detector has a compensation circuit which contains the measurement signals of the fire parameter and the linearized environment parameter sizes (the compensation values for temperature, humidity and air pressure) are supplied, and that the compensation circuit is followed by a line connection which is connected to the signal line via an input / output circuit. The measurement data acquisition device, the measurement variable linearization device, the read-only memory, the compensation circuit and the line connection can be formed by a microcomputer.

Im folgenden wird das erfindungsgemäße Verfahren und eine Vorrichtung hierfür näher beschrieben. Dabei zeigen

  • Fig. 1 eine bekannte Pulsmeldelinie mit n Meldern,
  • Fig. 2 eine Pulsmeldelinie für das erfindungsgemäße Verfahren mit Multisensormeldern,
  • Fig. 3 einen an das Pulsmeldesystem angepaßten Feuchtemelder und
  • Fig. 4 eine Meldelinie mit Multisensormeldern mit Kompensationseinrichtung
The method according to the invention and an apparatus therefor are described in more detail below. Show
  • 1 shows a known pulse detection line with n detectors,
  • 2 shows a pulse detection line for the method according to the invention with multi-sensor detectors,
  • Fig. 3 is a moisture detector adapted to the pulse detection system and
  • Fig. 4 shows an alarm line with multi-sensor detectors with compensation device

In Fig.1 ist im Prinzip eine Brandmeldeanlage, die nach dem Pulsmeldeprinzip arbeitet, dargestellt. Sie weist eine Zentrale Z auf, an die über eine zweiadrige (a,b) Meldeprimärleitung ML die einzelnen Melder M1 bis Mn kettenförmig angeschlossen sind. Die Melder auf der Linie werden z.B. einmal pro Sekunde von der Zentrale aus auf ihren jeweiligen Meldermeßwert abgefragt, indem die Zentrale die Linienspannung kurz auf Null absenkt und dann auf eine Abfragespannung erhöht. Die Brandmelder antworten der Reihe nach mit einem Stromimpuls und schalten gleichzeitig die b-Ader zum nächsten Melder durch. Aufgrund des angewandten Kettensynchronisationsprinzips sind die Melder der Linie von der Zentrale aus einzeln adressierbar. Nach jedem vollständigen Umlauf, d.h. in diesem Beispiel jede Sekunde, vergleicht die Zentrale die Anzahl der eingelaufenen Stromimpulse mit einer in einem Festwertspeicher hinterlegten Sollzahl, die der Anzahl der auf der Melderlinie angeschlossenen Melder entspricht. Bei Ungleichheit kann eine Linienstörung signalisiert werden.In Fig. 1, a fire alarm system that works according to the pulse alarm principle is shown in principle. It has a central station Z to which the individual detectors M1 to Mn are connected in a chain-like manner via a two-wire (a, b) primary signal line ML. The detectors on the line are e.g. polled once a second by the control panel for its respective detector measured value by the control panel briefly reducing the line voltage to zero and then increasing it to a query voltage. The fire detectors respond in sequence with a current pulse and simultaneously switch the b-wire through to the next detector. Due to the chain synchronization principle used, the detectors of the line can be individually addressed from the control center. After each complete round, i.e. In this example, every second, the control panel compares the number of current pulses received with a target number stored in a read-only memory, which corresponds to the number of detectors connected to the detector line. A line fault can be signaled in the event of inequality.

Die zu übertragenden analogen Meßgrößen beeinflussen mit Hilfe eines Zeitglieds die Antwortzeit des Melders, d.h. die Dauer des Stromimpulses. Die analoge Meßgröße wird der Zentrale, die die Meßwerte erfaßt, als pulsmoduliertes Signal zugeführt. Die Antwortzeiten liegen für einen Melder im Bereich von einigen Millisekunden. Die jeweiligen analogen Meßgrößen, die der Impulsdauer entsprechen, werden in der Zentrale beispielsweise mit einem Zähler mit quarzstabiler Zeitbasis gemessen und in digitale Meßwerte für die Weiterverarbeitung umgewandelt. Somit stehen am Ende jedes Sende- bzw. Abfragezyklus in der Zentrale die digitalen Meßwerte aller angeschlossenen Melder einer Linie zur Verfügung. Sie werden anschließend als serielles Datentelegramm in eine Weiterverarbeitungseinheit gegeben.The analog measured values to be transmitted influence the response time of the detector with the help of a timer, i.e. the duration of the current pulse. The analog measured variable is fed to the control center, which records the measured values, as a pulse modulated signal. The response times for a detector are in the range of a few milliseconds. The respective analog measured variables, which correspond to the pulse duration, are measured in the control center, for example with a counter with a quartz-stable time base, and converted into digital measured values for further processing. Thus, at the end of each transmission or polling cycle, the digital measured values of all connected detectors on a line are available in the control center. They are then sent to a further processing unit as a serial data telegram.

Gemäß Fig. 2 ist für das erfindungsgemäße Verfahren eine Vielzahl von Multisensormeldern MSM an einer Meldelinie M angeschlossen, beispielsweise MSM1 bis MSM8. Dieser Multisensormelder ist so modifiziert, daß er wie ein normaler Brandmelder nach dem Prinzip der Pulsmeldetechnik auf die jeweiligen Meßwerte abgefragt werden kann. Beispielsweise wird mit einem Multisensormelder MSM zuerst die Rauchdichte R, dann die Temperatur T, anschließend die Luftfeuchte F und der Luftdruck L gemessen. Prinzipiell sieht das so aus, daß in einem Multisensormelder MSM1 quasi ein Rauchmelder RM, ein Temperaturmelder TM, ein Feuchtemelder FM und ein Luftdruckmelder LM kettenförmig angeschlossen sind und bei Abfrage der Reihe nach ihren jeweiligen analogen Meldermeßwert abgeben.According to FIG. 2, a multiplicity of multisensor detectors MSM are connected to a detection line M, for example MSM1 to MSM8. This multi-sensor detector is modified so that it works like a normal fire detector can be queried for the respective measured values according to the principle of pulse signaling technology. For example, with a multi-sensor detector MSM, first the smoke density R, then the temperature T, then the air humidity F and the air pressure L are measured. In principle, this means that in a multisensor detector MSM1, a smoke detector RM, a temperature detector TM, a moisture detector FM and an air pressure detector LM are connected in a chain-like manner and emit their respective analog detector measurement values when they are queried.

In Fig. 3 ist beispielhaft ein Feuchtemelder FM dargestellt, der einen Feuchtesensor FS mit nachgeschalteter Oszillatorschaltung OSZ aufweist. Das dadurch gewonnene frequenzanaloge Signal wird mit einer Meßwerterfassungseinrichtung ERF gemessen. Z.B. wird dieses Frequenzsignal auf den Eingang eines Zählers geschaltet. Dieser ermittelt während einer quarzstabilen Torzeit die Anzahl der positiven Flanken von der Frequenz, die der relativen Luftfeuchtigkeit entspricht. Der Zählerstand wird zwischengespeichert. In einer Meßgrößen-Linearisierungseinrichtung LIN werden die Meßgrößen linearisiert. Dabei dienen die ermittelten Zählerstände als Adresse für Linearisierungstabellen, die während der Kalibrierung individuell für jeden Melder für Umgebungskenngrößen in einem Festwertspeicher ROM hinterlegt worden sind. Für den Feuchtemelder gibt es eine Linearisierungstabelle für den Feuchtesensor, die das nichtlineare Verhalten zwischen der relativen Luftfeuchtigkeit und der Frequenz beschreibt. Da die Melder für die Umgebungskenngrößen individuell kalibriert werden, ist in den Linearisierungstabellen zusätzlich zu den Kennliniendaten des spezifischen Sensors auch eine Information über die Toleranz der frequenzbestimmenden Bauteile enthalten. Durch diese Maßnahme wird erreicht, daß der Feuchtigkeitsmelder sekundlich die gemessene relative Luftfeuchte linear als pulsphasenmodulierten Stromimpuls über die Linienanschaltung LA und die Meldelinie ML an die Zentrale Z abgibt. Auf diese Weise wird erreicht, daß in einem Multisensormelder MSM1, wie er schematisch in Fig. 2 dargestellt ist, zuerst der Meßwert für die Rauchdichte MWR, dann der Meßwert für die Temperatur MWT, anschließend der Meßwert für die relative Luftfeuchte MWF und anschließend der Meßwert für den (absoluten) Luftdruck MWL zur Zentrale Z übertragen wird.FIG. 3 shows an example of a moisture detector FM which has a moisture sensor FS with a downstream oscillator circuit OSZ. The frequency-analog signal obtained in this way is measured with a measured value detection device ERF. For example, this frequency signal is switched to the input of a counter. During a quartz-stable gate time, this determines the number of positive edges of the frequency that corresponds to the relative humidity. The counter reading is cached. The measured variables are linearized in a measured variable linearization device LIN. The determined meter readings serve as addresses for linearization tables, which were stored individually for each detector for environmental parameters in a read-only memory ROM during the calibration. For the humidity detector there is a linearization table for the humidity sensor which describes the non-linear behavior between the relative humidity and the frequency. Since the detectors for the environmental parameters are individually calibrated, the linearization tables also contain information about the tolerance of the frequency-determining components in addition to the characteristic data of the specific sensor. This measure ensures that the moisture detector secondarily transmits the measured relative air humidity linearly as a pulse-phase-modulated current pulse via the line connection LA and the detection line ML to the control center Z. In this way it is achieved that in a multi-sensor detector MSM1 as it is shown schematically in Fig. 2, first the measured value for the smoke density MWR, then the measured value for the temperature MWT, then the measured value for the relative humidity MWF and then the measured value for the (absolute) air pressure MWL is transmitted to the control center Z.

In Fig.4 ist am Beispiel eines Multisensormelders MSM1 dargestellt, daß die Kompensation im Melder selbst erfolgt. Es ist dort schematisch gezeigt, daß an der Zentrale Z über die zweiadrige (a,b) Meldeprimärleitung ML eine Reihe von Multisensormeldern MSM1 bis MSMn angeschlossen sind. Dabei ist der erste Multisensormelder MSM1 als Blockschaltbild näher gezeigt. Die Brandkenngröße Rauchdichte RD wird mit dem Rauchsensor RS erfaßt. Die Umgebungskenngrößen werden mit dem Temperatursensor TS, dem Feuchtesensor FS und dem Luftdrucksensor LS erfaßt. Dabei wird mit Hilfe von Oszillatorschaltungen für die jeweilige Umgebungskenngröße ein jeweiliges frequenzanaloges Signal erzeugt, das mit der Erfassungseinrichtung ERF mit einem quarzgesteuerten Zeitbasiszähler gemessen wird. Über eine nachgeschaltete Linearisierungstabelle LIN, der ein Festwertspeicher ROM zugeordnet ist, werden die jeweiligen linearisierten Meßwerte für die Umgebungstemperatur T, die relative Luftfeuchtigkeit F und den absoluten Luftdruck L ermittelt und als jeweiliger Kompensationswert der Kompensationseinrichtung KOM zugeführt, in der der analoge Meßwert für die Rauchdichte MWD kompensiert wird. Der kompensierte Meßwert für die Rauchdichte KMWR, d.h. der von den Umwelteinflüssen bereinigte Meßwert, wird bei der Abfrage über die Linienanschaltung LA zur Zentrale Z übertragen. Wie schon erwähnt, ist es zweckmäßig, die einzelnen Baugruppen ERF, LIN, ROM, KOM und LA durch einen Mikrorechner µR zu realisieren. In der Zentrale Z werden die am Meldeort detektierten und unverfälschten Meßwerte für die Rauchdichte KMWR in bekannter Weise zur Alarmbildung weiterverarbeitet. Mit der Erfindung sind daher Störeinflüsse, die von Umweltbedingungen herrühren, weitgehendst ausgeschlossen, so daß Fehlalarme, die aufgrund von Umweltbedingungen entstehen, weitgehendst vermieden werden.In Fig. 4 it is shown using the example of a multi-sensor detector MSM1 that the compensation takes place in the detector itself. It is shown schematically there that a number of multisensor detectors MSM1 to MSMn are connected to the center Z via the two-wire (a, b) primary signal line ML. The first multi-sensor detector MSM1 is shown in more detail as a block diagram. The fire parameter smoke density RD is recorded with the smoke sensor RS. The environmental parameters are recorded with the temperature sensor TS, the humidity sensor FS and the air pressure sensor LS. A respective frequency-analog signal is generated with the help of oscillator circuits for the respective environmental parameter, which signal is measured with the detection device ERF with a quartz-controlled time base counter. The respective linearized measured values for the ambient temperature T, the relative humidity F and the absolute atmospheric pressure L are determined via a downstream linearization table LIN, to which a read-only memory ROM is assigned, and are fed as a respective compensation value to the compensation device KOM, in which the analog measurement value for the smoke density MWD is compensated. The compensated measured value for the smoke density KMWR, i.e. the measured value, which has been cleaned of the environmental influences, is transmitted to the control center Z when queried via the line interface LA. As already mentioned, it is expedient to implement the individual assemblies ERF, LIN, ROM, KOM and LA using a microcomputer µR. In the central station Z, the undistorted measured values for the smoke density KMWR detected at the reporting location are processed in a known manner for alarm generation. The invention therefore largely eliminates interferences resulting from environmental conditions, so that false alarms which arise due to environmental conditions are largely avoided.

Claims (9)

  1. Method for taking into account climatic ambient influences on automatic fire detectors (M1,M2,...) of a fire alarm system, in which the analog detector measured values of the fire characteristic values (BKG), for example smoke density (RD), heat or warmth (temperature T), flame, are processed and evaluated for forming alarm conditions, ambient characteristic values (UKG), such as temperature (T), air humidity (F), air pressure (L), being used for compensating the detector measured values (BKG), characterized in that, in addition to the fire characteristic values (BKG), the ambient temperature (T), the relative air humidity (F) and the absolute air pressure (L) in the region of the fire detector are measured continuously and from these, using a microcomputer, with the aid of algorithms or conversion tables, the respective compensation values are calculated, with which the detector measured values (BKG) are compensated, and in that the compensated detector measured values are further processed for forming alarm criteria.
  2. Method according to Claim 1, characterized in that the compensation takes place in the respective fire detector itself or is carried out in the central control means of the fire alarm system, the analog measured values of the ambient characteristic values regularly being transmitted, in addition to the analog detector measured value, to the central control means.
  3. Method according to Claim 1 or 2, characterized in that the conversion tables for one respective fire detector type (for example ionization detector or optical smoke detector) are determined in a climatic chamber under the defined influence of temperature, humidity and air pressure and are written to read-only memories (ROM) provided for this.
  4. Method according to one of the preceding claims, characterized in that the ambient characteristic value of temperature (T) is acquired using a temperature sensor (TS), the ambient characteristic value of relative air humidity (F) is acquired using a humidity sensor (FS) and the ambient characteristic value of absolute air pressure (L) is acquired using an air pressure sensor (LS), in that the respective sensor signal is converted by means of an oscillator circuit (OSZ) into a frequency signal of which the frequency corresponds to the value of the sensor signal, and in that the value of the respective ambient characteristic value and hence the compensation value is determined from each of these frequency signals using a quartz-controlled time base counter (ERF) and by means of the linearization tables (LIN).
  5. Method according to one of Claims 1 to 4, characterized in that, in the case of a smoke detector, the fire characteristic value of smoke density (MWR) is compensated using the ambient characteristic values of temperature (T), relative air humidity (F) and absolute air pressure (L).
  6. Method according to one of Claims 1 to 4, characterized in that, in the case of a heat detector, the fire characteristic value of heat (T) is compensated using the ambient characteristic value of absolute air pressure (L) and/or relative air humidity (F), the fire characteristic value of heat being derived from the temperature measurement (T) of the temperature sensor (TS).
  7. Method according to one of the preceding claims, characterized in that the compensated analog measured values or the analog measured values of the fire characteristic values and the ambient characteristic values are transmitted to the central control means in accordance with the pulsed alarm method using the principle of chain synchronization.
  8. Device for carrying out the method according to one of Claims 1 to 7, characterized in that a fire detector with its sensor for the fire characteristic value, together with the sensors for acquiring the ambient characteristic values of temperature (T), air humidity (F) and air pressure (L), forms a multisensor detector (MSM), in that the temperature sensor (TS) is formed by a thermistor with an oscillator circuit (OSZ) connected downstream, in that the humidity sensor (FS) is formed by a variable capacitance having an oscillator circuit (OSZ) connected downstream, in that the air pressure sensor (S) is formed by a silicon pressure measuring bridge with an amplifier and voltage/frequency converter (VCO) connected downstream, in that the ambient characteristic value sensors (TS, FS; LS) have connected downstream of them a measurement data acquisition unit (ERF) and, downstream of the latter, a measured value linearization unit (LIN), to which is allocated at least one read-only memory (ROM), in that the multisensor detector (MSM1) has a compensation circuit (KOM) to which the measured signals of the fire characteristic value (MWR) and the linearized ambient characteristic values (T, F, L) are fed, in that the compensation circuit (KOM) has connected downstream of it a line connector (LA) which is connected to the primary alarm line (ML) via an input/output loop.
  9. Device according to Claim 8, characterized in that the individual subassemblies (ERF, LIN, ROM, KOM and LA) are formed by a microcomputer (µR).
EP89117327A 1989-09-19 1989-09-19 Method and device to avoid prevailing weather effects on automatic fire alarms Expired - Lifetime EP0418409B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES89117327T ES2081296T3 (en) 1989-09-19 1989-09-19 PROCEDURE AND DEVICE FOR THE CONSIDERATION OF CLIMATE ENVIRONMENTAL INFLUENCES ON AUTOMATIC FIRE ALARMS.
DE58909561T DE58909561D1 (en) 1989-09-19 1989-09-19 Method and device for taking climatic environmental influences on automatic fire detectors into account
EP89117327A EP0418409B1 (en) 1989-09-19 1989-09-19 Method and device to avoid prevailing weather effects on automatic fire alarms
AT89117327T ATE132642T1 (en) 1989-09-19 1989-09-19 METHOD AND DEVICE FOR CONSIDERATION OF CLIMATE ENVIRONMENTAL INFLUENCES ON AUTOMATIC FIRE DETECTORS
GR950403659T GR3018599T3 (en) 1989-09-19 1996-01-04 Method and device to avoid prevailing weather effects on automatic fire alarms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP89117327A EP0418409B1 (en) 1989-09-19 1989-09-19 Method and device to avoid prevailing weather effects on automatic fire alarms

Publications (2)

Publication Number Publication Date
EP0418409A1 EP0418409A1 (en) 1991-03-27
EP0418409B1 true EP0418409B1 (en) 1996-01-03

Family

ID=8201905

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89117327A Expired - Lifetime EP0418409B1 (en) 1989-09-19 1989-09-19 Method and device to avoid prevailing weather effects on automatic fire alarms

Country Status (5)

Country Link
EP (1) EP0418409B1 (en)
AT (1) ATE132642T1 (en)
DE (1) DE58909561D1 (en)
ES (1) ES2081296T3 (en)
GR (1) GR3018599T3 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172096A (en) * 1991-08-07 1992-12-15 Pittway Corporation Threshold determination apparatus and method
JPH06288917A (en) * 1993-03-31 1994-10-18 Nohmi Bosai Ltd Smoke detection type fire sensor
FR2723235B1 (en) * 1994-07-29 1996-10-18 Lewiner Jacques FIRE DETECTION DEVICES INCLUDING A CORRECTION SENSOR
DE4428694C2 (en) 1994-08-12 1996-06-20 Wagner Alarm Sicherung Air pressure compensated fire detection device and method
US6111512A (en) * 1997-03-13 2000-08-29 Nippon Telegraph And Telephone Corporation Fire detection method and fire detection apparatus
JP3724689B2 (en) * 1998-10-30 2005-12-07 ホーチキ株式会社 Fire monitoring device and fire detector
DE102004044094A1 (en) * 2004-09-09 2006-03-30 Hekatron Vertriebs Gmbh Intake fire detector and method of operation
EP1732049A1 (en) * 2005-06-10 2006-12-13 Siemens S.A.S. Fire or smoke detector with high false alarm rejection performance
DE102006043867B4 (en) * 2006-09-19 2009-07-09 Novar Gmbh Method and installation for identifying a hazard detector
DE102006055617A1 (en) * 2006-11-24 2008-05-29 Funa Gmbh Fire protection systems for technical installations
DE102010015467B4 (en) * 2010-04-16 2012-09-27 Winrich Hoseit Fire detector for monitoring a room
DE102020212007A1 (en) 2020-09-24 2022-03-24 Robert Bosch Gesellschaft mit beschränkter Haftung Method for detecting a deposit on a sensor system and sensor system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282520A (en) * 1978-10-25 1981-08-04 Shipp John I Piezoelectric horn and a smoke detector containing same
US4254414A (en) * 1979-03-22 1981-03-03 The United States Of America As Represented By The Secretary Of The Navy Processor-aided fire detector
CH651688A5 (en) * 1980-06-23 1985-09-30 Cerberus Ag METHOD FOR TRANSMITTING MEASURED VALUES IN A FIRE DETECTING SYSTEM AND DEVICE FOR IMPLEMENTING THE METHOD.
US4857912A (en) * 1988-07-27 1989-08-15 The United States Of America As Represented By The Secretary Of The Navy Intelligent security assessment system

Also Published As

Publication number Publication date
ATE132642T1 (en) 1996-01-15
EP0418409A1 (en) 1991-03-27
ES2081296T3 (en) 1996-03-01
DE58909561D1 (en) 1996-02-15
GR3018599T3 (en) 1996-04-30

Similar Documents

Publication Publication Date Title
EP0418409B1 (en) Method and device to avoid prevailing weather effects on automatic fire alarms
DE3523232C2 (en)
EP0070449B1 (en) Method and device for increasing the reaction sensitivity and the disturbance security in a hazard, particularly a fire alarm installation
EP0276368B1 (en) Device for remote temperature measuring
DE3338711C2 (en) Fire monitoring and alarm system
EP0248298B1 (en) Danger alarm installation
EP3381020B1 (en) Method for determining thresholds of a state monitoring unit for a fire detection and/or extinguishing control center, state monitoring unit, and system comprising same
EP0067339A2 (en) Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems
EP0042501B1 (en) Device for the transmission of measured values in a fire warning system
DE2533330C3 (en) Method and device for the transmission of measured values in a fire alarm system
EP0418410B1 (en) Method and device for compensating the air humidity in an optical smoke alarm
DE3249787C2 (en)
DE3506956C2 (en) SMOKE DETECTOR
DE4236618A1 (en) False alarm prevention device for infrared movement detector - has processor which generates alarm control signal only with occurrence of signal from external light sensor, when path of electrical signals from infrared detector deviates from preset course
DE4209546A1 (en) Device for detecting a web edge
DE68922893T2 (en) Fire alarm system.
DE3225106C2 (en) Process and device for the automatic query of the detector measured value and the detector recognition in a hazard alarm system
EP0496254B1 (en) Measuring device for electrical measuring of resistance and method therefore
EP0098554B1 (en) Method and device for automatically demanding signal measure values and signal identification in an alarm installation
EP0418411B1 (en) Fire alarm system with a combination sounder
DE3225032C2 (en) Method and device for the optional automatic query of the detector identification or the detector measured value in a hazard alarm system
DE3806993C2 (en)
EP0098553B1 (en) Method and device for automatically demanding signal measure values and/or signal identification in an alarm installation
DE3912658C2 (en) Method and arrangement for temperature measurement
EP0185175B1 (en) Method for the identification transmission of the detectors in a risk-signalling system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19931210

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 132642

Country of ref document: AT

Date of ref document: 19960115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58909561

Country of ref document: DE

Date of ref document: 19960215

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2081296

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS-ALBIS AKTIENGESELLSCHAFT

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3018599

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960314

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19970829

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970924

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000911

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000914

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000915

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000928

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000929

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001120

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20001214

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010816

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010920

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20010930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

EUG Se: european patent has lapsed

Ref document number: 89117327.0

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020919

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050919