EP0413979B1 - Process and circuit arrangement to identify a model railway locomotive - Google Patents

Process and circuit arrangement to identify a model railway locomotive Download PDF

Info

Publication number
EP0413979B1
EP0413979B1 EP90114121A EP90114121A EP0413979B1 EP 0413979 B1 EP0413979 B1 EP 0413979B1 EP 90114121 A EP90114121 A EP 90114121A EP 90114121 A EP90114121 A EP 90114121A EP 0413979 B1 EP0413979 B1 EP 0413979B1
Authority
EP
European Patent Office
Prior art keywords
locomotive
motor
information
impulse
log
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90114121A
Other languages
German (de)
French (fr)
Other versions
EP0413979A3 (en
EP0413979A2 (en
Inventor
Peter Dipl.-Kfm. Doehler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0413979A2 publication Critical patent/EP0413979A2/en
Publication of EP0413979A3 publication Critical patent/EP0413979A3/en
Application granted granted Critical
Publication of EP0413979B1 publication Critical patent/EP0413979B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H19/00Model railways
    • A63H19/24Electric toy railways; Systems therefor

Definitions

  • the invention relates to a method according to the preamble of claim 1 and to a circuit arrangement according to the preamble of claim 6.
  • Modern model railroad systems have a digital control system for a large number of trains or the associated locomotives, whereby up to 100 locomotives and more can circulate.
  • the locomotives can have different performance data and are located in different locations.
  • the identity of a locomotive is also known as the locomotive address. This essentially contains technical data, but not the current location of the locomotive, which is determined in other known ways.
  • a control system for model train trains on track systems in which each vehicle has a receiver which receives the operating voltage and the control information via wheels and grinders.
  • Control information intended for a particular vehicle does reach all vehicles on the common route, but only the particular vehicle is able to decode and precode the special vehicle coding preceding the control information to record and process the relevant control information, for example to bring the motor, lamps or additional devices into the desired operating state, for example to switch them on or off.
  • this system it is not possible to identify a vehicle that is on a very specific known route section, for example in order to subsequently transmit certain control commands to this particular vehicle.
  • DE 2502780 A1 describes a control method for electrical model trains, in which each locomotive has a transmitter device for identity information, which cooperate with local control devices, with the aid of which priority circuits are possible.
  • each locomotive has a transmitter device for identity information, which cooperate with local control devices, with the aid of which priority circuits are possible.
  • several locomotives should be able to be controlled simultaneously.
  • the entry into a partial track network, in which a train is located should be able to be blocked for all other trains, and after this train has been cleared, the entry of the other waiting trains should be automatically controlled according to a ranking.
  • Automatic speed restrictions which can be controlled by switches or railway signals, should also be possible on certain partial track networks.
  • the invention has for its object to provide a method and a circuit arrangement according to the preamble of claims 1 and 5 so that a binary stored information in a particular locomotive, in particular the locomotive address and thus the identity of a locomotive, the location of which is known or in the usual way Can be determined in a simple manner from a distance while avoiding expensive transmission devices and can be displayed if necessary.
  • the basic idea is to query the information stored in binary form in a switching logic of the locomotive and to supply a corresponding characteristic pulse train to the engine.
  • the current profile on the drive motor of the locomotive is determined in a reading device and fed to an evaluation device.
  • the measured current curve which contains the binary coded locomotive address and possibly further information, is decoded and displayed on request.
  • the code obtained in this way corresponds to a specific locomotive, which is the only one on a specific track section. It can also be used directly for control, be it manually or via a computer program.
  • a mechanical coding switch or preferably a programmable and erasable read-only memory, which is generally referred to as EEPROM, can be used to store the information in the locomotive. Such a fixed memory can be electrically erased and re-encoded in a simple manner.
  • EEPROM electrically erased and re-encoded in a simple manner.
  • one or two multiplexers are expediently used, which scan the values stored, for example in the form of a binary 16-bit word, and read them out serially.
  • a pulse generator receives a zero information signal or a one information signal and accordingly sends an information pulse to the motor or not.
  • Each scanning or changeover process is started in the multiplexer by a changeover signal, which is always supplied to the motor.
  • an oscillator is provided, which preferably delivers synchronization signals directly to the pulse generator via a prescaler, and also controls a counter, which in turn emits control signals to the multiplexer.
  • a shift register can also be connected between the EEPROM and the multiplexer, into which the binary stored data is transmitted by the multiplexer prior to the reading process.
  • Fig. 1 shows a direct current supply (1) with a positive pole "+” and a negative pole "-".
  • the positive lead is fed via a measuring resistor (3) to the positive rail (S+), the negative pole to the negative busbar (S ⁇ ).
  • the locomotive is arranged in an electrically conductive manner between the two rails, only the switching logic (2) and the motor (M) being indicated.
  • the letters (R) and (V) are intended to indicate the different directions, namely the forward direction and the reverse direction, depending on the polarity of the direct current supplied by the switching logic (2).
  • Fig. 1 shows a direct current supply (1) with a positive pole "+” and a negative pole "-”.
  • the positive lead is fed via a measuring resistor (3) to the positive rail (S+), the negative pole to the negative busbar (S ⁇ ).
  • the locomotive is arranged in an electrically conductive manner between the two rails, only the switching logic (2) and the motor (M) being indicated.
  • the letters (R) and (V) are intended to indicate the
  • 1 shows the reading and evaluation unit (4), which taps the measuring resistor (3) and for measuring the current profile on the motor (M) of the locomotive under investigation and thus for determining the generally binary coded locomotive address and thus identity and is responsible for delivering a corresponding display signal.
  • the determined data are displayed in an integrated display device (4 '); for example as locomotive "25" with maximum speed "3".
  • Fig. 2 shows the control logic (2) in an enlarged view, the contact with the two rails (S+ and S ⁇ ) is only indicated schematically.
  • a coding switch (6) is initially shown schematically, 16 binary options being shown, and an open contact containing information zero and a closed contact containing information one.
  • the different storage options of different functional states are labeled 0-15 and are fed to a 16: 1 multiplexer or MUX, which is labeled (7).
  • This multiplexer controlled by the signals D4, T1, T2, T3 emitted by the divider (12), scans the individual stored states 0-15 in the direction of the arrow with the aid of the schematically mechanically represented scanner (13) and supplies either information signals zero or one, designated by log 0 or log 1, which are fed to the pulse generator (5) and then either trigger an information pulse or not, which is then fed to the motor (M) if necessary.
  • a changeover switch (8) is connected in front of the motor (M), which changes the direction with the aid of a flip-flop (9) for each pulse and thereby the motor in the forward direction (V) for a first pulse , drives with the next pulse in the reverse direction (R), with the next but one again in the forward direction (V) and so on, which leads to a standstill of the engine and thus the locomotive.
  • the data flip-flop or D-FF (9) corresponding information is supplied to the input D at every rising edge of a clock pulse, the state at the inverting output Q changes with each of the successive clock pulses.
  • the pulses supplied by the output of the pulse generator (5) are fed to the changeover switch (8) and the input CLK of the flip-flop (9).
  • the pre-divider (11) immediately delivers a first divider signal with a pulse sequence of 800 ⁇ s, which together with the signal FO via the pulse generator (5) delivers a corresponding regular switching pulse to the motor (M).
  • the counter (12), which emits a corresponding sampling frequency for reading the identification code in the coding switch (6) by the multiplexer (7), is controlled with the frequency Fz of 800 ⁇ s pulse sequence.
  • the input (RO) of the counter (12) enables the counter (12) to be reset at the start of each identification process.
  • Fig. 3 shows from top to bottom the various essential pulse sequences during an identification process.
  • FIG. 3 shows the course of various voltage or pulse and current sequences, with rows below one another being designated with the capital letters A to N. These pulse sequences arise in the switching logic or on the motor (M) according to FIG. 2.
  • the vertical dashed line is intended to represent the temporal relationship between the different pulse sequences, which is ensured by a synchronization device.
  • Line A shows the positive DC voltage value (V DD ) after switching on the entire system or a specific locomotive.
  • Line B shows the DC pulse (RO) following shortly thereafter at the input of the counter (12) of FIG. 2, which resets it to zero.
  • Line C shows the pulse sequence generated by the oscillator (10) with a pulse duration and an interval of 200 ⁇ s each, which result in a pulse period of 400 ⁇ s.
  • Line D shows a pulse train with pulse periods of 800 ⁇ s at the output of the pre-divider (11) or at the point (Z). This pulse train is fed to the counter (12) on the one hand, and to the pulse generator (5) in addition to the pulse train in line C.
  • Lines E, F, G and H show four different pulse sequences, which are fed from the counter (12) to the multiplexer (7) in the chronological order shown after the start of the identification process after the system or the locomotive has been switched on, in order to do that there Scan the code memory (6) control, with successive pulse trains the time of a pulse period is doubled.
  • Line I shows a reset pulse (R E ) after the end of the remote reading process.
  • Line (M) shows a pulse sequence including a pulse due to an information pulse generated by the multiplexer (7). This information is referred to as (log1).
  • the line (N) below shows a pulse sequence without an information pulse, thus consisting only of the switching pulses. This information is referred to as (log0). Both pieces of information are the result of the information successively read out from the coding memory (6) during the remote reading process.
  • the line (K) shows the pulse sequence fed to the motor (M) via the toggle switch (8) controlled by a flip-flop (9), in this case for a backward movement of the locomotive, designated by (M R ), while the line (L) below it, assigned to the line (K), represents the corresponding pulse input to the motor (M), specifically to the input (R) opposite the input (V), for a forward movement.
  • the ticked pulses represent the information pulses, the occurrence of which depends on the information as described above (as in line (J)), the remaining pulses represent pure synchronization pulses.

Landscapes

  • Toys (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren gemäß dem Oberbegriff des Ansprüches 1 sowie auf eine Schaltungsanordnung gemäß dem Oberbegriff des Ansprüches 6.The invention relates to a method according to the preamble of claim 1 and to a circuit arrangement according to the preamble of claim 6.

Moderne Modelleisenbahn- Anlagen weisen eine digitale Steuerung für eine Vielzahl von Zügen bzw. der zugeordneten Lokomotiven auf, wobei bis zu 100 Lokomotiven und mehr umlaufen können. Die Lokomotiven können unterschiedliche Leistungsdaten aufweisen und befinden sich an unterschiedlichen Orten. Um eine Übersicht über die Steuerung zu erhalten, wäre es erwünscht, die einzelnen Lokomotiven zu identifizieren und eine entsprechende Fernanzeige, beispielsweise auf einem Stellpult, zu erhalten, oder auch andere in der Lokomotive gespeicherte Daten aus der Ferne auszulesen. Dies ist besonders erwünscht bei der Inbetriebnahme einer bestimmten Lokomotive, die sich beispielsweise in einem Rundlokschuppen befindet. Die Identität einer Lokomotive wird auch als Lokadresse bezeichnet. Diese beinhaltet somit im wesentlichen technische Daten, nicht jedoch den momentanen Standort der Lokomotive, was auf andere bekannte Weise festgestellt wird.Modern model railroad systems have a digital control system for a large number of trains or the associated locomotives, whereby up to 100 locomotives and more can circulate. The locomotives can have different performance data and are located in different locations. In order to obtain an overview of the control system, it would be desirable to identify the individual locomotives and to receive a corresponding remote display, for example on a control desk, or to read other data stored in the locomotive remotely. This is particularly desirable when commissioning a particular locomotive, which is located in a round locomotive shed, for example. The identity of a locomotive is also known as the locomotive address. This essentially contains technical data, but not the current location of the locomotive, which is determined in other known ways.

Aus der DE 2846801 A1 ist ein Steuerungs- System für Modellbahnzüge auf Gleisanlagen bekannt, bei dem jedes Fahrzeug einen Empfänger hat, der über Räder und Schleifer die Betriebsspannung und die Steuer- Information erhält. Eine für ein bestimmtes Fahrzeug bestimmte Steuer- Information gelangt zwar auf dem gemeinsamen Leitungswege zu allen Fahrzeugen, nur das bestimmte Fahrzeug ist jedoch imstande, die der Steuer- Information vorausgehende spezielle Fahrzeug- Codierung zu decodieren und die betreffende Steuer- Information aufzunehmen und zu verarbeiten, beispielsweise den Motor, Lampen oder Zusatzeinrichtungen in den gewünschten Betriebszustand zu bringen, beispielsweise einzuschalten oder auszuschalten. Mit diesem System ist es aber nicht möglich, ein Fahrzeug zu identifizieren, das auf einem ganz bestimmten bekannten Streckenabschnitt steht, um diesem bestimmten Fahrzeug beispielsweise anschließend bestimmte Steuer- Befehle zu übermitteln.From DE 2846801 A1 a control system for model train trains on track systems is known, in which each vehicle has a receiver which receives the operating voltage and the control information via wheels and grinders. Control information intended for a particular vehicle does reach all vehicles on the common route, but only the particular vehicle is able to decode and precode the special vehicle coding preceding the control information to record and process the relevant control information, for example to bring the motor, lamps or additional devices into the desired operating state, for example to switch them on or off. With this system, however, it is not possible to identify a vehicle that is on a very specific known route section, for example in order to subsequently transmit certain control commands to this particular vehicle.

Die DE 2502780 A1 beschreibt ein Steuerverfahren für elektrische Modellbahnen, bei dem jede Lokomotive eine Sendereinrichtung für Identitätsinformationen aufweist, die mit lokalen Steuergeräten zusammenwirken, mit deren Hilfe Vorrang- Schaltungen möglich sind. Auf diese Weise sollen mehrere Lokomotiven gleichzeitig angesteuert werden können. Beispielsweise soll die Einfahrt in ein Teil- Gleisnetz, in dem sich ein Zug befindet, für alle anderen Züge gesperrt werden können, und nach dem Räumen dieses Zuges soll die Einfahrt der übrigen wartenden Züge gemäß einer Rangfolge automatisch gesteuert werden können. Es sollen auf bestimmten Teil- Gleisnetzen auch automatische Geschwindigkeitsbeschränkungen möglich sein, die durch Weichen oder Bahnsignale gesteuert werden können.DE 2502780 A1 describes a control method for electrical model trains, in which each locomotive has a transmitter device for identity information, which cooperate with local control devices, with the aid of which priority circuits are possible. In this way, several locomotives should be able to be controlled simultaneously. For example, the entry into a partial track network, in which a train is located, should be able to be blocked for all other trains, and after this train has been cleared, the entry of the other waiting trains should be automatically controlled according to a ranking. Automatic speed restrictions, which can be controlled by switches or railway signals, should also be possible on certain partial track networks.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Schaltungsanordnung gemäß dem Oberbegriff des Anspruches 1 bzw. 5 so auszugestalten, daß eine in einer bestimmten Lokomotive binär gespeicherte Information, insbesondere die Lokadresse und damit Identität einer Lokomotive, deren Standort bekannt ist oder auf übliche Weise ermittelt werden kann, aus der Ferne in einfacher Weise unter Vermeidung aufwendiger Sendeeinrichtungen festgestellt und gegebenenfalls angezeigt werden kann.The invention has for its object to provide a method and a circuit arrangement according to the preamble of claims 1 and 5 so that a binary stored information in a particular locomotive, in particular the locomotive address and thus the identity of a locomotive, the location of which is known or in the usual way Can be determined in a simple manner from a distance while avoiding expensive transmission devices and can be displayed if necessary.

Die Aufgabe wird erfindungsgemäß durch die Merkmale des Ansprüches 1 bzw. des Ansprüches 6 gelöst. Weitere Ausgestaltungen der Erfindung sind in den auf diese Ansprüche zurückbezogenen abhängigen Ansprüche unter Schutz gestellt.The object is achieved by the features of claim 1 and claim 6. Further developments of the invention are protected in the dependent claims which refer back to these claims.

Die Grundidee besteht darin, die in einer Schaltlogik der Lokomotive binär gespeicherte Information abzufragen und eine entsprechende charakteristische Impulsfolge dem Motor zuzuführen. Der Stromverlauf am Antriebsmotor der Lokomotive wird in einer Leseeinrichtung festgestellt und einer Auswerteeinrichtung zugeführt. Dort wird der gemessene Stromverlauf, der die binär codierte Lokadresse und eventuell weitere Informationen beinhaltet, decodiert und auf Wunsch auch zur Anzeige gebracht. Der so erhaltene Code entspricht einer bestimmten Lok, die als einzige auf einem bestimmten Gleisabschnitt steht. Er kann auch unmittelbar für die Steuerung, sei es manuell oder über Computerprogramm, eingesetzt werden.The basic idea is to query the information stored in binary form in a switching logic of the locomotive and to supply a corresponding characteristic pulse train to the engine. The current profile on the drive motor of the locomotive is determined in a reading device and fed to an evaluation device. There, the measured current curve, which contains the binary coded locomotive address and possibly further information, is decoded and displayed on request. The code obtained in this way corresponds to a specific locomotive, which is the only one on a specific track section. It can also be used directly for control, be it manually or via a computer program.

Für die Speicherung der Information in der Lokomotive kann ein mechanischer Codierschalter oder vorzugsweise ein programmierbarer und löschbarer Festspeicher, der generell als EEPROM bezeichnet wird, eingesetzt werden. Ein derartiger Festspeicher läßt sich in einfacher Weise elektrisch löschen und neu codieren. Zur Abtastung eines derartigen Codierschalters werden zweckmäßigerweise ein oder zwei Multiplexer eingesetzt, welche die gespeicherten Werte, beispielsweise in Form eines binären 16-Bit-Wortes, abtasten und seriell auslesen. Entsprechend diesem Lesevorgang erhält ein Impulsgenerator ein Null- Informationssignal oder ein Eins- Informationssignal und sendet dementsprechend einen Informationsimpuls an den Motor oder nicht. Begonnen wird jeder Abtast- bzw. Umschalt- Vorgang im Multiplexer durch ein Umschaltsignal, das in jedem Falle dem Motor zugeführt wird. Damit die Steuerung synchron verläuft und auch genau den entsprechenden im Motor vorhandenen Stromimpulsen zugeordnet werden kann, ist auch eine Synchronisation mit der Auswerteeinrichtung sehr zweckmäßig. Zu diesem Zwecke ist ein Oszillator vorgesehen, der vorzugsweise über einen Vorteiler Synchronsignale direkt an den Impulsgenerator liefert, darüber hinaus einen Zähler steuert, der seinerseits Steuersignale an den Multiplexer abgibt. Zwischen EEPROM und Multiplexer kann auch ein Schieberegister geschaltet sein, in welches die binär gespeicherten Daten vor dem Auslesevorgang durch den Multiplexer übertragen werden.A mechanical coding switch or preferably a programmable and erasable read-only memory, which is generally referred to as EEPROM, can be used to store the information in the locomotive. Such a fixed memory can be electrically erased and re-encoded in a simple manner. To scan such a coding switch, one or two multiplexers are expediently used, which scan the values stored, for example in the form of a binary 16-bit word, and read them out serially. According to this reading operation, a pulse generator receives a zero information signal or a one information signal and accordingly sends an information pulse to the motor or not. Each scanning or changeover process is started in the multiplexer by a changeover signal, which is always supplied to the motor. So that the control runs synchronously and can also be assigned exactly to the corresponding current pulses present in the motor, synchronization with the evaluation device is also very expedient. For this purpose, an oscillator is provided, which preferably delivers synchronization signals directly to the pulse generator via a prescaler, and also controls a counter, which in turn emits control signals to the multiplexer. A shift register can also be connected between the EEPROM and the multiplexer, into which the binary stored data is transmitted by the multiplexer prior to the reading process.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt. Es zeigt:

Fig. 1
eine allgemeine Übersicht des Erfindungsgegenstandes,
Fig. 2
die Darstellung der wesentlichen Funktionseinheiten eines praktischen Ausführungsbeispieles einer Schaltlogik,
Fig. 3
die wesentlichen Impulsfolgen während des Fernablese-Vorganges.
An embodiment of the invention is shown in the drawing. It shows:
Fig. 1
a general overview of the subject of the invention,
Fig. 2
the representation of the essential functional units of a practical embodiment of a switching logic,
Fig. 3
the essential pulse sequences during the remote reading process.

In der Zeichnung sind gleiche Teile mit gleichen Bezugszeichen versehen.In the drawing, the same parts are provided with the same reference symbols.

Fig. 1 zeigt eine Gleichstrom- Versorgung (1) mit einem Pluspol "+" und einem Minuspol "-". Die Plus- Leitung wird über einen Meßwiderstand (3) der positiven Schiene (S₊) zugeführt, der Minuspol der negativen Stromschiene (S₋). Zwischen den beiden Schienen ist die Lokomotive elektrisch leitend angeordnet, wobei lediglich die Schaltlogik (2) sowie der Motor (M) angedeutet sind. Die Buchstaben (R) und (V) sollen die unterschiedlichen Richtungen andeuten, nämlich Vorwärtsrichtung und Rückwärtsrichtung, je nach Polarität des von der Schaltlogik (2) gelieferten Gleichstromes. Weiterhin zeigt Fig. 1 die Lese- und Auswerteeinheit (4), die den Meßwiderstand (3) abgreift und für die Messung des Stromverlaufes am Motor (M) der untersuchten Lokomotive und damit für die Feststellung der im allgemeinen binär codierten Lokadresse und damit Identität und für das Liefern eines entsprechenden Anzeigesignales verantwortlich ist. Die ermittelten Daten werden in einer integrierten Anzeigeeinrichtung (4′) angezeigt; beispielsweise als Lok "25" mit Maximalgeschwindigkeit "3".Fig. 1 shows a direct current supply (1) with a positive pole "+" and a negative pole "-". The positive lead is fed via a measuring resistor (3) to the positive rail (S₊), the negative pole to the negative busbar (S₋). The locomotive is arranged in an electrically conductive manner between the two rails, only the switching logic (2) and the motor (M) being indicated. The letters (R) and (V) are intended to indicate the different directions, namely the forward direction and the reverse direction, depending on the polarity of the direct current supplied by the switching logic (2). Furthermore, Fig. 1 shows the reading and evaluation unit (4), which taps the measuring resistor (3) and for measuring the current profile on the motor (M) of the locomotive under investigation and thus for determining the generally binary coded locomotive address and thus identity and is responsible for delivering a corresponding display signal. The determined data are displayed in an integrated display device (4 '); for example as locomotive "25" with maximum speed "3".

Fig. 2 zeigt die Steuerlogik (2) in vergrößerter Darstellung, wobei lediglich schematisch die Kontaktierung mit den beiden Schienen (S₊ und S₋) angedeutet ist.Fig. 2 shows the control logic (2) in an enlarged view, the contact with the two rails (S₊ and S₋) is only indicated schematically.

In der Schaltlogik (2) ist zunächst schematisch ein Codierschalter (6) gezeigt, wobei 16 binäre Möglichkeiten dargestellt sind, und wobei ein offener Kontakt die Information Null und ein geschlossener Kontakt die Information Eins beinhalten soll. Die verschiedenen Speichermöglichkeiten verschiedener Funktionszustände sind mit 0-15 bezeichnet und werden einem 16:1- Multiplexer oder MUX zugeführt, der mit (7) bezeichnet ist. Dieser Multiplexer tastet, gesteuert durch die vom Teiler (12) abgegebenen Signale D4, T1, T2, T3, die einzelnen gespeicherten Zustände 0-15 mit Hilfe des schematisch mechanisch dargestellten und mit (13) bezeichneten Abtasters in Pfeilrichtung ab und liefert entweder Informationssignale Null oder Eins, bezeichnet mit log 0 oder log 1, die dem Impulsgenerator (5) zugeführt werden und dann entweder einen Informationsimpuls auslösen oder nicht, der dann gegebenenfalls dem Motor (M) zugeführt wird. In der Darstellung von Fig. 2 ist vor den Motor (M) ein Wechselschalter (8) geschaltet, der mit Hilfe eines Flip-Flops (9) bei jedem Impuls die Richtung ändert und dadurch bei einem ersten Impuls den Motor in Vorwärtsrichtung (V), beim nächsten Impuls in Rückwärtsrichtung (R) antreibt, beim übernächsten wieder in Vorwärtsrichtung (V) u.s.f., was im Ergebnis zu einem Stillstand des Motors und damit der Lokomotive führt. Im Daten- Flip- Flop oder D- FF (9) wird bei jeder Anstiegsflanke eines Taktim pulses eine entsprechende Information an den Eingang D geliefert, der Zustand am invertierenden Ausgang Q wechselt mit jedem der aufeinanderfolgenden Taktimpulse. Die vom Ausgang des Impulsgenerators (5) gelieferten Impulse werden dem Wechselschalter (8) und dem Eingang CLK des Flip- Flops (9) zugeführt.In the switching logic (2), a coding switch (6) is initially shown schematically, 16 binary options being shown, and an open contact containing information zero and a closed contact containing information one. The different storage options of different functional states are labeled 0-15 and are fed to a 16: 1 multiplexer or MUX, which is labeled (7). This multiplexer, controlled by the signals D4, T1, T2, T3 emitted by the divider (12), scans the individual stored states 0-15 in the direction of the arrow with the aid of the schematically mechanically represented scanner (13) and supplies either information signals zero or one, designated by log 0 or log 1, which are fed to the pulse generator (5) and then either trigger an information pulse or not, which is then fed to the motor (M) if necessary. In the representation of FIG. 2, a changeover switch (8) is connected in front of the motor (M), which changes the direction with the aid of a flip-flop (9) for each pulse and thereby the motor in the forward direction (V) for a first pulse , drives with the next pulse in the reverse direction (R), with the next but one again in the forward direction (V) and so on, which leads to a standstill of the engine and thus the locomotive. In the data flip-flop or D-FF (9), corresponding information is supplied to the input D at every rising edge of a clock pulse, the state at the inverting output Q changes with each of the successive clock pulses. The pulses supplied by the output of the pulse generator (5) are fed to the changeover switch (8) and the input CLK of the flip-flop (9).

Der Oszillator (10), der eine Frequenz mit einer Impulsfolge F0̸, von beispielsweise 400 µs liefert, der nachgeschaltete Vor- Teiler (11), der diese Oszillator-frequenz auf eine Impulsfrequenz Fz von 800 µs teilt, und der Zähler (12) dienen im wesentlichen der Synchronisierung der Impulsfolge und der entsprechenden Taktung des Stromverlaufes am Motor (M). So liefert der Vor- Teiler (11) unmittelbar ein erstes Teilersignal mit einer Impulsfolge von 800 µs, das zusammen mit dem Signal FO über den Impulsgenerator (5) einen entsprechenden regelmäßigen Schaltimpuls an den Motor (M) liefert. Mit der Frequenz Fz von 800 µs Impulsfolge wird der Zähler (12) gesteuert, der eine entsprechende Abtastfrequenz zum Lesen des Identifiziercodes im Codierschalter (6) durch den Multiplexer (7) abgibt. Der Eingang (RO) des Zählers (12) ermöglicht ein Rücksetzen des Zählers (12) zu Beginn jedes Identifiziervorganges.The oscillator (10), which delivers a frequency with a pulse train F0̸, for example 400 µs, the downstream pre-divider (11), which divides this oscillator frequency to a pulse frequency Fz of 800 µs, and the counter (12) essentially the synchronization of the pulse train and the corresponding timing of the current profile on the motor (M). Thus the pre-divider (11) immediately delivers a first divider signal with a pulse sequence of 800 µs, which together with the signal FO via the pulse generator (5) delivers a corresponding regular switching pulse to the motor (M). The counter (12), which emits a corresponding sampling frequency for reading the identification code in the coding switch (6) by the multiplexer (7), is controlled with the frequency Fz of 800 μs pulse sequence. The input (RO) of the counter (12) enables the counter (12) to be reset at the start of each identification process.

Fig. 3 zeigt von oben nach unten die verschiedenen wesentlichen Impulsfolgen während eines Identifiziervorganges.Fig. 3 shows from top to bottom the various essential pulse sequences during an identification process.

Fig. 3 zeigt den Verlauf verschiedener Spannungs- bzw. Impuls-und Stromfolgen, wobei untereinander stehende Zeilen mit den Großbuchstaben A bis N bezeichnet sind. Diese Impulsfolgen entstehen in der Schaltlogik bzw. am Motor (M) gemäß Fig. 2. Die senkrechte strichlierte Linie soll den zeitlichen Zusammenhang zwischen den verschiedenen Impulsfolgen darstellen, der durch eine Synchronisiereinrichtung sichergestellt wird.
Zeile A zeigt den positiven Gleichspannungswert (VDD) nach dem Einschalten der Gesamtanlage oder einer bestimmten Lokomotive.
Zeile B zeigt den kurz darauf folgenden Gleichstromim puls (RO) am Eingang des Zählers (12) von Fig. 2, der diesen auf Null zurücksetzt.
Zeile C zeigt die durch den Oszillator (10) erzeugte Impulsfolge mit einer Impulsdauer und einer Zwischenpause von je 200 µs, die eine Impulsperiode von 400 µs ergeben.
Zeile D zeigt eine Impulsfolge mit Impulsperioden von 800 µs am Ausgang des Vor- Teilers (11) bzw. an der Stelle (Z). Diese Impulsfolge wird zum einen dem Zähler (12) zugeführt, zum anderen und zusätzlich zur Impulsfolge in Zeile C dem Impulsgenerator (5).
Die Zeilen E, F, G und H zeigen vier verschiedene Impulsfolgen, die in der dargestellten zeitlichen Aufeinanderfolge nach dem Beginn des Identifizierungsvorganges nach dem Anschalten der Anlage bzw. der Lokomotive vom Zähler (12) dem Multiplexer (7) zugeführt werden, um dort das Abtasten des Codespeichers (6) zu steuern, wobei bei aufeinanderfolgenden Impulsfolgen die Zeit einer Impulsperiode jeweils verdoppelt wird.
Die Zeile I zeigt einen Rücksetzimpuls (RE) nach Beendigung des Fernablese- Vorganges.
Zeile J zeigt die maximal mögliche Impulsfolge (UI) am Ausgang des Impulsgenerators (5) und gesteuert durch den Ausgang des Multiplexers MUX, der mit (7) bezeichnet ist, beginnend mit einem Sync- Impuls = log0 und einem Startimpuls = log1. Während die Umschaltimpulse in regelmäßigen Abständen mit einer Impulsdauer von 200 µs voll an den Motor (M) geliefert werden, werden die Inform ationsimpulse I0 bis I15 am Ausgang des Multiplexers (7) verwendet, um entsprechende Informations-Ausgangsimpulse von ebenfalls 200 µs am Ausgang des Impulsgenerators (5) je nach individueller Codierung der betreffenden Lokomotive zu erzeugen.
FIG. 3 shows the course of various voltage or pulse and current sequences, with rows below one another being designated with the capital letters A to N. These pulse sequences arise in the switching logic or on the motor (M) according to FIG. 2. The vertical dashed line is intended to represent the temporal relationship between the different pulse sequences, which is ensured by a synchronization device.
Line A shows the positive DC voltage value (V DD ) after switching on the entire system or a specific locomotive.
Line B shows the DC pulse (RO) following shortly thereafter at the input of the counter (12) of FIG. 2, which resets it to zero.
Line C shows the pulse sequence generated by the oscillator (10) with a pulse duration and an interval of 200 µs each, which result in a pulse period of 400 µs.
Line D shows a pulse train with pulse periods of 800 µs at the output of the pre-divider (11) or at the point (Z). This pulse train is fed to the counter (12) on the one hand, and to the pulse generator (5) in addition to the pulse train in line C.
Lines E, F, G and H show four different pulse sequences, which are fed from the counter (12) to the multiplexer (7) in the chronological order shown after the start of the identification process after the system or the locomotive has been switched on, in order to do that there Scan the code memory (6) control, with successive pulse trains the time of a pulse period is doubled.
Line I shows a reset pulse (R E ) after the end of the remote reading process.
Line J shows the maximum possible pulse sequence (U I ) at the output of the pulse generator (5) and controlled by the output of the multiplexer MUX, which is designated by (7), starting with a sync pulse = log0 and a start pulse = log1. While the changeover pulses are delivered at regular intervals with a pulse duration of 200 µs to the motor (M), the information pulses I0 to I15 at the output of the multiplexer (7) are used to generate corresponding information output pulses of 200 µs at the output of the Generate pulse generator (5) depending on the individual coding of the locomotive in question.

Am Beginn der Impulsfolge werden prinzipiell keine Informationsimpulse erzeugt, um die genaue Länge zwischen den einzelnen Umschaltimpulsen festzustellen, und um eine Synchronisation mit der Auswerteeinrichtung (4) zu ermöglichen. Die Zeile (M) zeigt eine Impulsfolge einschließlich eines Impulses aufgrund eines vom Multiplexer (7) erzeugten Informationsimpulses. Diese Information wird mit (log1) bezeichnet. Die darunter angeordnete Zeile (N) zeigt eine Impulsfolge ohne Informationsimpuls, somit nur aus den Umschaltimpulsen bestehend. Diese Information wird mit (log0) bezeichnet. Beide Informationen sind das Ergebnis der nacheinanderfolgend während des Fernablesevorganges aus dem Codierspeicher (6) ausgelesenen Information. Die Zeile (K) zeigt die letztendlich über den von einem Flip-Flop (9) gesteuerten Wechselschalter (8) dem Motor (M) zugeführte Impulsfolge, und zwar in diesem Falle für eine Rückwärtsbewegung der Lokomotive, bezeichnet mit (MR), während die darunter angeordnete Zeile (L), und zwar zugeordnet zur Zeile (K), die entsprechende Impulseingabe an den Motor (M), und zwar an den dem Eingang (R) gegenüberliegenden Eingang (V), für eine Vorwärtsbewegung darstellt. Hierbei stellen die angekreuzten Impulse die Informationsimpulse dar, deren Auftreten wie oben beschrieben von der Information abhängig ist (wie in Zeile (J)), die übrigen Impulse stellen reine Synchronisierimpulse dar.In principle, no information pulses are generated at the beginning of the pulse sequence in order to determine the exact length between the individual switching pulses and to enable synchronization with the evaluation device (4). Line (M) shows a pulse sequence including a pulse due to an information pulse generated by the multiplexer (7). This information is referred to as (log1). The line (N) below shows a pulse sequence without an information pulse, thus consisting only of the switching pulses. This information is referred to as (log0). Both pieces of information are the result of the information successively read out from the coding memory (6) during the remote reading process. The line (K) shows the pulse sequence fed to the motor (M) via the toggle switch (8) controlled by a flip-flop (9), in this case for a backward movement of the locomotive, designated by (M R ), while the line (L) below it, assigned to the line (K), represents the corresponding pulse input to the motor (M), specifically to the input (R) opposite the input (V), for a forward movement. The ticked pulses represent the information pulses, the occurrence of which depends on the information as described above (as in line (J)), the remaining pulses represent pure synchronization pulses.

Claims (12)

  1. Process for remote selection of an information, in a specific locomotive located on a specific track section within a model railway with a variety of locomotives which is stored binarily, especially for determining the address and thus for identifying the locomotive,
    characterized in that
    a) the circuit logic (2) of the locomotive and the tracks (S₊, S₋) are provided with energy via the power supply (1) and a reading process for the information binarily stored therein is initiated thereby, this information being scanned sequentially and that the circuit logic of the locomotive initiates the generation and supply of an impulse sequence corresponding to the information to the motor (M) of the locomotive,
    b) the flow of current of the motor (M) at the power supply circuit between power supply and trackage is measured, the information stored in the locomotive is determined and, if possible, indicated thereby.
  2. Process according to claim 1,
    characterized in that
    a specific code initiates the selection process and that in order to avoid starting of the examined locomotive consecutive impulses of the impulse sequence transmitted to the motor (M) are turned in polarity.
  3. Process according to claims 1 or 2,
    characterized in that
    for every individual scanning process of every individual binary memory location a change-over impulse is generated, in each case depending on the control or the memory position followed by an information 'zero' or 'one' (log 0, log 1), whereby apart from the synchronous impulse a further impulse or no further impulse is transmitted to the motor so that in the one binary memory position (log 0) one impulse is transmitted to the motor and in the other binary memory position (log 1) two impulses are transmitted to the motor.
  4. Process according to one of the claims 1 to 3,
    characterized in that
    the remote selection process takes place automatically when turning on the model railway, especially the specific locomotive, and thus the power supply to the circuit logic (2) of the locomotive concerned, whereby the polarity reversal switch and the selection changeover (RO) is reset to 'zero' and the evaluation device is synchronised.
  5. Process according to one of the claims 1 to 4,
    characterized in that
    a measuring shunt (3), the terminal voltages of which are picked off by the read and evaluation circuit (4, 4') to determine the flow of current, is positioned between power supply and trackage.
  6. Circuit arrangement to carry out the process according to one of the claims 1 to 5, to obtain a remote selection of an information, especially of the address and thus the identity being binary-stored in the circuit logic (2) of a locomotive standing on a specific track section with a variety of locomotives with an energy supply for each of the locomotives driven by a direct current motor (M).
    characterized by
    a) a pulse generator (5) positioned in the locomotive, which depending on control bits (0-15) of an encoder (6) in which the binary information of the locomotive is stored, generates a corresponding impulse sequence and transmits it to the motor (M) which superimposes the normal operational direct current,
    b) a measuring device (3) to measure the flow of current in the motor (M), which is positioned in a supply line of the power supply to a track (S₊)
    c) a read and evaluation device (4), which decodes the flow of current measured by the measuring device and generates a corresponding signal which can be displayed on a display device (4').
  7. Circuit arrangement according to claim 6,
    characterized in that
    a mechanical encoder with a number of binary switches corresponding to the number of the desired status functions to be determined which can be scanned individually one after the other and which transmit a corresponding impulse sequence to the motor (M) is provided as encoder (6).
  8. Circuit arrangement according to claim 6 or 7,
    characterized in that
    an electronically erasable and storable read-only memory, called EEPROM,. is used as encoder which at the beginning of the scanning process transmits the binary data stored in the form of a (16-bit) word to one or preferably two (8:1) multiplexer(s) (7, MUX) which successively selects the data and sends a corresponding 'zero' or 'one' signal (log 0, log 1) to the pulse generator (5), which transmits the corresponding information impulses 'zero' or 'one' to the motor (M).
  9. Circuit arrangement according to claim 8,
    characterized by
    a shift register to which with the supply of energy to the circuit logic (2) the information data binarily stored in the EEPROM (6) are transmitted and which can be selected by the multiplexer (7), preferably by two 8:1 multiplexers.
  10. Circuit arrangement according to one of the claims 6 to 9,
    characterized by
    a change-over switch (8) before the motor (M) which because of a control by a flip-flop (9) transmits consecutive impulses with reversed polarity to the motor (M) so that this motor is driven in forward direction (V) and thereafter in backward direction (R) which results in a standstill of the locomotive.
  11. Circuit arrangement according to claims 6 to 10,
    characterized by
    an oscillator (10) which transmits a control frequency (impulse period 400 µs) to a prescaler (11), the prescaler transmitting an impulse sequence being half as high (impulse period 800 µs) to the pulse generator (5) and a counter (12), which transmits corresponding bit impulses (D4, T1, T2, T3) to the multiplexer to synchronically scan or select, respectively, the encoder (6) and to synchronically transmit the corresponding log 0 or log 1 information to the pulse generator (5), a corresponding impulse from the pulse generator (5) to the motor (M) only being released in case of a log 1 information signal.
  12. Circuit arrangement according to one of the claims 6 to 11,
    characterized by
    a reset device for the counter (12) at the beginning and at the end of every remote reading process.
EP90114121A 1989-08-22 1990-07-24 Process and circuit arrangement to identify a model railway locomotive Expired - Lifetime EP0413979B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3927651 1989-08-22
DE3927651A DE3927651A1 (en) 1989-08-22 1989-08-22 METHOD AND CIRCUIT ARRANGEMENT FOR IDENTIFYING A LOCOMOTIVE WITHIN A MODEL RAILWAY SYSTEM

Publications (3)

Publication Number Publication Date
EP0413979A2 EP0413979A2 (en) 1991-02-27
EP0413979A3 EP0413979A3 (en) 1991-09-25
EP0413979B1 true EP0413979B1 (en) 1994-10-05

Family

ID=6387595

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90114121A Expired - Lifetime EP0413979B1 (en) 1989-08-22 1990-07-24 Process and circuit arrangement to identify a model railway locomotive

Country Status (2)

Country Link
EP (1) EP0413979B1 (en)
DE (2) DE3927651A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8262034B2 (en) 2000-12-07 2012-09-11 Mike's Train House, Inc. Control, sound, and operating system for model trains

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4335380C1 (en) * 1993-10-16 1995-03-30 Doehler Peter Dipl Kaufm Circuit for the occupied indication of track sections in a model railway
DE10011978B4 (en) 2000-03-11 2008-03-06 Lenz Elektronik Gmbh Digital multi-train control with bidirectional data traffic
DE10311282A1 (en) * 2003-03-14 2004-09-23 Giesen, Franz, Dipl.-Phys. Remote control of model railways involves controlling signaling system, drives and/or couplings of the model railway depending on data transmitted optically from model railway to control center

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2502780A1 (en) * 1975-01-24 1976-07-29 Martin Dr Rer Nat Brendle Control system for model electric railways - can control several trains on same rail network by transmitting information along rails in cycles
AT357914B (en) * 1977-10-31 1980-08-11 Peter W Dipl Ing Dr Ziegler CONTROL SYSTEM FOR MODEL VEHICLES
GB2014770B (en) * 1978-02-20 1982-03-17 Goddin L Model railway system
DE3000423A1 (en) * 1980-01-08 1981-07-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München METHOD FOR SIMULTANEOUSLY SELECTIVE TRANSMISSION OF DIGITAL INFORMATION AND ELECTRIC MODEL VEHICLES ON A CIRCUIT

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8262034B2 (en) 2000-12-07 2012-09-11 Mike's Train House, Inc. Control, sound, and operating system for model trains

Also Published As

Publication number Publication date
EP0413979A3 (en) 1991-09-25
EP0413979A2 (en) 1991-02-27
DE3927651A1 (en) 1991-03-14
DE3927651C2 (en) 1992-03-05
DE59007378D1 (en) 1994-11-10

Similar Documents

Publication Publication Date Title
DE2740620C2 (en)
DE2555872A1 (en) ANTENNA CONTROL AND REGULATING DEVICE
EP0413979B1 (en) Process and circuit arrangement to identify a model railway locomotive
DE2226778A1 (en) Data transmission system
DE3402076A1 (en) METHOD AND ARRANGEMENT FOR DATA TRANSFER
DE3541759C2 (en)
DE2952827A1 (en) DIGITALIZATION OF A RECURRING ANALOG SIGNAL
DE2456630C3 (en) Remote control system
DE2733875C2 (en) Method for digital information transmission and arrangement for carrying out the method
DE2605919A1 (en) METHOD AND DEVICE FOR FORMATION OF A BIPOLAR SIGNAL WITH A KEY RATIO ONLY
DE4335380C1 (en) Circuit for the occupied indication of track sections in a model railway
DE2822573A1 (en) METHOD AND CIRCUIT ARRANGEMENT FOR DECODING BAR-CODED DATA
DE1762501C3 (en) Signal conversion system
DE2601790A1 (en) Control system for model electric railway - has pulsed DC which controls speed and direction of trains drawn by three different locomotives
DE3435649A1 (en) TRACK-CONTROLLED MAGNETIC TAPE WITH CROSS-TRACK RECORDING
DE2428444A1 (en) DEVICE FOR CODING OR DECODING OF BINARY DATA
DE1171946B (en) Device for recording and / or reproducing electrical telegraphic step groups using a tape-shaped magnetic recording medium
DE2131353A1 (en) Transponder
DE1437360B2 (en) DEVICE FOR TRANSMISSION OF DIGITAL INFORMATION
DE2113819C2 (en) Remote control with pulsed program command transmission - stores temporarily received pulse patterns for sequential comparison with pulse pattern of receiver, using single evaluator.
DE2435687C3 (en) Circuit arrangement for receiving isochronously binary modulated signals in telecommunications systems
DE1437360C3 (en) Device for the transmission of digital information
DE1437187C (en) Method and circuit arrangement for decoding binary pulse signals
DE2627830C2 (en) System for delaying a signal
DE4418482C1 (en) Transmitting data words in model railway system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19920312

17Q First examination report despatched

Effective date: 19930524

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 59007378

Country of ref document: DE

Date of ref document: 19941110

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941103

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990804

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990817

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990820

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990823

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990928

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000724

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010330

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501