EP0413616A1 - Non-aqueous, nonionic heavy duty laundry detergent - Google Patents
Non-aqueous, nonionic heavy duty laundry detergent Download PDFInfo
- Publication number
- EP0413616A1 EP0413616A1 EP90400897A EP90400897A EP0413616A1 EP 0413616 A1 EP0413616 A1 EP 0413616A1 EP 90400897 A EP90400897 A EP 90400897A EP 90400897 A EP90400897 A EP 90400897A EP 0413616 A1 EP0413616 A1 EP 0413616A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition
- polymer
- builder
- weight
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003599 detergent Substances 0.000 title claims abstract description 53
- 239000000203 mixture Substances 0.000 claims abstract description 106
- 229920000642 polymer Polymers 0.000 claims abstract description 26
- 239000002736 nonionic surfactant Substances 0.000 claims abstract description 23
- 239000007844 bleaching agent Substances 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims description 53
- -1 aliphatic ester Chemical class 0.000 claims description 37
- 125000004432 carbon atom Chemical group C* 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 28
- 150000001875 compounds Chemical class 0.000 claims description 27
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 21
- 125000000217 alkyl group Chemical group 0.000 claims description 21
- 108090000790 Enzymes Proteins 0.000 claims description 11
- 102000004190 Enzymes Human genes 0.000 claims description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 11
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 11
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- 239000000178 monomer Substances 0.000 claims description 7
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- 229920002554 vinyl polymer Polymers 0.000 claims description 6
- YZBOVSFWWNVKRJ-UHFFFAOYSA-M 2-butoxycarbonylbenzoate Chemical group CCCCOC(=O)C1=CC=CC=C1C([O-])=O YZBOVSFWWNVKRJ-UHFFFAOYSA-M 0.000 claims description 5
- 150000007942 carboxylates Chemical class 0.000 claims description 5
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 5
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical group O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 5
- 230000036961 partial effect Effects 0.000 claims description 5
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 5
- 239000003431 cross linking reagent Substances 0.000 claims description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 4
- 239000011976 maleic acid Substances 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 238000004900 laundering Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 2
- 238000004061 bleaching Methods 0.000 claims description 2
- 150000002009 diols Chemical class 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 239000011975 tartaric acid Substances 0.000 claims description 2
- 235000002906 tartaric acid Nutrition 0.000 claims description 2
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 claims 1
- 230000002209 hydrophobic effect Effects 0.000 claims 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 claims 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 claims 1
- 239000007787 solid Substances 0.000 abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 20
- 239000007791 liquid phase Substances 0.000 abstract description 12
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 abstract description 11
- 239000012071 phase Substances 0.000 abstract description 7
- 235000019832 sodium triphosphate Nutrition 0.000 abstract description 5
- 239000001509 sodium citrate Substances 0.000 abstract description 4
- 239000002671 adjuvant Substances 0.000 abstract description 3
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 abstract description 3
- 229940038773 trisodium citrate Drugs 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 18
- 150000002191 fatty alcohols Chemical class 0.000 description 17
- 239000000725 suspension Substances 0.000 description 17
- 239000003795 chemical substances by application Substances 0.000 description 15
- 239000000945 filler Substances 0.000 description 14
- 125000001931 aliphatic group Chemical group 0.000 description 13
- 238000000227 grinding Methods 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 125000003342 alkenyl group Chemical group 0.000 description 11
- 239000004927 clay Substances 0.000 description 11
- 239000004744 fabric Substances 0.000 description 10
- 239000004615 ingredient Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 229940088598 enzyme Drugs 0.000 description 9
- 239000004094 surface-active agent Substances 0.000 description 9
- 229920002257 Plurafac® Polymers 0.000 description 8
- 239000012190 activator Substances 0.000 description 8
- 235000019441 ethanol Nutrition 0.000 description 8
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 8
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 238000005191 phase separation Methods 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 229910052708 sodium Inorganic materials 0.000 description 7
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- 239000002562 thickening agent Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 150000008064 anhydrides Chemical class 0.000 description 5
- 150000001721 carbon Chemical group 0.000 description 5
- 239000001768 carboxy methyl cellulose Substances 0.000 description 5
- 229960001484 edetic acid Drugs 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 239000002304 perfume Substances 0.000 description 5
- 239000003352 sequestering agent Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- FRPJTGXMTIIFIT-UHFFFAOYSA-N tetraacetylethylenediamine Chemical compound CC(=O)C(N)(C(C)=O)C(N)(C(C)=O)C(C)=O FRPJTGXMTIIFIT-UHFFFAOYSA-N 0.000 description 5
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- 210000001124 body fluid Anatomy 0.000 description 4
- 239000010839 body fluid Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000003349 gelling agent Substances 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 239000006194 liquid suspension Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002532 enzyme inhibitor Substances 0.000 description 3
- UPBDXRPQPOWRKR-UHFFFAOYSA-N furan-2,5-dione;methoxyethene Chemical compound COC=C.O=C1OC(=O)C=C1 UPBDXRPQPOWRKR-UHFFFAOYSA-N 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000013618 particulate matter Substances 0.000 description 3
- 150000002978 peroxides Chemical class 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 3
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- DLRKSFGLMOBQBG-UHFFFAOYSA-N 3-(3-ethenyl-2-oxopyrrolidin-1-yl)furan-2,5-dione Chemical compound O=C1C(C=C)CCN1C1=CC(=O)OC1=O DLRKSFGLMOBQBG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229930182556 Polyacetal Natural products 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical group 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 2
- 229940063655 aluminum stearate Drugs 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- FUSUHKVFWTUUBE-UHFFFAOYSA-N buten-2-one Chemical compound CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 230000000536 complexating effect Effects 0.000 description 2
- 238000010668 complexation reaction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 2
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 229940051250 hexylene glycol Drugs 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 150000002443 hydroxylamines Chemical class 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- PWWOHDMJXWBVSH-UHFFFAOYSA-N methoxyethene;3-methylfuran-2,5-dione Chemical compound COC=C.CC1=CC(=O)OC1=O PWWOHDMJXWBVSH-UHFFFAOYSA-N 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 150000002903 organophosphorus compounds Chemical class 0.000 description 2
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 239000006174 pH buffer Substances 0.000 description 2
- 229910052625 palygorskite Inorganic materials 0.000 description 2
- 229960003330 pentetic acid Drugs 0.000 description 2
- 150000004965 peroxy acids Chemical class 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229920005646 polycarboxylate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 235000011176 polyphosphates Nutrition 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910021647 smectite Inorganic materials 0.000 description 2
- 235000011083 sodium citrates Nutrition 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 2
- 235000021286 stilbenes Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229940014800 succinic anhydride Drugs 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 2
- 238000004383 yellowing Methods 0.000 description 2
- BDNDQOCRJGGSJO-UHFFFAOYSA-N 1-amino-2-phenylpropan-2-ol Chemical compound NCC(O)(C)C1=CC=CC=C1 BDNDQOCRJGGSJO-UHFFFAOYSA-N 0.000 description 1
- OZCMOJQQLBXBKI-UHFFFAOYSA-N 1-ethenoxy-2-methylpropane Chemical compound CC(C)COC=C OZCMOJQQLBXBKI-UHFFFAOYSA-N 0.000 description 1
- SHHYVKSJGBTTLX-UHFFFAOYSA-N 1-ethenoxy-6-methylheptane Chemical compound CC(C)CCCCCOC=C SHHYVKSJGBTTLX-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- OVGRCEFMXPHEBL-UHFFFAOYSA-N 1-ethenoxypropane Chemical compound CCCOC=C OVGRCEFMXPHEBL-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- FXNDIJDIPNCZQJ-UHFFFAOYSA-N 2,4,4-trimethylpent-1-ene Chemical compound CC(=C)CC(C)(C)C FXNDIJDIPNCZQJ-UHFFFAOYSA-N 0.000 description 1
- GVJRTUUUJYMTNQ-UHFFFAOYSA-N 2-(2,5-dioxofuran-3-yl)acetic acid Chemical compound OC(=O)CC1=CC(=O)OC1=O GVJRTUUUJYMTNQ-UHFFFAOYSA-N 0.000 description 1
- JBJKUURRGSEOSC-UHFFFAOYSA-N 2-methylprop-2-enamide 2-methylprop-2-enenitrile prop-2-enamide prop-2-enenitrile Chemical compound CC(C#N)=C.C(C=C)#N.C(C(=C)C)(=O)N.C(C=C)(=O)N JBJKUURRGSEOSC-UHFFFAOYSA-N 0.000 description 1
- YTZPUTADNGREHA-UHFFFAOYSA-N 2h-benzo[e]benzotriazole Chemical class C1=CC2=CC=CC=C2C2=NNN=C21 YTZPUTADNGREHA-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- WIGOLNZWCNEKNO-UHFFFAOYSA-N 3-chlorofuran-2,5-dione furan-2,5-dione 3-methylfuran-2,5-dione Chemical compound C1(C(C)=C/C(=O)O1)=O.Cl/C=1/C(=O)OC(C1)=O.C1(C=C/C(=O)O1)=O WIGOLNZWCNEKNO-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- AFMXCWBBPIBPMB-UHFFFAOYSA-N 3-methylideneoxetane-2,4-dione 3-methylideneoxolane-2,5-dione Chemical compound C=C1C(=O)OC1=O.C=C1CC(=O)OC1=O AFMXCWBBPIBPMB-UHFFFAOYSA-N 0.000 description 1
- ZFXPBTZXYNIAJW-UHFFFAOYSA-N 4-[2-(2-phenylethenyl)phenyl]triazine Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1C1=CC=NN=N1 ZFXPBTZXYNIAJW-UHFFFAOYSA-N 0.000 description 1
- ZNBNBTIDJSKEAM-UHFFFAOYSA-N 4-[7-hydroxy-2-[5-[5-[6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-2,8-dimethyl-1,10-dioxaspiro[4.5]decan-9-yl]-2-methyl-3-propanoyloxypentanoic acid Chemical compound C1C(O)C(C)C(C(C)C(OC(=O)CC)C(C)C(O)=O)OC11OC(C)(C2OC(C)(CC2)C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CC1 ZNBNBTIDJSKEAM-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical class CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- JEUWVUDDKYNRJN-UHFFFAOYSA-N C(C=C)(=O)O.C(=C)Br.C(=C)F.C(=C)Cl Chemical compound C(C=C)(=O)O.C(=C)Br.C(=C)F.C(=C)Cl JEUWVUDDKYNRJN-UHFFFAOYSA-N 0.000 description 1
- ULOMKQUXDLTYKC-UHFFFAOYSA-N C1(=CC=C(N)C=C1)C1=CC=C(N)C=C1.C1(=CC=CC=C1)C=CC1=CC=CC=C1 Chemical compound C1(=CC=C(N)C=C1)C1=CC=C(N)C=C1.C1(=CC=CC=C1)C=CC1=CC=CC=C1 ULOMKQUXDLTYKC-UHFFFAOYSA-N 0.000 description 1
- UEFUCKHYPWPGLX-UHFFFAOYSA-N C1(C(=C)CC(=O)O1)=O.COC=C Chemical compound C1(C(=C)CC(=O)O1)=O.COC=C UEFUCKHYPWPGLX-UHFFFAOYSA-N 0.000 description 1
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical group [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 102000005701 Calcium-Binding Proteins Human genes 0.000 description 1
- 108010045403 Calcium-Binding Proteins Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102000016938 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910019093 NaOCl Inorganic materials 0.000 description 1
- 239000012425 OXONE® Substances 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Chemical group 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- SXYMTKUCGMVPNO-UHFFFAOYSA-N S(=O)(=O)(O)/C=1/C(=O)OC(\C1)=O.C(C1=CC=CC=C1)/C=1/C(=O)OC(\C1)=O.C1(=CC=CC=C1)/C=1/C(=O)OC(\C1)=O.C1(\C(\C)=C\C(=O)O1)=O Chemical compound S(=O)(=O)(O)/C=1/C(=O)OC(\C1)=O.C(C1=CC=CC=C1)/C=1/C(=O)OC(\C1)=O.C1(=CC=CC=C1)/C=1/C(=O)OC(\C1)=O.C1(\C(\C)=C\C(=O)O1)=O SXYMTKUCGMVPNO-UHFFFAOYSA-N 0.000 description 1
- 229910006069 SO3H Inorganic materials 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 108090000787 Subtilisin Proteins 0.000 description 1
- 108010056079 Subtilisins Proteins 0.000 description 1
- 102000005158 Subtilisins Human genes 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- UAOKXEHOENRFMP-ZJIFWQFVSA-N [(2r,3r,4s,5r)-2,3,4,5-tetraacetyloxy-6-oxohexyl] acetate Chemical compound CC(=O)OC[C@@H](OC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](OC(C)=O)C=O UAOKXEHOENRFMP-ZJIFWQFVSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- NYUBQWPQMNVGLC-UHFFFAOYSA-N butyl prop-2-enoate;furan-2,5-dione Chemical compound O=C1OC(=O)C=C1.CCCCOC(=O)C=C NYUBQWPQMNVGLC-UHFFFAOYSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 125000005518 carboxamido group Chemical group 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000004851 dishwashing Methods 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229940125532 enzyme inhibitor Drugs 0.000 description 1
- KFZLMEIGWMLBJG-UHFFFAOYSA-N ethene 2-methylprop-1-ene prop-1-ene Chemical group CC(C)=C.C=CC.C=C KFZLMEIGWMLBJG-UHFFFAOYSA-N 0.000 description 1
- YYXLGGIKSIZHSF-UHFFFAOYSA-N ethene;furan-2,5-dione Chemical compound C=C.O=C1OC(=O)C=C1 YYXLGGIKSIZHSF-UHFFFAOYSA-N 0.000 description 1
- NHOGGUYTANYCGQ-UHFFFAOYSA-N ethenoxybenzene Chemical compound C=COC1=CC=CC=C1 NHOGGUYTANYCGQ-UHFFFAOYSA-N 0.000 description 1
- VNZXJOOVPHRKAD-UHFFFAOYSA-N ethenoxyethane furan-2,5-dione 3-(2-phenylethenyl)furan-2,5-dione Chemical compound C(=CC1=CC=CC=C1)/C/1=C/C(=O)OC1=O.C1(C=C/C(=O)O1)=O.C(C)OC=C VNZXJOOVPHRKAD-UHFFFAOYSA-N 0.000 description 1
- XIHUFRQLVAMSQC-UHFFFAOYSA-N ethenyl acetate;ethenyl butanoate;ethenyl propanoate Chemical compound CC(=O)OC=C.CCC(=O)OC=C.CCCC(=O)OC=C XIHUFRQLVAMSQC-UHFFFAOYSA-N 0.000 description 1
- KRWWZDVIEFSIOT-UHFFFAOYSA-N ethenyl acetate;furan-2,5-dione Chemical compound CC(=O)OC=C.O=C1OC(=O)C=C1 KRWWZDVIEFSIOT-UHFFFAOYSA-N 0.000 description 1
- LZWYWAIOTBEZFN-UHFFFAOYSA-N ethenyl hexanoate Chemical compound CCCCCC(=O)OC=C LZWYWAIOTBEZFN-UHFFFAOYSA-N 0.000 description 1
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- YWRCHROUECTFKR-UHFFFAOYSA-N ethyl prop-2-enoate methyl prop-2-enoate prop-2-enoic acid propyl prop-2-enoate Chemical class C(CC)OC(C=C)=O.C(C=C)(=O)OCC.C(C=C)(=O)OC.C(C=C)(=O)O YWRCHROUECTFKR-UHFFFAOYSA-N 0.000 description 1
- 125000000219 ethylidene group Chemical group [H]C(=[*])C([H])([H])[H] 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002193 fatty amides Chemical class 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- ACGUYXCXAPNIKK-UHFFFAOYSA-N hexachlorophene Chemical compound OC1=C(Cl)C=C(Cl)C(Cl)=C1CC1=C(O)C(Cl)=CC(Cl)=C1Cl ACGUYXCXAPNIKK-UHFFFAOYSA-N 0.000 description 1
- 229960004068 hexachlorophene Drugs 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 229910000378 hydroxylammonium sulfate Inorganic materials 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000001457 metallic cations Chemical group 0.000 description 1
- 108010020132 microbial serine proteinases Proteins 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- HJKYXKSLRZKNSI-UHFFFAOYSA-I pentapotassium;hydrogen sulfate;oxido sulfate;sulfuric acid Chemical compound [K+].[K+].[K+].[K+].[K+].OS([O-])(=O)=O.[O-]S([O-])(=O)=O.OS(=O)(=O)O[O-].OS(=O)(=O)O[O-] HJKYXKSLRZKNSI-UHFFFAOYSA-I 0.000 description 1
- 125000005342 perphosphate group Chemical group 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229940085991 phosphate ion Drugs 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000570 polyether Chemical group 0.000 description 1
- 239000005076 polymer ester Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000007686 potassium Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical class [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- GHTWQCXOBQMUHR-UHFFFAOYSA-M potassium;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetate Chemical compound [K+].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC([O-])=O GHTWQCXOBQMUHR-UHFFFAOYSA-M 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000018341 sodium sesquicarbonate Nutrition 0.000 description 1
- 229910000031 sodium sesquicarbonate Inorganic materials 0.000 description 1
- 235000019351 sodium silicates Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- 108010075550 termamyl Proteins 0.000 description 1
- BDOBMVIEWHZYDL-UHFFFAOYSA-N tetrachlorosalicylanilide Chemical compound OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C(=O)NC1=CC=CC=C1 BDOBMVIEWHZYDL-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- KQTIIICEAUMSDG-UHFFFAOYSA-N tricarballylic acid Chemical class OC(=O)CC(C(O)=O)CC(O)=O KQTIIICEAUMSDG-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-O triethanolammonium Chemical compound OCC[NH+](CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-O 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- JEVFKQIDHQGBFB-UHFFFAOYSA-K tripotassium;2-[bis(carboxylatomethyl)amino]acetate Chemical class [K+].[K+].[K+].[O-]C(=O)CN(CC([O-])=O)CC([O-])=O JEVFKQIDHQGBFB-UHFFFAOYSA-K 0.000 description 1
- WCTAGTRAWPDFQO-UHFFFAOYSA-K trisodium;hydrogen carbonate;carbonate Chemical compound [Na+].[Na+].[Na+].OC([O-])=O.[O-]C([O-])=O WCTAGTRAWPDFQO-UHFFFAOYSA-K 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3757—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
- C11D3/3765—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0004—Non aqueous liquid compositions comprising insoluble particles
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/06—Phosphates, including polyphosphates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2086—Hydroxy carboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38618—Protease or amylase in liquid compositions only
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3942—Inorganic per-compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3947—Liquid compositions
Definitions
- This invention relates to stabilization of non-aqueous liquid suspensions, especially non-aqueous liquid fabric-treating compositions. More particularly, this invention relates to non-aqueous liquid laundry detergent compositions which are made stable against phase separation under both static and dynamic conditions and are easily pourable, to the method of preparing these compositions and to the use of these compositions for cleaning soiled fabrics.
- compositions of this type may comprise a liquid nonionic surfactant in which are dispersed particles of a builder, as shown for instance in U.S. Patents No. 4,316,812; 3,630,929; 4,264,466; and 4,661,280.
- Liquid detergents are often considered to be more convenient to employ than dry powdered or particulate products and, therefore, have found substantial favor with consumers. They are readily measurable, speedily dissolved in the wash water, capable of being easily applied in concentrated solutions or dispersions to soiled areas on garments to be laundered and are non-dusting, and they usually occupy less storage space. Additionally, the liquid detergents may have incorporated in their formulations materials which can not stand drying operations without deterioration, which materials are often desirably employed in the manufacture of particulate detergent products.
- liquid detergents Although they are possessed of many advantages over unitary or particulate solid products, liquid detergents often have certain inherent disadvantages too, which have to be overcome to produce acceptable commercial detergent products. Thus, some such products separate out on storage and others separate out on cooling and are not readily redispersed. In some cases the product viscosity changes and it becomes either too thick to pour or so thin as to appear watery. Some clear products become cloudy and others gell on standing.
- suspensions can be stabilized against settling by adding inorganic or organic thickening agents or dispersants, such as, for example, very high surface area inorganic materials, e.g. finely divided silica, clays etc., organic thickeners, such as the cellulose ethers, acrylic and acrylamide polymers, polyelectrolytes, etc.
- inorganic or organic thickening agents or dispersants such as, for example, very high surface area inorganic materials, e.g. finely divided silica, clays etc., organic thickeners, such as the cellulose ethers, acrylic and acrylamide polymers, polyelectrolytes, etc.
- inorganic or organic thickening agents or dispersants such as, for example, very high surface area inorganic materials, e.g. finely divided silica, clays etc., organic thickeners, such as the cellulose ethers, acrylic and acrylamide polymers, polyelectrolytes, etc.
- an aqueous false body fluid abrasive scouring composition is prepared from an aqueous liquid and an appropriate colloid-forming materials, such as clay or other inorganic or organic thickening or suspending agent, especially smectite clays, and a relatively light, water-insoluble particulate filler material, which, like the abrasive materials, is suspended throughout the false body fluid phase.
- the lighweight filler has particle size diameters ranging from 1 to 250 microns and a specific gravity less than that of the false body fluid phase. It is suggested by Hartaan that inclusion of the relatively light, insoluble filler in the false body fluid phase helps to minimize phase separation, i.e.
- the filler material acts as a bulking agent replacing a portion of the water which would normally be used in the absence of the filler material, thereby resulting in less-aqueous liquid available to cause clear layer formation and separation.
- British Application GB 2,168,377A discloses aqueous liquid dishwashing detergent compositions with abrasive, colloidal clay thickener and low density particulate filler having particle sizes ranging from about 1 to about 250 microns and densities ranging from about 0.01 to about 0.5 g/cc, used at a level of from about 0.07% to about 1% by weight of the composition. It is suggested that the filler material improves stability by lowering the specific gravity of the clay mass so that it floats in the liquid phase of the composition. The type and amount of filler is selected such that the specific gravity of the final composition is adjusted to match that of the clear fluid (i.e. the compositon without clay or abrasive materials).
- inorganic insoluble thickening agent or dispersant of very high surface area such as finely divided silica of extremely fine particle size (e.g. of 5-100 millimicrons diameter such as sold under the name Aerosil) or the other highly voluminous inorganic carrier materials as disclosed in U.S. Patent 3,630,929.
- aqueous swelling colloidal clays such as bentonite and montmorillonite clays
- organophilic clays as gel-forming clays has been described in U.S. Patent 2,531,427 to E.A. Hauser. Improvements and modifications of the organophilic gel-forming clays are described, for example, in the following U.S.
- Patents 2,966,506 - Jordan; 4,105,578 - Finlayson, et al.; 4,208,218 - Finlayson; 4,287,086 - Finlayson; 4,434,075 - Mardis, et al.; 4,434,076 - Mardis, et al.; all assigned to NL Industries, Inc., formerly National Lead Company.
- these organophilic clay gellants are useful in lubricating greases, oil based muds, oil base packer fluids, paints, paint-varnish-lacquer removers, adhesives, sealants, inks, polyester gel coats and the like,
- use as a stabilizer in a non-aqueous liquid detergent composition for laundering fabrics has not been suggested.
- the physical stability of a dispersion of the particulate materials, such as detergent builders, in a non-aquoeus liquid phase is improved by using as a primary suspending agent an impalpable chain structure type clay, including sepiolite, attapulgite, and palygorskite clays.
- an impalpable chain structure type clay including sepiolite, attapulgite, and palygorskite clays.
- the patentees state the comparative examples in this patent show that other types of clays, such as montmorillonite clay, e.g. Bentolite L. hectorite clay (e.g. Veegum T) and kaolinite clay (e.g.
- Hydrite PX even when used in conjunction with an auxiliary suspension aid, including cationic surfactants, inclusive of QA compounds, are only poor suspending agents.
- Carleton, et al. also refer to use of other clays as suspension aids and mention, as examples, U.S. Patents 4,049,034 and 4,005,027 (both aqueous systems); and U.S. Patents 4,166,039; 3,259,574; 3,557,037 and 3,549,542; and U.K. Patent Application 2,017,072.
- organophilic clay improves stability of the suspension, still further improvements are desired especially for particulate suspensions having relatively low yield values for optimizing dispensing and dispersion during use.
- the non-aqueous liquid laundry detergents based on liquid nonionic surfactants suffer from the drawback that the nonionics tend to gell when added to cold water.
- This is a particularly important problem in the ordinary use of European household automatic washing machines where the user places the laundry detergent composition in a dispensing unit (e.g. a dispensing drawer) of the machine.
- the detergent in the dispenser is subjected to a stream of cold water to transfer it to the main body of wash solution.
- the detergent viscosity increases markedly and a gel forms.
- some of the composition is not flushed completely off the dispenser during operation of the machine, and a deposit of the composition builds up with repeated wash cycles, eventually requiring the user to flush the dispenser with hot water.
- the gelling phenomenon can also be a problem whenever it is desired to carry out washing using cold water as may be recommended for certain synthetic and delicate fabrics or fabrics which can shrink in warm or hot water.
- Partial solutions to the gelling problem in aqueous, substantially builder-free compositions have been proposed and include, for example, diluting the liquid non-ionic with certain viscosity controlling solvents and gel-inhibiting agents, such as lower alkanols, e.g. ethyl alcohol (see U.S. Patent No. 3,953,380), alkali metal formates and adipates (see U.S. Patent No. 4,363,147), hexylene glycol, polyethylene glycol, etc. and nonionic structure modification and organization.
- certain viscosity controlling solvents and gel-inhibiting agents such as lower alkanols, e.g. ethyl alcohol (see U.S. Patent No. 3,953,380), alkali metal formates and adipates (see U.S. Patent No. 4,363,147), hexylene glycol, polyethylene glycol, etc. and nonionic structure modification and organization.
- non-aqueous nonionic detergent compositions containing builders suspended therein with the aid of certain dispersants for the builder such as finely divided silica and/or polyether group containing compounds having molecular weights of at least 500
- the former is exemplified by C12 - C15 fatty alcohols with 5 to 15 moles of etylene and/or propylene oxide per mole.
- the other surfactant is exemplified by linear C6 - C8 or branched C8 - C11 fatty alcohols with 2 to 8 moles ethylene and/or propylene oxide per mole. Again, there is no teaching that these low carbon chain compounds could control the viscosity and prevent gelation of the heavy duty non-aqueous liquid nonionic surfactant compositions with builder suspended in the nonionic liquid surfactant.
- liquid fabric treating compositions which are suspensions of insoluble fabric-treating particles in a non-aqueous liquid and which are storage and transportation stable, easily pourable and dispersible in cold, warm or hot water.
- Another object of this invention is to formulate highly built heavy duty non-aqueous liquid nonionic surfactant laundry detergent compositions which resist settling of the suspended solid particles or separation of the liquid phase.
- a still further object of this invention is to provide nonionic liquids compositions which are readily dispersible in water, particularly laundry bath water.
- a heterogenous system of solids in a liquid medium which is structured to act as a solid during states of rest and under the ordinary stresses of vibrations, oscillations, shear forces and the like which occur during the handling (e.g. transportation etc.) of the packaged product.
- the system acts as a conventional solids suspension in a liquid vehicle or matrix, i.e. it is flowable, pourable, and of course in this state, Stokes Law takes over and the solid suspended matter may settle and the liquid solid phases stratify. It has been determined that several rheological parameters are meaningful indications ofthe stability of a solids suspension in a liquid phase system.
- G ⁇ storage modulus or loss modulus
- relaxation time critical strain (i.e. structure not destroyed below the strain)
- critical strain i.e. structure not destroyed below the strain
- structure recovery Targets to reach for optimized stability are a long relaxation time (G′>G ⁇ ), a critical strain above 0.1 and a recovery time shorter than 1 minute.
- the polymers are derived from ⁇ , ⁇ -monethylenically unsaturated carboxy-containing monomers which also contain at least one other chalcogen-containing group substituted with at least one group of at least 2 carbon atoms.
- the polymers may be homopolymers, copolymers, ter-polymers (i.e. interpolymers) or block interpolymers (e.g. block copolymers).
- the amount of polymer in the composition may vary from about 0.01% to about 10% by weight, and preferably from about 0.05% to about 5% by weight. Typical amounts are 0.10; 0.20 and 0.25.
- the polymer in addition to the carboxy group contains (preferably in the same monomer moiety) a further chalecogen group, i.e. oxygen, nitrogen or sulfur, which is substituted by a grouping of at least 2 carbon atoms.
- a further chalecogen group i.e. oxygen, nitrogen or sulfur, which is substituted by a grouping of at least 2 carbon atoms.
- Illustrative groups are carboxy, carboxamido, sulfonate, etc. Specific groups include carboethoxy, carbobutoxy, N-ethyl carboxamido, N,N-diethyl carboxamido, N-n-butyl-carboxamido, etc.
- Specific monomer moieties of particular advantage are the ⁇ , ⁇ -unsaturated dicarboxylic anhydride and especially those of the formula wherein R1 and R2 are independently selected from the group consisting of hydrogen, halogen, alkyl, aryl, aralkyl, (and substituted alkyl, aryl or aralkyl), or --SO3H.
- Example of these compounds are: maleic anhydride chloromaleic anhydride citraconic anhydride (methylmaleic) fumaric anhydride mesaconic anhydride phenylmaleic anhydride benzyl maleic anhydride sulfomaleic anhydride aconitic anhydride itaconic anhydride methylene malonic anhydride alkyl succinic anhydride and the like
- carboxy monomer moieties in conjunction with other copolymerizable ⁇ , ⁇ - ethylenically unsaturated monomers.
- these include: vinyl ethers e.g., vinyl methyl ether vinyl ethyl ether vinyl n-propyl ether vinyl iso-proply ether vinyl n-butyl ether vinyl iso-butyl ether vinyl iso-octyl ether vinyl phenyl ether a-chlorovinyl phenyl ether vinyl B-naphthyl ether vinyl esters, e.g., vinyl acetate vinyl propionate vinyl butyrate vinyl caproate vinyl stearate, etc.
- vinyl ethers e.g., vinyl methyl ether vinyl ethyl ether vinyl n-propyl ether vinyl iso-proply ether vinyl n-butyl ether vinyl iso-butyl ether vinyl iso-octyl ether vinyl phenyl
- vinyl halides e.g., vinyl chloride vinyl fluoride vinyl bromide acrylic acid and esters, e.g., methyl acrylate ethyl acrylate propyl acrylate acrylic acid derivatives, e.g., methacrylic acid and esters a-haloacrylic acid and esters acrylonitrile methacrylonitrile acrylamide methacrylamide N-alkyl acrylamides N-aryl acrylamides N-vinyl heterocycles, e.g., N-vinyl pyrrolidone N-vinyl 3-morpholinones N-vinyl oxazolidone N-vinyl imidazole styrene alkyl styrenes, e.g., a-methyl styrene vinylidene chloride vinyl ketones, e.g., methyl vinyl ketone olefins such as ethylene propylene isobutylene butene-1 2,4,4-tri
- the anhydride-ethylenically unsaturated interpolymers preferably contain the two moieties in equimolar amount whereby the repeating unit in the interpolymer contains 1 anhydride and 1 comonomer moiety.
- Other ratios are feasible 3.t. 5:4, 4:5, 3:2, 2:3, 2:1, 1:2 etc.
- Examples of specific interpolymers which may be employed are: vinyl methyl ether-maleic anhydride vinyl ethyl ether-maleic anhydride styrene-maleic anhydride a-methyl styrene-maleic anhydride ethylene-maleic anhydride vinyl methyl ether-citraconic anhydride vinyl methyl ether-itaconic anhydride vinyl methyl ether-chlormaleic anhydride vinyl chloride-maleic anhydride vinyl acetate-maleic anhydride vinyl chloride-vinyl acetate-maleic anhydride styrene-vinyl acetate-maleic anhydride styrene-vinyl acetate-maleic anhydride
- An especially useful type of polymer (Z) is one based on an ⁇ , ⁇ - ethylenically-unsaturated dicarboxylic acid or anhydride (e.g. maleic anhydride) and a copolymerizable ⁇ , ⁇ - ethylenically unsaturated comoner (e.g. vinyl methylether, ethylene, styrene, N-vinyl pyrrolidone etc.).
- a further particularly useful sub-group covers the mono esters (e.g. 1/2-butyl, 1/2-ethyl, 1/2-isohexyl) of these polymers.
- Another useful subgroup involves the cross-linked (or reaction products) of the interpolymers and especially polymers of the Z type utilizing a difunctional reagent such as a diol, di-theol or the like.
- Illustrative crosslinking atents are glycols such as diethylene glycol, triethylene glycol, 1,6 hexanediol, polyethylene glycols with molecular weights ranging from several hundred (e.g. 200, 300, 400, etc.) to several hundred thousand (100,000; 150,000; 200,000; 250,000; 350,000; 500,00 etc.) and especially those in the range of about 400 to about 40,000.
- the amount thereof may vary from 1% by height based on the weight of the polymer to 10 times the weight of the polymer, preferably the ratio of polymer to cross-linker should range from about 10:1 to 1:5 and most preferably 5:1 to 1:2.
- liquid phase of the composition of this invention is comprised predominantly or totally of liquid nonionic synthetic organic detergent.
- a portion of the liquid phase may be composed, however, of organic solvents which may enter the composition as solvent, vehicles or carriers for one or more of the solid particulate ingredients, such as in enzyme slurries, perfumes, and the like.
- organic solvents such as alcohols and ethers, may be added as further viscosity control and anti-gelling agents.
- nonionic synthetic organic detergents employed in the practice of the invention may be any of a wide variety of such compounds, which are well known and, for example, are described at length in the text Surface Active Agents , Vol. II, by Schwartz, Perry and Berch, published in 1958 by Interscience Publishers, and in McCutcheon's Detergents and Emulsifiers , 1969 Annual, the relevant disclosures of which are hereby incorporated by reference.
- the nonionic detergents are poly-lower alkoxylated lipophiles wherein the desired hydrophile-lipophile balance is obtained from addition of a hydrophilic poly-lower alkoxy group to a lipophilic moiety.
- a preferred class of the nonionic detergent employed is the poly-lower alkoxylated higher alkanol wherein the alkanol is of 10 to 22 carbon atoms and wherein the number of mols of lower alkylene oxide (of 2 or 3 carbon atoms) is from 3 to 20.
- the higher alkanol is a higher fatty alcohol of about 12 to 18 carbon atoms and which contain from 3 to 14, preferably 3 to 12 lower alkoxy groups per mol.
- the lower alkoxy is often just ethoxy but in some instances, it may be desirably mixed with propoxy, the latter, if present, often being in a minor (less than 50% proportion).
- Exemplary of such compounds are those wherein the alkanol is of 12 to 15 carbon atoms and which contain about 7 ethylene oxide groups per mol, e.g., Neodol 25-7 and Neodol 23-6.5, which products are made by Shell Chemical Company, Inc.
- the former is a condensation product of a mixture of higher fatty alcohols averaging about 12 to 15 carbon atoms, with about 7 mols of ethylene oxide and the latter is a corresponding mixture wherein the carbon atom content of the higher fatty alcohol is 12 to 13 and the number of ethylene oxide groups present averages about 6.5.
- the higher alcohols are primary alkanols.
- Tergitol 15-S-7 and Tergitol 15-S-9 are linear secondary alcohol ethoxylates made by Union Carbide Corp.
- the former is mixed ethoxylation product of 11 to 15 carbon atoms linear secondary alkanol with seven mols of ethylene oxide and the latter is a similar product but with nine mols of ethylene oxide being reacted.
- nonionic detergent also useful in the present compositions as a component of the nonionic detergent are higher molecular weight nonionics, such as Neodol 45-11, which are similar ethylene oxide condensation products of higher fatty alcohols, with the higher fatty alcohol being of 14 to 15 carbon atoms and the number of ethylene oxide groups per mol being about 11. Such products are also made by Shell Chemical Company.
- Another preferred class of useful nonionics are represented by the commercially well know class of nonionics which are the reaction product of a higher linear alcohol and a mixture of ethylene and propylene oxides, containing a mixed chain of ethylene oxide and propylene oxide, terminated by a hydroxyl group.
- Examples include the nonionics sold under the Plurafac trademark of BASF, such as Plurafac RA30, Plurafac RA40 (a C13-C15 fatty alcohol condensed with 7 moles propylene oxide and 4 moles ethylene oxide), Plurafac D25 (a C13-C15 fatty alcohol condensed with 5 moles propylene oxide and 10 moles ethylene oxide), Plurafac B26, and Plurafac RA50 (a mixture of equal parts Plurafac D25 and Plurafac RA40).
- Plurafac RA30 Plurafac RA40
- Plurafac D25 a C13-C15 fatty alcohol condensed with 5 moles propylene oxide and 10 moles ethylene oxide
- Plurafac B26 and Plurafac RA50 (a mixture of equal parts Plurafac D25 and Plurafac RA40).
- the mixed ethylene oxide-propylene oxide fatty alcohol condensation products represented by the general formula RO(C3H6O) p (C2H4O) q H, wherein R is a straight or branched primary or secondary aliphatic hydrocarbon, preferably alkyl or alkenyl, especially preferably alkyl, of from 60 to 20, preferably 10 to 18, especially preferably 12 to 18 carbon atoms, p is a number of up to 14, preferably 3 to 8, and q is a number of up to 14, preferably 3 to 12, can be advantageously used where low foaming characteristics are desired.
- these surfactants have the advantage of low gelling temperatures.
- Dobanol 91-5 is an ethoxylated C9-C11 fatty alcohol with an average of 5 moles ethylene oxide
- Dobanol 25-7 is an ethoxylated C12-C15 fatty alcohol with an average of 7 moles ethylene oxide; etc.
- the number of lower alkoxies will usually be from 40% to 100% of the number of carbon atoms in the higher alcohol, such as 40 to 60% thereof and the nonionic detergent will often contain at least 50% of such preferred poly-lower alkoxy higher alkanol.
- alkyl groups present therein are generally linear although branching may be tolerated, such as at a carbon next to or two carbons removed from the terminal carbon of the straight chain and away from the alkoxy chain, if such branched alkyl is not more than three carbons in length. Normally, the proportion of carbon atoms in such a branched configuration will be minor rarely exceeding 20% of the total carbon atom content of the alkyl.
- linear alkyls which are terminally joined to the alkylene oxide chains are highly preferred and are considered to result in the best combination of detergency, biodegradability and non-gelling characteristics, medial or secondary joinder to the alkylene oxide in the chain may occur. It is usually in only a minor proportion of such alkyls, generally less than 20% but, as is the case of the mentioned Tergitols, may be greater. Also, when propylene oxide is present in the lower alkylene oxide chain, it will usually be less than 20% thereof and preferably less than 10% thereof.
- non-terminally alkoxylated alkanols propylene oxide-containing poly-lower alkoxylated alkanols and less hydrophile-lipophile balanced nonionic detergent than mentioned above are employed and when other nonionic detergents are used instead of the preferred nonionics recited herein, the product resulting may not have as good detergency, stability, viscosity and non-gelling properties as the preferred compositions but use of viscosity and gel controlling compounds can also improve the properties of the detergents based on such nonionics.
- another preferred class of nonionic surfactants includes the C12-C13 secondary fatty alcohols with relatively narrow contents of ethylene oxide in the range of from about 7 to 9 moles, especially about 8 moles ethylene oxide per molecule and the C9-C11, especially C10 fatty alcohols ethoxylated with about 6 moles ethylene oxide.
- compositions of this invention it may be advantageous to include an organic solvent or diluent which can function as a viscosity control and gel-inhibiting agent for the liquid nonionic surface active agents.
- organic solvent or diluent which can function as a viscosity control and gel-inhibiting agent for the liquid nonionic surface active agents.
- Lower (C1-C6) aliphatic alcohols and glycols, such as ethonol, isopropanol, ethylene glycol, hexylene glycol and the like have been used for this purpose.
- Polyethylene glycols, such as PEG 400 are also useful diluients.
- Alkylene glycol ethers such as the compounds sold under the trademarks, Carbopol and Carbitol which have relatively short hydrocarbon chain lengths (C2-C8) and a low content of ethylene oxide (about 2 to 6 EO units per molecule) are especially useful viscosity control and anti-gelling solvents in the compositions of this invention.
- This use of the alkylene glycol ethers is disclosed in U.S. Patent No. 4,753,750 filed December 31, 1984, to T. Ouhadi, et al. the disclosure of which is incorporated herein by reference.
- Suitable glycol ethers can be represented by the following general formula RO(CH2CH2CH2O) n H where R is a C2-C8, preferably C2-C8 alkyl group, and n is a number of from about 1 to 6, preferably 1 to 4, on average.
- suitable solvents include ethylene glycol monoethyl ether (C2H5-O-CH2CH2OH), diethylene glycol monobutyl ether (C4H9-O-(CH2CH2O)2H), tetraethylene glycol monooctyl ether (C8H17-O-(CH2CG2O)4H), etc.
- Diethylene glycol monobutyl ether is especially preferred.
- Another useful antigelling agent which can be included as a minor component of the liquid phase is an aliphatic linear or aliphatic monocyclic dicarboxylic acid, such as the C6 to C12 alkyl and alkenyl derivatives of succinic acid or maleic acid, and the corresponding anhydrides or an aliphatic monocyclic dicarboxylic acid compound.
- an aliphatic linear or aliphatic monocyclic dicarboxylic acid such as the C6 to C12 alkyl and alkenyl derivatives of succinic acid or maleic acid, and the corresponding anhydrides or an aliphatic monocyclic dicarboxylic acid compound.
- these gel-inhibiting compounds are aliphatic linear or aliphatic monocyclic dicarboxyllc acid compounds.
- the aliphatic portion of the molecule may be saturated or ethylenically unsaturated and the aliphatic linear portion may be straight of branched.
- the aliphatic monocylic molecules may be saturated or may include a single double bond in the ring.
- the aliphatic hydrocarbon ring may have 5- or 6-carbon atom in the ring, i.e.
- cyclopentyl cyclopentenyl, cyclohexyl, or cyclohexenyl, with one carboxyl group bonded directly to a carbon atom in the ring and the other carboxyl group bonded to the ring through a linear alkyl or alkenyl group.
- the aliphatic linear dicarboxylic acids have at least about 6 carbon atoms in the aliphatic moiety and may be alkyl or alkenyl having up to about 14 carbon atoms, with a preferred range being from about 8 to 13 carbon atoms, especially preferably 9 to 12 carbon atoms.
- One of the carboxylic acid groups (-COOH) is preferably bonded to the terminal (alpha) carbon atom of the aliphatic chain and the other carboxyl group is preferably bonded to the next adjacent (beta) carbon atom or it may be spaced two or three carbon atoms from the -position, i.e. on the ⁇ or ⁇ carbon atoms.
- the alkyl or alkenyl group may be straight or branched.
- the straight chain alkenyl groups are especially preferred. It is not necessary that R1 represent a single alkyl or alkenyl group and mixtures of different carbon chain lengths may be present depending on the starting materials for preparing the dicarboxylic acid.
- the aliphatic monocyclic dicarboxylic acid may be either 5- or 6-membered carbon rings with one or two linear aliphatic groups bonded to ring carbon atoms.
- the linear aliphatic groups should have at least about 6, preferably at least about 8, especially preferably at least about 10 carbon atoms, in total, and up to about 22, preferably up to about 18, especially preferably up to about 15 carbon atoms.
- two aliphatic carbon atoms are present attached to the aliphatic ring they are preferably located para- to each other.
- R2 and R3 are each preferably alkyl groups of from about 3 to about 10 carbon atoms, especially from about 4 to about 9 carbon atoms, with the total number of carbon atoms in R2 and R3 being from about 8 to about 15.
- the alkyl or alkenyl groups may be straight of branched but are preferably straight chains.
- the amount of the nonionic surfactant is generally within the range of from about 20 to about 70%, such as about 22 to 60% for example 25%, 30%, 35% or 40% by weight of the composition.
- the amount of solvent or diluent when present is usually up to 20%, preferably up to 15%, for example, 0.5 to 15%, preferably 5.0 to 12%.
- the weight ratio of nonionic surfactant to alkylene glycol ether as the viscosity control and anti-gelling agent, when the latter is present, is in the range of from about 100:1 to 1:1, preferably from about 50:1 to about 2:1, such as 10:1, 8:1, 6:1, 4:1 or 3:1. Accordingly, the continuous non-aqueous liquid phase may comprise from about 30% to about 70% by weight of the composition, preferably from about 50% to about 60%.
- the amount of the dicarboxylic acid gel-inhibiting compound, when used, will be dependent on such factors as the nature of the liquid nonionic surfactant, e.g. its gelling temperature, the nature of the dicarboxylic acid, other ingredients in the composition which might influence gelling temperature, and the intended use (e.g. with hot or cold water, geographical climate, and so on).
- the gelling temperature it is possible to lower the gelling temperature to no higher than about 3°C, preferably no higher than about 0 C, with amount of dicarboxylic acid anti-gelling agent in the range of about 1% to about 30%, preferably from about 1.5% to about 15%, by weight, based on the weight of the liquid nonionic surfactant, although in any particular case the optimum amount can be readily determined by routine experimentation.
- the invention detergent compositions in the preferred embodiment also include as an essential ingredient water-soluble and/or water-dispersible detergent builder salts.
- suitable builders include, for example, those disclosed in the aforementioned U.S. Patents 4,316,812, 4,264,466, 3,630,929, and many others.
- Water-soluble inorganic alkaline builder salts which can be used alone with the detergent compound or in admixture with other builders are alkali metal carbonates, borates, phosphates, polyphosphates, icarbonates, and silicates.
- ammonium or substituted ammonium salts can also be used.
- Specific examples of such salts are sodium tripolyphosphate, sodium carbonate, sodium tetraborate, sodium pyrophosphate, potassium pyrophosphate, sodium bicarbonate, potassium tripolyphosphate, sodium hexametaphosphate, sodium sesquicarbonate, sodium mono and diorthophosphate, and potassium bicarbonate.
- Sodium tripolyphosphate (TPP) is especially preferred where phosphate containing ingredients are not prohibited due to environmental concerns.
- the alkali metal silicates are useful builder salts which also function to make the composition anticorrosive to washing machine parts. Sodium silicates of Na2O/SiO2 ratios of from 1.6/1 to 1/3.2, especially about 1/2 to 1/2.8 are preferred. Potassium silicates of the same ratios can also be used.
- Another class of builders are the water-insoluble aliminosilicates, both of the crystalline and amorphous type.
- Various cystalline zeolites i.e. aluminosilicates
- amorphous zeolites useful herein can be found in Belgium Patent 835,351 and this patent too is incorporated herein by reference.
- the zeolites generally have the formula (M2O) x .(Al2O3) y .(SiO2) z .WH2O wherein x is 1, y is from 0.8 to 1.2 and preferably 1, z is from 1.5 to 3.5 or higher and preferably 2 to 3 and W is from 0 to 9, preferably 2.5 to 6 and M is preferably sodium.
- a typical zeolite is type A or similar structure, with type 4A particularly preferred.
- the preferred aluminosilicates have calcium ion exchange capacities of about 200 milliequivalents per gram or greater, e.g. 400 meg/o g.
- organic alkaline sequestrant builder salts which can be used alone with the detergent or in admixture with other organic and inorganic builders are alkali metal, ammonium or substituted ammonium, aminopolycarboxylates, e.g. sodium and potassium ethylene diaminetetraacetate (EDTA), sodium and potassium nitrilotriacetates (NTA) and triethanolammonium N-(2-hydroxyethyl)nitrilodiacetates.
- EDTA ethylene diaminetetraacetate
- NDA sodium and potassium nitrilotriacetates
- triethanolammonium N-(2-hydroxyethyl)nitrilodiacetates triethanolammonium N-(2-hydroxyethyl)nitrilodiacetates.
- Suitable builders of the organic type include carboxymethylsuccinates, tartronates and glycollates and the polyacetal carboxylates.
- the polyacetal carboxylates and their use in detergent compositions are described in 4,144,226; 4,315,092 and 4,146,494.
- Other patents on similar builders include 4,141,676; 4,169,934; 4,201,858; 4,204,852; 4,224,420; 4,225,685; 4,226,960; 4,233,422; 4,233,423; 4,302,564 and 4,303,777.
- the organic builders are the non-nitrogeneous polycarboxylates such as citric acid, tartaric acid and the like.
- the preferred in this group are the sodium and potassium citrates and tartrates and most preferred are the sodium citric acid salts, especially the trisodium citrate, although the monosodium and disodium are also good.
- the porportion of the suspended detergent builder is usually in the range of from about 30 to 70 weight percent, such as about 20 to 50 weight persent, for example about 40 to 50 weight percent of the composition.
- the physical stability of the suspension of the detergent builder salt or salts or any other finely divided suspended solid particulate additive, such as bleaching agent, pigment, etc., in the liquid vehicle is drastically improved by the presence of small amounts of the amphiphilic polymer.
- the stabilizer In preparing the compositions of the present invention, the stabilizer, generally in a flaked or powdered form, is admixed with the other solid ingredients and the liquid components, either in a conventional mixing apparatus, such as a crutcher-type mixer, followed by transfer to a milling apparatus or directly in a milling apparatus. In this latter case, the mill rotor of an Attritor ball mill may be employed to mix the components.
- the stabilizer is first thoroughly mixed with the other solid ingredients, and then this admixture of solid components is mixed with the liquid components.
- compositions of this invention are generally highly concentrated, and, therefore, may be used at relatively low dosages, it is often desirable to supplement the builder with an auxiliary builder such as a polymeric carboxylic acid having high calcium binding capacity to inhibit incrustration which would otherwise be caused by formation of an insoluble calcium phosphate, (e.g. where phosphate ion is present as from builder.
- auxiliary builders are also well know in the art. For example, mention can be made Sokolan CP5 which is a copolymer of about equal moles of methacrylic acid and maleic anhydride, completely neutralized to form the sodium salt thereof.
- the amount of the auxiliary builder is generally up to about 6 weight percent, preferably 1/4 to 4%, such as 1%, 2% or 3%, based on the total weight of the composition.
- various other detergent additives or adjuvants may be present in the detergent product to give it additional desired properties, either of functional or aesthetic nature.
- soil suspending or antiredeposition agents e.g. polyvinyl alcohol, fatty amides, sodium carboxymethyl cellulose, hydroxy-propyl methyl cellulose, usually in amounts of up to 10 weight percent, for example 0.1 to 10%, preferably 1 to 5%; optical brighteners, e.g.
- cotton, polyamide and polyester brighteners for example, stilbene, triazole and benzidone sulfone compositions, especially sulfonated substituted triazinyl stilbene, sulfonated naphthotriazole stilbene benzidine sulfone, et., most preferred are stilbene and triazole combinations.
- amount of the optical brightener up to about 2 weight percent, preferably up to 1 weight percent, such as 0.1 to 0.8 weight percent, can be used.
- Bluing agents such as utramarine blue
- enzymes preferable prot lytic enzymes, such as subtilisin, bormelin, papain, trypain and pensin, as well as amylasetype enzymes, lipase type enzymes, and mixtures thereof
- bactericides e.g.
- tetrachlorosalicylanilide hexachlorophene
- fungicides fungicides
- dyes pigments (water dispersible); preservatives
- ultraviolet absorbers anti-yellowing agents, such as sodium carboxymethyl cellulose, complex of C12 to C22 alkyl alcohol with C12 to C18 alkylsulfate; pH modifiers and pH buffers
- color safe bleaches, perfume, and anti-foam agents or suds-suppressor e.g. silicon compounds can also be sued.
- the bleaching agents are classified broadly for convenience, as chlorine bleaches and oxygen bleaches.
- Chlorine bleaches are typified by sodium hypochlorite (NaOCl), potassium dichloroiosocyanuate (59% available chlorine), and tricholorisocyanuric acid (95% available chlorine).
- Oxygen bleaches are preferred and are represented by percompounds which liberate hydrogen peroxide in solution.
- Preferred examples include sodium and potassium perborates, percarbones, and perphosphate, and potassium monopersulfate.
- the perborates, particularly sodium perborate monohydrate, are especially preferred.
- the peroxygen compound is preferably used in admixture with an activator therefor.
- Suitable activators which can lower the effective operating temperature of the peroxide bleaching agent are disclosed, for example, in U.S. Patent 4,264,466 or in column 1 of U.S. Patent 4,430.244, the relevant disclosures of which are incorporated herein by reference.
- Polyacylated compounds are preferred activators; among these, compounds such as tetraacetyl ethylene diamine (“TAED”) and pentaacetyl glucose are particularly preferred.
- acetylsalicylic acid derivatives include, for example, acetylsalicylic acid derivatives, ethylidene benzoate acetate and its salts, ethylidene carboxylate acetate and its salts, alkyl and alkenyl succinic anhydride, tetraacetylglycouril ("TAGU”), and the derivatives of these.
- TAGU tetraacetylglycouril
- Suitable sequestering agents include, for example, in addition to those mentioned above, the compounds sold under the Dequest trademark, such as, for example, diethylene triamine pentaacetic acid (DETPA); diethylene triamine pentamethylene phosphoric acid (DTPMP); and ethylene diamine tetramethylene phosphoric acid (EDITEMPA).
- DETPA diethylene triamine pentaacetic acid
- DTPMP diethylene triamine pentamethylene phosphoric acid
- EDITEMPA ethylene diamine tetramethylene phosphoric acid
- compositions may additionally include an enzyme inhibitor compound, i.e. a compound capable of inhibiting enzyme-induced decomposition of the peroxide bleaching agent.
- an enzyme inhibitor compound i.e. a compound capable of inhibiting enzyme-induced decomposition of the peroxide bleaching agent.
- Suitable inhibitor compounds are disclosed in U.S. Patent 3,606,990, the relevant disclosure of which is incorporated herein by reference.
- hydroxylamine sulfate and other water-soluble hydroxylamine salts.
- suitable amounts of the hydroxylamine salt inhibitors can be as low as about 0.01 to 0.4%.
- suitable amounts of enzyme inhibitors are up to about 15%, for example, 0.1 to 10%, by weight of the composition.
- an acidic organic phosphorus compound having an acidic-POH group is an acidic organic phosphorus compound having an acidic-POH group, as dislcosed in the commonly assigned copending application Serial No. 781,189, filed September 25, 1985, to Broze, et al., acidic organic phosphorus compound, may be, for instance, a partial ester of phosphoric acid and an alcohol, such as an alkanol having a lipophilic character, having, for instance, more than 5 carbon atoms, e.g. 8 to 20 carbon atoms.
- a specific example is a partial ester of phosphoric acid and a C16 to C18 alkanol.
- Empiphos 5632 from Marchon is made up of about 35% monoester and 65% diester. When used amounts of the phosphoric acid compound up to about 3%, preferably up to 1%, are sufficient.
- a nonionic surfactant which has been modified to convert a free hydroxyl group to a moiety having a free carboxyl group, such as a partial ester of a nonionic surfactant and a polycarboxylic acid, can be incorporated into the composition to further improve rheological properties.
- Suitable ranges of these optional detergent additives are: enzymes - 0 to 2%, especially 0.1 to 1.3%; corrosion inhibitors - about 0 to 40%, and preferably 5 to 30%; anti-foam agents and suds-suppressor - 0 to 15%, preferably 0 to 5%, for example 0.1 to 3%; thickening agent and dispersants - 0 to 15%, for example 0.1 to 10%, preferably 1 to 5%; soil suspending or anti-redeposition agents and anti-yellowing agents - 0 to 10%, preferably 0.5 to 5%; colorants, perfumes, brighteners and bluing agents total weight 0% to about 2% and preferably 0% to about 1%; pH modifiers and pH buffers - 0 to 5%, preferably 0 to 2%; bleaching agent - 0 to about 40% and preferably 0% to about 25%, for example 2 to 20%; bleach stabilizers and bleach activators 0 to about 15%, preferably 0 to 10%, for example, 0.1 to 8%
- the mixture of liquid nonionic surfactant and solid ingredients is subjected to grinding, for example, by a san mill or ball mill.
- a san mill or ball mill Especially useful are the attrition types of mill, such as those sold by Wiener-Amsterdam or Netzsch-Germany, for example, in which the particle sizes of the solid ingredients are reduced to about 1-10 microns, e.g. to an average particle size of 4 to 5 microns or even lower (e.g. 1 micron).
- Preferably less than about 10%, especially less than about 5 of all the suspended particles have particle sizes greater than 15 microns, preferably 10 microns.
- the average particle size be at least 3 microns, especially about 4 microns.
- Other types of grinding mills such as toothmill, peg mill and the like, may also be used.
- the proportion of solid ingredients be high enough (e.g. at least about 40%, such as about 50%) that the solid particles are in contact with each other and are not substantially shielded from one another by the nonionic surfactant liquid.
- Mills which employ grinding balls. (ball mills) or similar mobile grinding elements have given very good results.
- For larger scale work a continuously operating mill in which there are 1 mm of 1.5 mm diameter grinding balls working in a very small gap betveen a stator and a rotor operating at a relatively high speed (e.g.
- a CoBall mill may be employed; when using such a mill, it is desirable to pass the blend of nonionic surfactant and solids first through a mill which does not effect such fine grinding (e.g. a colloid mill) to reduce the particle size to less than 100 microns (e.g. to about 40 microns) prior to the step of grinding to an average particle diameter below about 18 or 15 microns in the continuous ball mill.
- a mill which does not effect such fine grinding (e.g. a colloid mill) to reduce the particle size to less than 100 microns (e.g. to about 40 microns) prior to the step of grinding to an average particle diameter below about 18 or 15 microns in the continuous ball mill.
- the powdery solid particles may be finely ground to the desired size before blending with the liquid matrix, for instance, in a jet-mill.
- liquid fabric treating compositions of this invention may be packaged in conventional glass or plastic vessels and also in single use packages, such as the doserrettes and disposable sachet dispensers disclosed in commonly assigned copending application Serial No. 063,199, filed June 12, 1987 (Attorney's Docket IR-347LG), the disclosure of which is incorporated herein by reference thereto.
- composition is prepared % Weight C9-11 fatty alcohol condensed with 5 moles of ethylene oxide 46.95 Tri-enzymes A* 0.55 Perfume 0.50 Sodium Citrate-dehydrate 30.00 Tetra-acetyl ethylene diamine (TAED) 4.00 Sodium perborate monohydrate 13.70 Na maleate - metracrylate copolymer 2.0 Ethylene diamine tetra acetic acid (EDTA) 0.50 Sodium Carboxymethyl cellulose (CMC) 1.0 Titanium dioxide 0.40 Optical brightener (Tinopol ATS-X) 0.30 Mono Butyl ester of poly (vinyl methyl ether/maleic acid) 0.10 *SAVINASE 8.0 SL (NOVO) 36% ALCALASE 2.5 SL (NOVO) 46% TERMAMYL 300 SL (NOVO) 18% vinyl methyl ether/maleic anhydride molar ration 1:1; M.W. 305,000
- the product is exceptionally stable with no separation or settling of solids after more than 2 months.
- Example I is repeated varying the nonionic (and citrate content) as follows
- Example I is repeated except that the nonionic is replaced by the following in separate formulations in the percent indicated in the final formulation % (A) C13 - C15 fatty alcohol condensed with 7 moles of ethylene oxide and then 4 moles of propylene oxide 46.95 (B) C13 - C15 fatty alcohol condensed with 4 moles of propylene oxide and then 7 moles of ethylene oxide 46.95 (C) A & B in 1:1 ratio 46.95
- Examples I, II, III, IV are each repeated using in place of the mono (i.e. 1/2)-butyl ester polymer the following (at equal weight amounts) A) mono butyl ester of ethylene maleic anhydride interpolymer (1:1) MW 200,000 B) mono butyl ester of styrene maleic anhydride interpolymer (1:1) MW 350,000 C) mono butyl ester of vinyl acetate maleic anhydride interpolymer (1:1) MW 305,000 D) mono ethyl ester of butyl acrylate maleic anhydride interpolymer (1:1) MW 450,000
- composition is prepared % Weight C9 - C11 fatty alcohol condensed with 5 moles ethylene oxide 38.0 Sodium citrate dehydrate 27.8 Sodium perborate monohydrate 14.5 TAED activator 3.7 CMC 1.0 Titanium dioxide 0.4 Optical brightener 0.3 EDTA 0.5 Trienzymes A 0.55 Perfume 0.5 Pluronic L42 Diol 0.05 Vinyl methyl ether-maleic anhydride Polymer (Gantrez AN 119) 0.0 Propylene carbonate 12.6
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
Abstract
Description
- This invention relates to stabilization of non-aqueous liquid suspensions, especially non-aqueous liquid fabric-treating compositions. More particularly, this invention relates to non-aqueous liquid laundry detergent compositions which are made stable against phase separation under both static and dynamic conditions and are easily pourable, to the method of preparing these compositions and to the use of these compositions for cleaning soiled fabrics.
- Liquid nonaqueous heavy duty laundry detergent compositions are well known in the art. For instance, compositions of this type may comprise a liquid nonionic surfactant in which are dispersed particles of a builder, as shown for instance in U.S. Patents No. 4,316,812; 3,630,929; 4,264,466; and 4,661,280.
- Liquid detergents are often considered to be more convenient to employ than dry powdered or particulate products and, therefore, have found substantial favor with consumers. They are readily measurable, speedily dissolved in the wash water, capable of being easily applied in concentrated solutions or dispersions to soiled areas on garments to be laundered and are non-dusting, and they usually occupy less storage space. Additionally, the liquid detergents may have incorporated in their formulations materials which can not stand drying operations without deterioration, which materials are often desirably employed in the manufacture of particulate detergent products.
- Although they are possessed of many advantages over unitary or particulate solid products, liquid detergents often have certain inherent disadvantages too, which have to be overcome to produce acceptable commercial detergent products. Thus, some such products separate out on storage and others separate out on cooling and are not readily redispersed. In some cases the product viscosity changes and it becomes either too thick to pour or so thin as to appear watery. Some clear products become cloudy and others gell on standing.
- The present inventors have been extensively involved as part of an overall corporate research effort in studying the rheological behavior of nonionic liquid surfactant systems with particulate matter suspended therein. Of particular interest have been non-aqueous, built, liquid laundry detergent compositions and the problems of phase separation and settling of the suspended builder and other laundry additives. These considerations have an impact on, for example, product pourability, dispersibility and stability.
- It is known that one of the major problems with built, liquid laundry detergents is their physical stability. This problem stems from the fact that the density of the solid suspended particles is higher than the density of the liquid matrix. Therefore, the particles tend to sediment according to stoke's law. No basic solutions exist to solve the sedimentation problem: increasing liquid matrix viscosity and/or reducing solid particle size.
- For instance, it is known that such suspensions can be stabilized against settling by adding inorganic or organic thickening agents or dispersants, such as, for example, very high surface area inorganic materials, e.g. finely divided silica, clays etc., organic thickeners, such as the cellulose ethers, acrylic and acrylamide polymers, polyelectrolytes, etc. However, such increases in suspension viscosity are naturally limited by the requirement that the liquid suspension be readily pourable and flowable, even at low temperature. Furthermore, these additives do not contribute to the cleaning performance of the formulation. U.S. Patent 4,661,280 to T. Ouhadi, et al, discloses the use of aluminum stearate for increasing stability of suspensions of builder salts in liquid nonionic surfactant. The addition of small amounts of aluminum stearate increases yield stress without increasing plastic viscosity.
- According to U.S. Patent 3,985,668 to W. L. Hartman, an aqueous false body fluid abrasive scouring composition is prepared from an aqueous liquid and an appropriate colloid-forming materials, such as clay or other inorganic or organic thickening or suspending agent, especially smectite clays, and a relatively light, water-insoluble particulate filler material, which, like the abrasive materials, is suspended throughout the false body fluid phase. The lighweight filler has particle size diameters ranging from 1 to 250 microns and a specific gravity less than that of the false body fluid phase. It is suggested by Hartaan that inclusion of the relatively light, insoluble filler in the false body fluid phase helps to minimize phase separation, i.e. minimize formation of a clear liquid layer above the false body abrasive composition, first, by virtue of its buoyancy exerting an upward force on the structure of the colloid-forming agent in the false body phase counteracting the tendency of the heavy abrasive to compress the false body structure and squeeze out liquid. Second, the filler material acts as a bulking agent replacing a portion of the water which would normally be used in the absence of the filler material, thereby resulting in less-aqueous liquid available to cause clear layer formation and separation.
- British Application GB 2,168,377A, published June 18, 1986, discloses aqueous liquid dishwashing detergent compositions with abrasive, colloidal clay thickener and low density particulate filler having particle sizes ranging from about 1 to about 250 microns and densities ranging from about 0.01 to about 0.5 g/cc, used at a level of from about 0.07% to about 1% by weight of the composition. It is suggested that the filler material improves stability by lowering the specific gravity of the clay mass so that it floats in the liquid phase of the composition. The type and amount of filler is selected such that the specific gravity of the final composition is adjusted to match that of the clear fluid (i.e. the compositon without clay or abrasive materials).
- It is also known to include an inorganic insoluble thickening agent or dispersant of very high surface area such as finely divided silica of extremely fine particle size (e.g. of 5-100 millimicrons diameter such as sold under the name Aerosil) or the other highly voluminous inorganic carrier materials as disclosed in U.S. Patent 3,630,929.
- It has long been known that aqueous swelling colloidal clays, such as bentonite and montmorillonite clays, can be modified by exchange of the metallic cation groups with organic groups, thereby changing the hydrophilic clays to organophilic clays. The use of such organophilic clays as gel-forming clays has been described in U.S. Patent 2,531,427 to E.A. Hauser. Improvements and modifications of the organophilic gel-forming clays are described, for example, in the following U.S. Patents: 2,966,506 - Jordan; 4,105,578 - Finlayson, et al.; 4,208,218 - Finlayson; 4,287,086 - Finlayson; 4,434,075 - Mardis, et al.; 4,434,076 - Mardis, et al.; all assigned to NL Industries, Inc., formerly National Lead Company. According to these NL patents, these organophilic clay gellants are useful in lubricating greases, oil based muds, oil base packer fluids, paints, paint-varnish-lacquer removers, adhesives, sealants, inks, polyester gel coats and the like, However, use as a stabilizer in a non-aqueous liquid detergent composition for laundering fabrics has not been suggested.
- On the other hand, the use of clays in combination with quaternary ammonium compounds (often referred to as "QA" compounds) to impart fabric softening benefits to laundering compositions has been described. Por instance, mention can be made of the British Patent Application GB 2,141,152 A, published December 12, 1984, to P. Ramachandran, and the many patents referred to therein for fabric softening compositions based on organophilic QA clays.
- According to the aforementioned U.S. Patent 4,264,466 to Carleton, et al., the physical stability of a dispersion of the particulate materials, such as detergent builders, in a non-aquoeus liquid phase is improved by using as a primary suspending agent an impalpable chain structure type clay, including sepiolite, attapulgite, and palygorskite clays. The patentees state the comparative examples in this patent show that other types of clays, such as montmorillonite clay, e.g. Bentolite L. hectorite clay (e.g. Veegum T) and kaolinite clay (e.g. Hydrite PX), even when used in conjunction with an auxiliary suspension aid, including cationic surfactants, inclusive of QA compounds, are only poor suspending agents. Carleton, et al. also refer to use of other clays as suspension aids and mention, as examples, U.S. Patents 4,049,034 and 4,005,027 (both aqueous systems); and U.S. Patents 4,166,039; 3,259,574; 3,557,037 and 3,549,542; and U.K. Patent Application 2,017,072.
- Commonly assigned copending application Serial No. 063,199, filed June 12, 1987 (Atty's Docket IR-347LG) discloses incorporation into non-aqueous liquid fabric treating compositions of up to about 1% by weight of an organophilic water-swellable smectite clay modified with a cationic nitrogen-containing compound including at least one long chain hydrocarbon having from about 8 to about 22 carbon atoms to form an elastic network or structure throughout the suspension to increase the yield stress and increase stability of the suspension.
- While the addition of the organophilic clay improves stability of the suspension, still further improvements are desired especially for particulate suspensions having relatively low yield values for optimizing dispensing and dispersion during use.
- Grinding to reduce the particle size as a means to increase product stability provides the following advantages:
- (1) the particle specific surface area is increased, and, therefore, particle wetting by the non-aqueous vehicle (liquid non-ionic) is proportionately improved; and
- (2) the average distance between pigment particles is reduced with a proportionate increase in particle-to-particle interaction.
- Each of these effects contributes to increase the rest-gel strength and the suspension yield stress while at the same time grinding significantly reduces plastic viscosity.
- The above-mentioned U.S. Patent 4,316,812 discloses the benefits of grinding solid particles, e.g., builder and bleach, to an average particle diameter of less than 10 microns. However, it has been found that merely grinding to such small particle sizes does not, by itselt, impart sufficient long term stability against phase separation.
- In the commonly assigned copending application filed on July 15, 1987 in the names of N. Dixit, et al. under Serial No. 073,653 (Attorney's Docket I.R.-4494), and titled "STABLE NON-AQUEOUS CLEANING COMPOSITION CONTAINING LOW DENSITY FILLER AND METHOD OF USE" the use of low density filler material for stabilizing suspensions of finely divided solid particulate matter in a liquid phase against phase separation by equalizing the densities of the dispersed particle phase and the liquid phase is disclosed. These modified liquid suspensions exhibit excellent phase stabilization when left to stand for extended periods of time, e.g., up to 6 months or longer or even when subjected to moderate shaking. However, it has recently been observed that when the low-density filler modified suspensions are subjected to strong vibrations, such as may be encountered during transportation by rail, truck, etc., the homogeneity of the dispersion is degraded as a portion of the low density filler migrates to the upper surface of the liquid suspension.
- In commonly assigned, copending application Serial No. 073,551 filed July 15, 1987 in the name of Cao et al. (Attorney's Docket IR 344LG) entitled "Stable Non-Aqueous Suspension Containing Organophilic Clay And Low Density Filler" the use of the low density filler material for stabilizing suspensions of finely divided solid particulate matter in liquid phase against phase separation is disclosed as being improved by the incorporation of organophilic modified clays which aid in resisting the destabilizing effect of strong vibrations.
- Nonetheless, still further improvements are desired in the stability of non-aqueous liquid fabric treating compositions.
- In addition to the problem of settling or phase separation the non-aqueous liquid laundry detergents based on liquid nonionic surfactants suffer from the drawback that the nonionics tend to gell when added to cold water. This is a particularly important problem in the ordinary use of European household automatic washing machines where the user places the laundry detergent composition in a dispensing unit (e.g. a dispensing drawer) of the machine. During the operation of the machine the detergent in the dispenser is subjected to a stream of cold water to transfer it to the main body of wash solution. Especially during the winter months when the detergent composition and water fed to the dispenser are particularly cold, the detergent viscosity increases markedly and a gel forms. As a result some of the composition is not flushed completely off the dispenser during operation of the machine, and a deposit of the composition builds up with repeated wash cycles, eventually requiring the user to flush the dispenser with hot water.
- The gelling phenomenon can also be a problem whenever it is desired to carry out washing using cold water as may be recommended for certain synthetic and delicate fabrics or fabrics which can shrink in warm or hot water.
- Partial solutions to the gelling problem in aqueous, substantially builder-free compositions have been proposed and include, for example, diluting the liquid non-ionic with certain viscosity controlling solvents and gel-inhibiting agents, such as lower alkanols, e.g. ethyl alcohol (see U.S. Patent No. 3,953,380), alkali metal formates and adipates (see U.S. Patent No. 4,363,147), hexylene glycol, polyethylene glycol, etc. and nonionic structure modification and organization.
- As an example of nonionic surfactant modification one particularly successul result has been achieved by providing an acid group on the nonionic. In this regard see U.S. Patent 4,749,512, the disclosure of which is incorporated herein by reference.
- In addition, these two patents each disclosed the use of up to at most about 2.5% of the lower alkyl (C₁ - C₄) etheric derivatives of the lower (C₂ - C₃) polyols, e.g. ethylene glycol, in these aqueous liquid builder-free detergents in place of a portion of the lower alkanol, e.g. ethanol, as a viscosity control solvent. To similar effect are U.S. Patent Nos. 4,111,855 and 4,201,686. However, there is no disclosure or suggestions in any of these patents that these compounds, some of which are commercially available under the tradename Cellosolve R , could function effectively as viscosity control and gel-preventing agents for non-aqueous liquid nonionic surfactant compositions, especially such compositions containing suspended builder salts, such as the polyphosphate compounds or alkali metal citrate,and especially particularly such compositons which do not depend on or require the lower alkanol solvents as viscosity control agents.
- Furthermore, British Patent Specification No. 1,600,981 mentions that in non-aqueous nonionic detergent compositions containing builders suspended therein with the aid of certain dispersants for the builder, such as finely divided silica and/or polyether group containing compounds having molecular weights of at least 500, it may be advantageous to use mixtures of nonionic surfactants, one of which fulfills a surfactant function and the other of which both fulfills a surfactant function and reduces the pour point of the compositions. The former is exemplified by C₁₂ - C₁₅ fatty alcohols with 5 to 15 moles of etylene and/or propylene oxide per mole.
- The other surfactant is exemplified by linear C₆ - C₈ or branched C₈ - C₁₁ fatty alcohols with 2 to 8 moles ethylene and/or propylene oxide per mole. Again, there is no teaching that these low carbon chain compounds could control the viscosity and prevent gelation of the heavy duty non-aqueous liquid nonionic surfactant compositions with builder suspended in the nonionic liquid surfactant.
- Accordingly, it is an object of this invention to provide liquid fabric treating compositions which are suspensions of insoluble fabric-treating particles in a non-aqueous liquid and which are storage and transportation stable, easily pourable and dispersible in cold, warm or hot water.
- Another object of this invention is to formulate highly built heavy duty non-aqueous liquid nonionic surfactant laundry detergent compositions which resist settling of the suspended solid particles or separation of the liquid phase.
- A still further object of this invention is to provide nonionic liquids compositions which are readily dispersible in water, particularly laundry bath water.
- The foregoing objects are achieved by providing a heterogenous system of solids in a liquid medium which is structured to act as a solid during states of rest and under the ordinary stresses of vibrations, oscillations, shear forces and the like which occur during the handling (e.g. transportation etc.) of the packaged product. When the structure is broken or destroyed, the system acts as a conventional solids suspension in a liquid vehicle or matrix, i.e. it is flowable, pourable, and of course in this state, Stokes Law takes over and the solid suspended matter may settle and the liquid solid phases stratify. It has been determined that several rheological parameters are meaningful indications ofthe stability of a solids suspension in a liquid phase system. Some of these parameters are storage modulus or loss modulus (G˝), relaxation time, critical strain (i.e. structure not destroyed below the strain), and structure recovery. Targets to reach for optimized stability are a long relaxation time (G′>G˝), a critical strain above 0.1 and a recovery time shorter than 1 minute.
- These and other objects of the invention which will become more apparent hereinafter have been accomplished based on the inventors' discovery that by adding a relatively small amount of an amphiphilic carboxy-containing addition polymer. The polymers are derived from α, β-monethylenically unsaturated carboxy-containing monomers which also contain at least one other chalcogen-containing group substituted with at least one group of at least 2 carbon atoms.
- The polymers may be homopolymers, copolymers, ter-polymers (i.e. interpolymers) or block interpolymers (e.g. block copolymers).
- The polymers may vary in molecular weight from several (2, 3, 4 etc.) hundred, preferably several thousand (2, 3, 4, 5 etc.) and more preferably tens of thousands (e.g. 20,000, 30,000, 50,000, 70,000) to several million (2, 3, 8, 10 etc.). The most highly preferred ranges will depend somewhat on the particularly monomer moieties, but generally this will be about MW = 75,000 to 750,000. The amount of polymer in the composition may vary from about 0.01% to about 10% by weight, and preferably from about 0.05% to about 5% by weight. Typical amounts are 0.10; 0.20 and 0.25.
- The polymer, in addition to the carboxy group contains (preferably in the same monomer moiety) a further chalecogen group, i.e. oxygen, nitrogen or sulfur, which is substituted by a grouping of at least 2 carbon atoms. Illustrative groups are carboxy, carboxamido, sulfonate, etc. Specific groups include carboethoxy, carbobutoxy, N-ethyl carboxamido, N,N-diethyl carboxamido, N-n-butyl-carboxamido, etc.
- Specific monomer moieties of particular advantage are the α, β-unsaturated dicarboxylic anhydride and especially those of the formula
- Example of these compounds are:
maleic anhydride
chloromaleic anhydride
citraconic anhydride (methylmaleic)
fumaric anhydride
mesaconic anhydride
phenylmaleic anhydride
benzyl maleic anhydride
sulfomaleic anhydride
aconitic anhydride
itaconic anhydride
methylene malonic anhydride
alkyl succinic anhydride and the like
- It is preferred to provide the carboxy monomer moieties in conjunction with other copolymerizable α, β- ethylenically unsaturated monomers. These include:
vinyl ethers e.g.,
vinyl methyl ether
vinyl ethyl ether
vinyl n-propyl ether
vinyl iso-proply ether
vinyl n-butyl ether
vinyl iso-butyl ether
vinyl iso-octyl ether
vinyl phenyl ether
a-chlorovinyl phenyl ether
vinyl B-naphthyl ether
vinyl esters, e.g.,
vinyl acetate
vinyl propionate
vinyl butyrate
vinyl caproate
vinyl stearate, etc.
vinyl halides, e.g.,
vinyl chloride
vinyl fluoride
vinyl bromide
acrylic acid and esters, e.g.,
methyl acrylate
ethyl acrylate
propyl acrylate
acrylic acid derivatives, e.g.,
methacrylic acid and esters
a-haloacrylic acid and esters
acrylonitrile
methacrylonitrile
acrylamide
methacrylamide
N-alkyl acrylamides
N-aryl acrylamides
N-vinyl heterocycles, e.g.,
N-vinyl pyrrolidone
N-vinyl 3-morpholinones
N-vinyl oxazolidone
N-vinyl imidazole
styrene
alkyl styrenes, e.g., a-methyl styrene
vinylidene chloride
vinyl ketones, e.g., methyl vinyl ketone
olefins such as
ethylene
propylene
isobutylene
butene-1
2,4,4-trimethyl pentene-1
hexene-1
3-methyl-butene-1, and the like. - The anhydride-ethylenically unsaturated interpolymers preferably contain the two moieties in equimolar amount whereby the repeating unit in the interpolymer contains 1 anhydride and 1 comonomer moiety. Other ratios are feasible 3.t. 5:4, 4:5, 3:2, 2:3, 2:1, 1:2 etc.
- Examples of specific interpolymers which may be employed are:
vinyl methyl ether-maleic anhydride
vinyl ethyl ether-maleic anhydride
styrene-maleic anhydride
a-methyl styrene-maleic anhydride
ethylene-maleic anhydride
vinyl methyl ether-citraconic anhydride
vinyl methyl ether-itaconic anhydride
vinyl methyl ether-chlormaleic anhydride
vinyl chloride-maleic anhydride
vinyl acetate-maleic anhydride
vinyl chloride-vinyl acetate-maleic anhydride
styrene-vinyl acetate-maleic anhydride - An especially useful type of polymer (Z) is one based on an α, β- ethylenically-unsaturated dicarboxylic acid or anhydride (e.g. maleic anhydride) and a copolymerizable α, β- ethylenically unsaturated comoner (e.g. vinyl methylether, ethylene, styrene, N-vinyl pyrrolidone etc.). A further particularly useful sub-group covers the mono esters (e.g. 1/2-butyl, 1/2-ethyl, 1/2-isohexyl) of these polymers. Another useful subgroup involves the cross-linked (or reaction products) of the interpolymers and especially polymers of the Z type utilizing a difunctional reagent such as a diol, di-theol or the like. Illustrative crosslinking atents are glycols such as diethylene glycol, triethylene glycol, 1,6 hexanediol, polyethylene glycols with molecular weights ranging from several hundred (e.g. 200, 300, 400, etc.) to several hundred thousand (100,000; 150,000; 200,000; 250,000; 350,000; 500,00 etc.) and especially those in the range of about 400 to about 40,000. Where such a cross linking agent is used, the amount thereof may vary from 1% by height based on the weight of the polymer to 10 times the weight of the polymer, preferably the ratio of polymer to cross-linker should range from about 10:1 to 1:5 and most preferably 5:1 to 1:2.
- In the preferred embodiment of special interest herein the liquid phase of the composition of this invention is comprised predominantly or totally of liquid nonionic synthetic organic detergent. A portion of the liquid phase may be composed, however, of organic solvents which may enter the composition as solvent, vehicles or carriers for one or more of the solid particulate ingredients, such as in enzyme slurries, perfumes, and the like. Also as will be described in detail below, organic solvents, such as alcohols and ethers, may be added as further viscosity control and anti-gelling agents.
- The nonionic synthetic organic detergents employed in the practice of the invention may be any of a wide variety of such compounds, which are well known and, for example, are described at length in the text Surface Active Agents, Vol. II, by Schwartz, Perry and Berch, published in 1958 by Interscience Publishers, and in McCutcheon's Detergents and Emulsifiers, 1969 Annual, the relevant disclosures of which are hereby incorporated by reference. Usually, the nonionic detergents are poly-lower alkoxylated lipophiles wherein the desired hydrophile-lipophile balance is obtained from addition of a hydrophilic poly-lower alkoxy group to a lipophilic moiety. A preferred class of the nonionic detergent employed is the poly-lower alkoxylated higher alkanol wherein the alkanol is of 10 to 22 carbon atoms and wherein the number of mols of lower alkylene oxide (of 2 or 3 carbon atoms) is from 3 to 20. Of such materials it is preferred to employ those wherein the higher alkanol is a higher fatty alcohol of about 12 to 18 carbon atoms and which contain from 3 to 14, preferably 3 to 12 lower alkoxy groups per mol. The lower alkoxy is often just ethoxy but in some instances, it may be desirably mixed with propoxy, the latter, if present, often being in a minor (less than 50% proportion). Exemplary of such compounds are those wherein the alkanol is of 12 to 15 carbon atoms and which contain about 7 ethylene oxide groups per mol, e.g., Neodol 25-7 and Neodol 23-6.5, which products are made by Shell Chemical Company, Inc. The former is a condensation product of a mixture of higher fatty alcohols averaging about 12 to 15 carbon atoms, with about 7 mols of ethylene oxide and the latter is a corresponding mixture wherein the carbon atom content of the higher fatty alcohol is 12 to 13 and the number of ethylene oxide groups present averages about 6.5. The higher alcohols are primary alkanols. Other examples of such detergents include Tergitol 15-S-7 and Tergitol 15-S-9, both of which are linear secondary alcohol ethoxylates made by Union Carbide Corp. The former is mixed ethoxylation product of 11 to 15 carbon atoms linear secondary alkanol with seven mols of ethylene oxide and the latter is a similar product but with nine mols of ethylene oxide being reacted.
- Also useful in the present compositions as a component of the nonionic detergent are higher molecular weight nonionics, such as Neodol 45-11, which are similar ethylene oxide condensation products of higher fatty alcohols, with the higher fatty alcohol being of 14 to 15 carbon atoms and the number of ethylene oxide groups per mol being about 11. Such products are also made by Shell Chemical Company. Another preferred class of useful nonionics are represented by the commercially well know class of nonionics which are the reaction product of a higher linear alcohol and a mixture of ethylene and propylene oxides, containing a mixed chain of ethylene oxide and propylene oxide, terminated by a hydroxyl group. Examples include the nonionics sold under the Plurafac trademark of BASF, such as Plurafac RA30, Plurafac RA40 (a C₁₃-C₁₅ fatty alcohol condensed with 7 moles propylene oxide and 4 moles ethylene oxide), Plurafac D25 (a C₁₃-C₁₅ fatty alcohol condensed with 5 moles propylene oxide and 10 moles ethylene oxide), Plurafac B26, and Plurafac RA50 (a mixture of equal parts Plurafac D25 and Plurafac RA40).
- Generally, the mixed ethylene oxide-propylene oxide fatty alcohol condensation products represented by the general formula
RO(C₃H₆O)p(C₂H₄O)qH,
wherein R is a straight or branched primary or secondary aliphatic hydrocarbon, preferably alkyl or alkenyl, especially preferably alkyl, of from 60 to 20, preferably 10 to 18, especially preferably 12 to 18 carbon atoms, p is a number of up to 14, preferably 3 to 8, and q is a number of up to 14, preferably 3 to 12, can be advantageously used where low foaming characteristics are desired. In addition, these surfactants have the advantage of low gelling temperatures. - Another group of liquid nonionics are available from Shell Chemical Company, Inc. under the Dobanol trademark: Dobanol 91-5 is an ethoxylated C₉-C₁₁ fatty alcohol with an average of 5 moles ethylene oxide; Dobanol 25-7 is an ethoxylated C₁₂-C₁₅ fatty alcohol with an average of 7 moles ethylene oxide; etc.
- In the preferred poly-lower alkoxylated higher alkanols, to obtain the best balance of hydrophilic and lipophilic moieties the number of lower alkoxies will usually be from 40% to 100% of the number of carbon atoms in the higher alcohol, such as 40 to 60% thereof and the nonionic detergent will often contain at least 50% of such preferred poly-lower alkoxy higher alkanol.
- Higher molecular weight alkanols and various other normally solid nonionic detergents and surface active agents may be contributory to gelation of the liquid detergent and consequently, will preferably be omitted or limited in quantity in the present compositions, although minor proportions thereof may be employed for their cleaning properties, etc. With respect to both preferred and less preferred nonionic detergents the alkyl groups present therein are generally linear although branching may be tolerated, such as at a carbon next to or two carbons removed from the terminal carbon of the straight chain and away from the alkoxy chain, if such branched alkyl is not more than three carbons in length. Normally, the proportion of carbon atoms in such a branched configuration will be minor rarely exceeding 20% of the total carbon atom content of the alkyl. Similarly although linear alkyls which are terminally joined to the alkylene oxide chains are highly preferred and are considered to result in the best combination of detergency, biodegradability and non-gelling characteristics, medial or secondary joinder to the alkylene oxide in the chain may occur. It is usually in only a minor proportion of such alkyls, generally less than 20% but, as is the case of the mentioned Tergitols, may be greater. Also, when propylene oxide is present in the lower alkylene oxide chain, it will usually be less than 20% thereof and preferably less than 10% thereof.
- When greater proportions of non-terminally alkoxylated alkanols, propylene oxide-containing poly-lower alkoxylated alkanols and less hydrophile-lipophile balanced nonionic detergent than mentioned above are employed and when other nonionic detergents are used instead of the preferred nonionics recited herein, the product resulting may not have as good detergency, stability, viscosity and non-gelling properties as the preferred compositions but use of viscosity and gel controlling compounds can also improve the properties of the detergents based on such nonionics. In some cases, as when a higher molecular weight poly-lower alkoxylated higher alkanol is employed, often for its detergency, the proportion thereof will be regulated or limited in accordance with the results of routine experiments, to obtain the desired detergency and still have the product non-gelling and of desired viscosity. Also, it has been found that it is only rarely necessary to utilize the higher molecular weight monionics for their detergent properties since the preferred nonionics described herein are excellent detergents and additionally, permit the atainment of the desired viscosity in the liquid detergent without gelation at low temperatures. Mixtures of two or more of these liquid nonionics can also be used and in some cases advantages can be obtained by the use of such mixtures.
- In view of their low gelling temperatures and low pour points, another preferred class of nonionic surfactants includes the C₁₂-C₁₃ secondary fatty alcohols with relatively narrow contents of ethylene oxide in the range of from about 7 to 9 moles, especially about 8 moles ethylene oxide per molecule and the C₉-C₁₁, especially C₁₀ fatty alcohols ethoxylated with about 6 moles ethylene oxide.
- Furthermore, in the compositions of this invention, it may be advantageous to include an organic solvent or diluent which can function as a viscosity control and gel-inhibiting agent for the liquid nonionic surface active agents. Lower (C₁-C₆) aliphatic alcohols and glycols, such as ethonol, isopropanol, ethylene glycol, hexylene glycol and the like have been used for this purpose. Polyethylene glycols, such as PEG 400, are also useful diluients. Alkylene glycol ethers, such as the compounds sold under the trademarks, Carbopol and Carbitol which have relatively short hydrocarbon chain lengths (C₂-C₈) and a low content of ethylene oxide (about 2 to 6 EO units per molecule) are especially useful viscosity control and anti-gelling solvents in the compositions of this invention. This use of the alkylene glycol ethers is disclosed in U.S. Patent No. 4,753,750 filed December 31, 1984, to T. Ouhadi, et al. the disclosure of which is incorporated herein by reference. Suitable glycol ethers can be represented by the following general formula RO(CH₂CH₂CH₂O)nH
where R is a C₂-C₈, preferably C₂-C₈ alkyl group, and n is a number of from about 1 to 6, preferably 1 to 4, on average. - Specific examples of suitable solvents include ethylene glycol monoethyl ether (C₂H₅-O-CH₂CH₂OH), diethylene glycol monobutyl ether (C₄H₉-O-(CH₂CH₂O)₂H), tetraethylene glycol monooctyl ether (C₈H₁₇-O-(CH₂CG₂O)₄H), etc. Diethylene glycol monobutyl ether is especially preferred.
- Another useful antigelling agent which can be included as a minor component of the liquid phase, is an aliphatic linear or aliphatic monocyclic dicarboxylic acid, such as the C₆ to C₁₂ alkyl and alkenyl derivatives of succinic acid or maleic acid, and the corresponding anhydrides or an aliphatic monocyclic dicarboxylic acid compound. The use of these compounds as antigelling agents in non-aqueous liquid heavy duty built laundry detergent compositions is disclosed in U.S. Patent No. 4,744,916 to Adams & Prossin filed July 18, 1985, the disclosure of which is incorporated herein in its entirety by reference thereto.
- Briefly, these gel-inhibiting compounds are aliphatic linear or aliphatic monocyclic dicarboxyllc acid compounds. The aliphatic portion of the molecule may be saturated or ethylenically unsaturated and the aliphatic linear portion may be straight of branched. The aliphatic monocylic molecules may be saturated or may include a single double bond in the ring. Furthermore, the aliphatic hydrocarbon ring may have 5- or 6-carbon atom in the ring, i.e. cyclopentyl, cyclopentenyl, cyclohexyl, or cyclohexenyl, with one carboxyl group bonded directly to a carbon atom in the ring and the other carboxyl group bonded to the ring through a linear alkyl or alkenyl group.
- The aliphatic linear dicarboxylic acids have at least about 6 carbon atoms in the aliphatic moiety and may be alkyl or alkenyl having up to about 14 carbon atoms, with a preferred range being from about 8 to 13 carbon atoms, especially preferably 9 to 12 carbon atoms. One of the carboxylic acid groups (-COOH) is preferably bonded to the terminal (alpha) carbon atom of the aliphatic chain and the other carboxyl group is preferably bonded to the next adjacent (beta) carbon atom or it may be spaced two or three carbon atoms from the -position, i.e. on the γ or δ carbon atoms. The preferred aliphatic dicarboxylic acids are the α,β-dicarboxylic acids and the corresponding anhydrides, and especially preferred are derivatives of succinic acid of maleic acid and have the general formula:
- The alkyl or alkenyl group may be straight or branched. The straight chain alkenyl groups are especially preferred. It is not necessary that R¹ represent a single alkyl or alkenyl group and mixtures of different carbon chain lengths may be present depending on the starting materials for preparing the dicarboxylic acid.
- The aliphatic monocyclic dicarboxylic acid may be either 5- or 6-membered carbon rings with one or two linear aliphatic groups bonded to ring carbon atoms. The linear aliphatic groups should have at least about 6, preferably at least about 8, especially preferably at least about 10 carbon atoms, in total, and up to about 22, preferably up to about 18, especially preferably up to about 15 carbon atoms. When two aliphatic carbon atoms are present attached to the aliphatic ring they are preferably located para- to each other. Thus, the preferred aliphatic cyclic dicarboxylic acid compounds may be represented by the following structural formula
R₂ represents an alkyl or alkenyl group of from 3 to 12 carbon atoms; and
R₃ represents a hydrogen atom or an alkyl or alkenyl group of from 1 to 12 carbon atoms,
with the proviso that the total number of carbon atoms in R² and R³ is from about 6 to about 22. - Preferably -T- represents -CH₂-CH₂- or -CH=CH-, especially preferably -CH=CH-.
- R² and R³ are each preferably alkyl groups of from about 3 to about 10 carbon atoms, especially from about 4 to about 9 carbon atoms, with the total number of carbon atoms in R² and R³ being from about 8 to about 15. The alkyl or alkenyl groups may be straight of branched but are preferably straight chains.
- The amount of the nonionic surfactant is generally within the range of from about 20 to about 70%, such as about 22 to 60% for example 25%, 30%, 35% or 40% by weight of the composition. The amount of solvent or diluent when present is usually up to 20%, preferably up to 15%, for example, 0.5 to 15%, preferably 5.0 to 12%. The weight ratio of nonionic surfactant to alkylene glycol ether as the viscosity control and anti-gelling agent, when the latter is present, is in the range of from about 100:1 to 1:1, preferably from about 50:1 to about 2:1, such as 10:1, 8:1, 6:1, 4:1 or 3:1. Accordingly, the continuous non-aqueous liquid phase may comprise from about 30% to about 70% by weight of the composition, preferably from about 50% to about 60%.
- The amount of the dicarboxylic acid gel-inhibiting compound, when used, will be dependent on such factors as the nature of the liquid nonionic surfactant, e.g. its gelling temperature, the nature of the dicarboxylic acid, other ingredients in the composition which might influence gelling temperature, and the intended use (e.g. with hot or cold water, geographical climate, and so on). Generally, it is possible to lower the gelling temperature to no higher than about 3°C, preferably no higher than about 0 C, with amount of dicarboxylic acid anti-gelling agent in the range of about 1% to about 30%, preferably from about 1.5% to about 15%, by weight, based on the weight of the liquid nonionic surfactant, although in any particular case the optimum amount can be readily determined by routine experimentation.
- The invention detergent compositions in the preferred embodiment also include as an essential ingredient water-soluble and/or water-dispersible detergent builder salts. Typical suitable builders include, for example, those disclosed in the aforementioned U.S. Patents 4,316,812, 4,264,466, 3,630,929, and many others. Water-soluble inorganic alkaline builder salts which can be used alone with the detergent compound or in admixture with other builders are alkali metal carbonates, borates, phosphates, polyphosphates, icarbonates, and silicates. (Ammonium or substituted ammonium salts can also be used.) Specific examples of such salts are sodium tripolyphosphate, sodium carbonate, sodium tetraborate, sodium pyrophosphate, potassium pyrophosphate, sodium bicarbonate, potassium tripolyphosphate, sodium hexametaphosphate, sodium sesquicarbonate, sodium mono and diorthophosphate, and potassium bicarbonate. Sodium tripolyphosphate (TPP) is especially preferred where phosphate containing ingredients are not prohibited due to environmental concerns. The alkali metal silicates are useful builder salts which also function to make the composition anticorrosive to washing machine parts. Sodium silicates of Na₂O/SiO₂ ratios of from 1.6/1 to 1/3.2, especially about 1/2 to 1/2.8 are preferred. Potassium silicates of the same ratios can also be used.
- Another class of builders are the water-insoluble aliminosilicates, both of the crystalline and amorphous type. Various cystalline zeolites (i.e. aluminosilicates) are described in British Patent 1,504,168, U.S. Patent 4,409,136 and Danadian Patents 1,072,835 and 1,087,477, all of which are hereby incorporated by reference for such descriptions. An example of amorphous zeolites useful herein can be found in Belgium Patent 835,351 and this patent too is incorporated herein by reference. The zeolites generally have the formula
(M₂O)x.(Al₂O₃)y.(SiO₂)z.WH₂O
wherein x is 1, y is from 0.8 to 1.2 and preferably 1, z is from 1.5 to 3.5 or higher and preferably 2 to 3 and W is from 0 to 9, preferably 2.5 to 6 and M is preferably sodium. A typical zeolite is type A or similar structure, with type 4A particularly preferred. The preferred aluminosilicates have calcium ion exchange capacities of about 200 milliequivalents per gram or greater, e.g. 400 meg/o g. - Examples of organic alkaline sequestrant builder salts which can be used alone with the detergent or in admixture with other organic and inorganic builders are alkali metal, ammonium or substituted ammonium, aminopolycarboxylates, e.g. sodium and potassium ethylene diaminetetraacetate (EDTA), sodium and potassium nitrilotriacetates (NTA) and triethanolammonium N-(2-hydroxyethyl)nitrilodiacetates. Mixed salts of these polycarboxylates are also suitable.
- Other suitable builders of the organic type include carboxymethylsuccinates, tartronates and glycollates and the polyacetal carboxylates. The polyacetal carboxylates and their use in detergent compositions are described in 4,144,226; 4,315,092 and 4,146,494. Other patents on similar builders include 4,141,676; 4,169,934; 4,201,858; 4,204,852; 4,224,420; 4,225,685; 4,226,960; 4,233,422; 4,233,423; 4,302,564 and 4,303,777. Also relevant are European Patent Application Nos. 0015024, 0021491 and 0063399. Particularly outstanding amoung the organic builders are the non-nitrogeneous polycarboxylates such as citric acid, tartaric acid and the like. The preferred in this group are the sodium and potassium citrates and tartrates and most preferred are the sodium citric acid salts, especially the trisodium citrate, although the monosodium and disodium are also good.
- The porportion of the suspended detergent builder, based on the total composition, is usually in the range of from about 30 to 70 weight percent, such as about 20 to 50 weight persent, for example about 40 to 50 weight percent of the composition.
- According to the present invention, the physical stability of the suspension of the detergent builder salt or salts or any other finely divided suspended solid particulate additive, such as bleaching agent, pigment, etc., in the liquid vehicle is drastically improved by the presence of small amounts of the amphiphilic polymer.
- In preparing the compositions of the present invention, the stabilizer, generally in a flaked or powdered form, is admixed with the other solid ingredients and the liquid components, either in a conventional mixing apparatus, such as a crutcher-type mixer, followed by transfer to a milling apparatus or directly in a milling apparatus. In this latter case, the mill rotor of an Attritor ball mill may be employed to mix the components. In a particularly preferred embodiment of the invention, the stabilizer is first thoroughly mixed with the other solid ingredients, and then this admixture of solid components is mixed with the liquid components.
- Since the compositions of this invention are generally highly concentrated, and, therefore, may be used at relatively low dosages, it is often desirable to supplement the builder with an auxiliary builder such as a polymeric carboxylic acid having high calcium binding capacity to inhibit incrustration which would otherwise be caused by formation of an insoluble calcium phosphate, (e.g. where phosphate ion is present as from builder. Such auxiliary builders are also well know in the art. For example, mention can be made Sokolan CP5 which is a copolymer of about equal moles of methacrylic acid and maleic anhydride, completely neutralized to form the sodium salt thereof. The amount of the auxiliary builder is generally up to about 6 weight percent, preferably 1/4 to 4%, such as 1%, 2% or 3%, based on the total weight of the composition.
- In addition to the detergent builder, various other detergent additives or adjuvants may be present in the detergent product to give it additional desired properties, either of functional or aesthetic nature. Thus, there may be included in the formulation, minor amount of soil suspending or antiredeposition agents,e.g. polyvinyl alcohol, fatty amides, sodium carboxymethyl cellulose, hydroxy-propyl methyl cellulose, usually in amounts of up to 10 weight percent, for example 0.1 to 10%, preferably 1 to 5%; optical brighteners, e.g. cotton, polyamide and polyester brighteners, for example, stilbene, triazole and benzidone sulfone compositions, especially sulfonated substituted triazinyl stilbene, sulfonated naphthotriazole stilbene benzidine sulfone, et., most preferred are stilbene and triazole combinations. Typically, amount of the optical brightener up to about 2 weight percent, preferably up to 1 weight percent, such as 0.1 to 0.8 weight percent, can be used.
- Bluing agents such as utramarine blue; enzymes, preferable prot lytic enzymes, such as subtilisin, bormelin, papain, trypain and pensin, as well as amylasetype enzymes, lipase type enzymes, and mixtures thereof; bactericides, e.g. tetrachlorosalicylanilide, hexachlorophene; fungicides; dyes; pigments (water dispersible); preservatives; ultraviolet absorbers; anti-yellowing agents, such as sodium carboxymethyl cellulose, complex of C₁₂ to C₂₂ alkyl alcohol with C₁₂ to C₁₈ alkylsulfate; pH modifiers and pH buffers; color safe bleaches, perfume, and anti-foam agents or suds-suppressor, e.g. silicon compounds can also be sued.
- The bleaching agents are classified broadly for convenience, as chlorine bleaches and oxygen bleaches. Chlorine bleaches are typified by sodium hypochlorite (NaOCl), potassium dichloroiosocyanuate (59% available chlorine), and tricholorisocyanuric acid (95% available chlorine). Oxygen bleaches are preferred and are represented by percompounds which liberate hydrogen peroxide in solution. Preferred examples include sodium and potassium perborates, percarbones, and perphosphate, and potassium monopersulfate. The perborates, particularly sodium perborate monohydrate, are especially preferred.
- The peroxygen compound is preferably used in admixture with an activator therefor. Suitable activators which can lower the effective operating temperature of the peroxide bleaching agent are disclosed, for example, in U.S. Patent 4,264,466 or in column 1 of U.S. Patent 4,430.244, the relevant disclosures of which are incorporated herein by reference. Polyacylated compounds are preferred activators; among these, compounds such as tetraacetyl ethylene diamine ("TAED") and pentaacetyl glucose are particularly preferred.
- Other useful activators include, for example, acetylsalicylic acid derivatives, ethylidene benzoate acetate and its salts, ethylidene carboxylate acetate and its salts, alkyl and alkenyl succinic anhydride, tetraacetylglycouril ("TAGU"), and the derivatives of these. Other useful classes of activators are disclosed, for example, in U.S. Patents 4,111,826, 4,422,950 and 3,661,789.
- The bleach activator usually interacts with the peroxygen compound to form a peroxyacid bleaching agent in the wash water. It is preferred to include a sequestering agent of high complexing power to inhibit any undesired reaction between such peroxyacid and hydrogen peroxide in the wash solution in the presence of metal ions. Preferred sequestering agents are able to form a complex with Cu2+ ions, such that the stability constant (pk) of the complexation is equal to or greater than 6, 25°C, in water, of an ionic strength of 0.1 mole/liter, pK being conventionally defined by the formula: pK = -log K where K represents the equilibrium constant. Thus, for example, the pK values for complexation of copper ion with NTA and EDTA at the stated conditions are 12.7 and 18.8, respectively. Suitable sequestering agents include, for example, in addition to those mentioned above, the compounds sold under the Dequest trademark, such as, for example, diethylene triamine pentaacetic acid (DETPA); diethylene triamine pentamethylene phosphoric acid (DTPMP); and ethylene diamine tetramethylene phosphoric acid (EDITEMPA).
- In order to avoid loss of peroxide bleaching, e.g. sodium perborate, resulting from enzyme-induced decomposition, such as by catalase enzyme, the compositions may additionally include an enzyme inhibitor compound, i.e. a compound capable of inhibiting enzyme-induced decomposition of the peroxide bleaching agent. Suitable inhibitor compounds are disclosed in U.S. Patent 3,606,990, the relevant disclosure of which is incorporated herein by reference.
- Of special interest as the inhibitor compound, mention can be made of hydroxylamine sulfate and other water-soluble hydroxylamine salts. In the preferred nonaqueous compositions of this invention, suitable amounts of the hydroxylamine salt inhibitors can be as low as about 0.01 to 0.4%. Generally, however, suitable amounts of enzyme inhibitors are up to about 15%, for example, 0.1 to 10%, by weight of the composition.
- Another useful stabilizer for use where desired in conjunction with the polymer stabilizer, is an acidic organic phosphorus compound having an acidic-POH group, as dislcosed in the commonly assigned copending application Serial No. 781,189, filed September 25, 1985, to Broze, et al., acidic organic phosphorus compound, may be, for instance, a partial ester of phosphoric acid and an alcohol, such as an alkanol having a lipophilic character, having, for instance, more than 5 carbon atoms, e.g. 8 to 20 carbon atoms. A specific example is a partial ester of phosphoric acid and a C₁₆ to C₁₈ alkanol. Empiphos 5632 from Marchon is made up of about 35% monoester and 65% diester. When used amounts of the phosphoric acid compound up to about 3%, preferably up to 1%, are sufficient.
- As disclosed in U.S. Patent 4,749,512, to Broze, et al., the disclosure of which is incorporated herein by reference, a nonionic surfactant which has been modified to convert a free hydroxyl group to a moiety having a free carboxyl group, such as a partial ester of a nonionic surfactant and a polycarboxylic acid, can be incorporated into the composition to further improve rheological properties. For instance, amounts of the acid-terminated nonionic surfactant of up to 1 per part of the nonionic surfactant, such as 0.1 to 0.8 part, are sufficient.
- Suitable ranges of these optional detergent additives are: enzymes - 0 to 2%, especially 0.1 to 1.3%; corrosion inhibitors - about 0 to 40%, and preferably 5 to 30%; anti-foam agents and suds-suppressor - 0 to 15%, preferably 0 to 5%, for example 0.1 to 3%; thickening agent and dispersants - 0 to 15%, for example 0.1 to 10%, preferably 1 to 5%; soil suspending or anti-redeposition agents and anti-yellowing agents - 0 to 10%, preferably 0.5 to 5%; colorants, perfumes, brighteners and bluing agents total weight 0% to about 2% and preferably 0% to about 1%; pH modifiers and pH buffers - 0 to 5%, preferably 0 to 2%; bleaching agent - 0 to about 40% and preferably 0% to about 25%, for example 2 to 20%; bleach stabilizers and bleach activators 0 to about 15%, preferably 0 to 10%, for example, 0.1 to 8%; enzyme-inhibitors 0 to 15%, for example, 0.01 to 15%, preferably 0.1 to 10%; sequestering agent of high complexing power, in the range of up to about 5%, preferably 1/4 to 3%, such as about 1/2 to 2%. In the selections of the adjuvants, they will be chosen to be compatible with the main constituents of the detergent composition.
- In a preferred form of the invention, the mixture of liquid nonionic surfactant and solid ingredients is subjected to grinding, for example, by a san mill or ball mill. Especially useful are the attrition types of mill, such as those sold by Wiener-Amsterdam or Netzsch-Germany, for example, in which the particle sizes of the solid ingredients are reduced to about 1-10 microns, e.g. to an average particle size of 4 to 5 microns or even lower (e.g. 1 micron). Preferably less than about 10%, especially less than about 5 of all the suspended particles have particle sizes greater than 15 microns, preferably 10 microns. In view of increasing costs in energy consumption as particle size decreases it is often preferred that the average particle size be at least 3 microns, especially about 4 microns. Other types of grinding mills, such as toothmill, peg mill and the like, may also be used.
- In the grinding operation, it is preferred that the proportion of solid ingredients be high enough (e.g. at least about 40%, such as about 50%) that the solid particles are in contact with each other and are not substantially shielded from one another by the nonionic surfactant liquid. Mills which employ grinding balls. (ball mills) or similar mobile grinding elements have given very good results. Thus, one may use a laboratory batch attritor having 8 mm diameter steatite grinding balls. For larger scale work a continuously operating mill in which there are 1 mm of 1.5 mm diameter grinding balls working in a very small gap betveen a stator and a rotor operating at a relatively high speed (e.g. a CoBall mill) may be employed; when using such a mill, it is desirable to pass the blend of nonionic surfactant and solids first through a mill which does not effect such fine grinding (e.g. a colloid mill) to reduce the particle size to less than 100 microns (e.g. to about 40 microns) prior to the step of grinding to an average particle diameter below about 18 or 15 microns in the continuous ball mill.
- Alternatively, the powdery solid particles may be finely ground to the desired size before blending with the liquid matrix, for instance, in a jet-mill.
- It is understood that the foregoing detailed description is given merely by way of illustration and that variation may be made therein without departing from the spirit of the invention.
- It should also be understood that as used in the specification and in the appended claims the term "non-aqueous" means absence of water, however, small amounts of water, for example up to about 5%, preferably up to about 2%, may be tolerated in the compositions and, therefore, "non-aqueous" compositions can include such small amounts of water, whether added directly or as a carrier or solvent for one of the other ingredients in the composition.
- The liquid fabric treating compositions of this invention may be packaged in conventional glass or plastic vessels and also in single use packages, such as the doserrettes and disposable sachet dispensers disclosed in commonly assigned copending application Serial No. 063,199, filed June 12, 1987 (Attorney's Docket IR-347LG), the disclosure of which is incorporated herein by reference thereto.
- The invention will now be described by way of the following non-limiting examples in which all proportions and percentages are by weight, unless otherwise indicate. Also, atmospheric pressure is used unless otherwise indicated.
- The following composition is prepared
% Weight C9-11 fatty alcohol condensed with 5 moles of ethylene oxide 46.95 Tri-enzymes A* 0.55 Perfume 0.50 Sodium Citrate-dehydrate 30.00 Tetra-acetyl ethylene diamine (TAED) 4.00 Sodium perborate monohydrate 13.70 Na maleate - metracrylate copolymer 2.0 Ethylene diamine tetra acetic acid (EDTA) 0.50 Sodium Carboxymethyl cellulose (CMC) 1.0 Titanium dioxide 0.40 Optical brightener (Tinopol ATS-X) 0.30 Mono Butyl ester of poly (vinyl methyl ether/maleic acid) 0.10 *SAVINASE 8.0 SL (NOVO) 36% ALCALASE 2.5 SL (NOVO) 46% TERMAMYL 300 SL (NOVO) 18% vinyl methyl ether/maleic anhydride molar ration 1:1; M.W. 305,000 - The foregoing composition has a pH = 9.5 when 5 g are dissolved in one liter of water (0.5%).
- The product is exceptionally stable with no separation or settling of solids after more than 2 months.
- Example I is repeated varying the nonionic (and citrate content) as follows
- (A) 30% (citrate 47%)
- (B) 40% (citrate 37%)
- (C) 52% (25% citrate)
- Example I is repeated except that the nonionic is replaced by the following in separate formulations in the percent indicated in the final formulation
% (A) C₁₃ - C₁₅ fatty alcohol condensed with 7 moles of ethylene oxide and then 4 moles of propylene oxide 46.95 (B) C₁₃ - C₁₅ fatty alcohol condensed with 4 moles of propylene oxide and then 7 moles of ethylene oxide 46.95 (C) A & B in 1:1 ratio 46.95 - Examples I to III are each repeated in all parts using, first, 0.05% of the polymer ester, then 0.08%, then 1.2%, then 1.5%.
- Each of the foregoing examples and all parts thereof is repeated utilizing instead of the 1/2 butyl ester (MW 305,000), the following
A) 1/2 butyl ester MW 262,000 B) 1/2 butyl ester MW 550,000 C) 1/2 N-propyl ester MW 305,000 D) 1/2 isohexyl ester MW 240,000 E) 1/2 isooctyl ester MW 305,000 (F) 1/2 butyl ester of vinyl ethyl ester-maleic anhydride (1:1) interpolymer MW 325,000 - Each example is again repeated using hower as the interpolymer the following
A) 1/2 butyl ester of vinyl methyl ether-methyl maleic anhydride (1:1) MW 350,000 B) 1/2 butyl ester of vinyl methyl ether-citriconic anhydrice (1:1) MW 420,000 C) 1/2 butyl ester of vinyl pyrrolidone-maleic anhydride (1:1) MW 300,000 D) 1/2 iso-octyl ester of vinyl pyrrolidone-maleic anhydride (1:1) MW 450,000 - Examples I, II, III, IV are each repeated using in place of the mono (i.e. 1/2)-butyl ester polymer the following (at equal weight amounts)
A) mono butyl ester of ethylene maleic anhydride interpolymer (1:1) MW 200,000 B) mono butyl ester of styrene maleic anhydride interpolymer (1:1) MW 350,000 C) mono butyl ester of vinyl acetate maleic anhydride interpolymer (1:1) MW 305,000 D) mono ethyl ester of butyl acrylate maleic anhydride interpolymer (1:1) MW 450,000 - The following composition is prepared
% Weight C₉ - C₁₁ fatty alcohol condensed with 5 moles ethylene oxide 38.0 Sodium citrate dehydrate 27.8 Sodium perborate monohydrate 14.5 TAED activator 3.7 CMC 1.0 Titanium dioxide 0.4 Optical brightener 0.3 EDTA 0.5 Trienzymes A 0.55 Perfume 0.5 Pluronic L42 Diol 0.05 Vinyl methyl ether-maleic anhydride Polymer (Gantrez AN 119) 0.0 Propylene carbonate 12.6 - A product of excellent stability is obtained.
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39585689A | 1989-08-18 | 1989-08-18 | |
US395856 | 1989-08-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0413616A1 true EP0413616A1 (en) | 1991-02-20 |
EP0413616B1 EP0413616B1 (en) | 1995-03-29 |
Family
ID=23564820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90400897A Revoked EP0413616B1 (en) | 1989-08-18 | 1990-04-02 | Non-aqueous, nonionic heavy duty laundry detergent |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0413616B1 (en) |
JP (1) | JPH0386800A (en) |
AU (1) | AU624634B2 (en) |
CA (1) | CA2015304A1 (en) |
DE (1) | DE69018158D1 (en) |
DK (1) | DK189190A (en) |
ZA (1) | ZA906552B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0510580A1 (en) * | 1991-04-23 | 1992-10-28 | National Starch and Chemical Investment Holding Corporation | Polymers and their preparation |
EP0510762A2 (en) * | 1991-04-23 | 1992-10-28 | Unilever N.V. | Liquid cleaning products |
WO1994001524A1 (en) * | 1992-07-08 | 1994-01-20 | Unilever N.V. | Liquid cleaning products |
WO1994003580A1 (en) * | 1992-08-03 | 1994-02-17 | Imperial Chemical Industries Plc | Detergent compositions |
WO1996018716A1 (en) * | 1994-12-13 | 1996-06-20 | Unilever N.V. | Detergent composition |
EP0786517A1 (en) * | 1996-01-25 | 1997-07-30 | Unilever N.V. | Detergent composition |
WO2003060054A2 (en) * | 2002-01-15 | 2003-07-24 | National Starch And Chemical Investment Holding Corporation | Hydrophobically modified polymer formulations |
WO2004099356A1 (en) * | 2003-05-02 | 2004-11-18 | Ecolab Inc. | Heterogeneous cleaning composition and methods |
US7179781B2 (en) | 2003-05-02 | 2007-02-20 | Ecolab Inc. | Heterogeneous cleaning composition |
EP2083067A1 (en) | 2008-01-25 | 2009-07-29 | Basf Aktiengesellschaft | Use of organic complexing agents and/or polymeric compounds containing carbonic acid groups in a liquid washing or cleaning agent compound |
WO2016196020A1 (en) * | 2015-05-29 | 2016-12-08 | 3M Innovative Properties Company | Enzyme cleaner for textiles with styrene maleic anhydride copolymers |
WO2019027633A1 (en) * | 2017-07-31 | 2019-02-07 | Dow Global Technologies Llc | Detergent additive |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6699831B2 (en) | 2000-06-07 | 2004-03-02 | Kao Corporation | Liquid detergent composition comprising aluminosilicate or crystalline silicate |
EP1256621B1 (en) | 2001-05-08 | 2011-07-13 | Kao Corporation | Liquid detergent composition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4326979A (en) * | 1979-11-09 | 1982-04-27 | Lever Brothers Company | Non-aqueous, built liquid detergent composition and method for preparing same |
DE3511515A1 (en) * | 1984-04-09 | 1985-10-17 | Colgate-Palmolive Co., New York, N.Y. | Essentially anhydrous, liquid coarse detergent |
DE3511517A1 (en) * | 1984-04-06 | 1985-10-24 | Colgate-Palmolive Co., New York, N.Y. | LIQUID FULL DETERGENT COMPOSITION |
US4661280A (en) * | 1985-03-01 | 1987-04-28 | Colgate | Built liquid laundry detergent composition containing salt of higher fatty acid stabilizer and method of use |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA852200B (en) * | 1984-04-09 | 1986-11-26 | Colgate Palmolive Co | Liquid laundry detergent composition |
NZ216987A (en) * | 1985-08-20 | 1988-09-29 | Colgate Palmolive Co | Nonaqueous liquid low phosphate laundry detergent |
-
1989
- 1989-10-06 AU AU42652/89A patent/AU624634B2/en not_active Ceased
-
1990
- 1990-03-07 JP JP2056286A patent/JPH0386800A/en active Pending
- 1990-04-02 EP EP90400897A patent/EP0413616B1/en not_active Revoked
- 1990-04-02 DE DE69018158T patent/DE69018158D1/en not_active Expired - Lifetime
- 1990-04-24 CA CA002015304A patent/CA2015304A1/en not_active Abandoned
- 1990-08-08 DK DK189190A patent/DK189190A/en unknown
- 1990-08-17 ZA ZA906552A patent/ZA906552B/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4326979A (en) * | 1979-11-09 | 1982-04-27 | Lever Brothers Company | Non-aqueous, built liquid detergent composition and method for preparing same |
DE3511517A1 (en) * | 1984-04-06 | 1985-10-24 | Colgate-Palmolive Co., New York, N.Y. | LIQUID FULL DETERGENT COMPOSITION |
DE3511515A1 (en) * | 1984-04-09 | 1985-10-17 | Colgate-Palmolive Co., New York, N.Y. | Essentially anhydrous, liquid coarse detergent |
US4661280A (en) * | 1985-03-01 | 1987-04-28 | Colgate | Built liquid laundry detergent composition containing salt of higher fatty acid stabilizer and method of use |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0510580A1 (en) * | 1991-04-23 | 1992-10-28 | National Starch and Chemical Investment Holding Corporation | Polymers and their preparation |
EP0510762A2 (en) * | 1991-04-23 | 1992-10-28 | Unilever N.V. | Liquid cleaning products |
EP0510762A3 (en) * | 1991-04-23 | 1994-06-22 | Unilever Nv | Liquid cleaning products |
WO1994001524A1 (en) * | 1992-07-08 | 1994-01-20 | Unilever N.V. | Liquid cleaning products |
WO1994003580A1 (en) * | 1992-08-03 | 1994-02-17 | Imperial Chemical Industries Plc | Detergent compositions |
AU678378B2 (en) * | 1992-08-03 | 1997-05-29 | Imperial Chemical Industries Plc | Condensed phosphate built non-aqueous liquid laundry detergent including a hydroxycarboxylic acid or salt |
WO1996018716A1 (en) * | 1994-12-13 | 1996-06-20 | Unilever N.V. | Detergent composition |
EP0786517A1 (en) * | 1996-01-25 | 1997-07-30 | Unilever N.V. | Detergent composition |
WO2003060054A2 (en) * | 2002-01-15 | 2003-07-24 | National Starch And Chemical Investment Holding Corporation | Hydrophobically modified polymer formulations |
WO2003060054A3 (en) * | 2002-01-15 | 2004-01-08 | Nat Starch Chem Invest | Hydrophobically modified polymer formulations |
WO2004099356A1 (en) * | 2003-05-02 | 2004-11-18 | Ecolab Inc. | Heterogeneous cleaning composition and methods |
US7169192B2 (en) | 2003-05-02 | 2007-01-30 | Ecolab Inc. | Methods of using heterogeneous cleaning compositions |
US7179781B2 (en) | 2003-05-02 | 2007-02-20 | Ecolab Inc. | Heterogeneous cleaning composition |
US7303587B2 (en) | 2003-05-02 | 2007-12-04 | Ecolab Inc. | Methods of cleaning using heterogeneous compositions |
US7399316B2 (en) | 2003-05-02 | 2008-07-15 | Ecolab Inc. | Methods of using heterogeneous cleaning compositions |
US7572759B2 (en) | 2003-05-02 | 2009-08-11 | Ecolab Inc. | Heterogeneous cleaning composition |
US7749282B2 (en) | 2003-05-02 | 2010-07-06 | Ecolab Inc. | Methods of using heterogeneous cleaning compositions |
EP2083067A1 (en) | 2008-01-25 | 2009-07-29 | Basf Aktiengesellschaft | Use of organic complexing agents and/or polymeric compounds containing carbonic acid groups in a liquid washing or cleaning agent compound |
WO2016196020A1 (en) * | 2015-05-29 | 2016-12-08 | 3M Innovative Properties Company | Enzyme cleaner for textiles with styrene maleic anhydride copolymers |
WO2019027633A1 (en) * | 2017-07-31 | 2019-02-07 | Dow Global Technologies Llc | Detergent additive |
CN110869482A (en) * | 2017-07-31 | 2020-03-06 | 陶氏环球技术有限责任公司 | Detergent additive |
CN110869482B (en) * | 2017-07-31 | 2021-09-10 | 陶氏环球技术有限责任公司 | Detergent additive |
Also Published As
Publication number | Publication date |
---|---|
DE69018158D1 (en) | 1995-05-04 |
EP0413616B1 (en) | 1995-03-29 |
DK189190A (en) | 1991-02-19 |
JPH0386800A (en) | 1991-04-11 |
AU4265289A (en) | 1990-04-26 |
ZA906552B (en) | 1994-08-17 |
DK189190D0 (en) | 1990-08-08 |
CA2015304A1 (en) | 1991-02-18 |
AU624634B2 (en) | 1992-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4889652A (en) | Non-aqueous, nonionic heavy duty laundry detergent with improved stability using microsperes and/or vicinal-hydroxy compounds | |
US4744916A (en) | Non-gelling non-aqueous liquid detergent composition containing higher fatty dicarboxylic acid and method of use | |
US4931195A (en) | Low viscosity stable non-aqueous suspension containing organophilic clay and low density filler | |
US4828723A (en) | Stable non-aqueous suspension containing organophilic clay and low density filler | |
CA1283016C (en) | Liquid laundry detergent composition and method of use | |
US4661280A (en) | Built liquid laundry detergent composition containing salt of higher fatty acid stabilizer and method of use | |
EP0325184B1 (en) | Acetylated sugar ethers as bleach activators detergency boosters and fabric softener | |
US4786431A (en) | Liquid laundry detergent-bleach composition and method of use | |
US4830782A (en) | Hot water wash cycle built nonaqueous liquid nonionic laundry detergent composition containing amphoteric surfactant and method of use | |
US4769168A (en) | Low phosphate or phosphate free nonaqueous liquid nonionic laundry detergent composition and method of use | |
US4648983A (en) | Built non aqueous liquid nonionic laundry detergent composition containing urea stabilizer and method of use | |
US5176713A (en) | Stable non-aqueous cleaning composition method of use | |
US4797225A (en) | Nonaqueous liquid nonionic laundry detergent composition containing an alkali metal dithionite or sulfite reduction bleaching agent and method of use | |
US4892673A (en) | Non-aqueous, nonionic heavy duty laundry detergent with improved stability | |
EP0413616B1 (en) | Non-aqueous, nonionic heavy duty laundry detergent | |
EP0325124A2 (en) | Sugar ethers as bleach stable detergency boosters | |
US4690771A (en) | Phosphate free nonaqueous liquid nonionic laundry detergent composition and method of use | |
US4767558A (en) | Low phosphate or phosphate free nonaqueous liquid nonionic laundry detergent composition and method of use | |
GB2187199A (en) | Built non-aqueous liquid laundry detergent compositions | |
EP0325100A2 (en) | Acetylated sugar ethers as bleach activators and detergency boosters | |
CA1290639C (en) | Liquid laundry detergent-bleach composition and method of use | |
AU617333B2 (en) | Stable non-aqueous cleaning composition containing low density filler and method of use | |
US4873012A (en) | Built nonaqueous liquid nonioinic laundry detergent composition containing hexylene glycol and method of use | |
EP0325109A2 (en) | Sugar esters as detergency boosters | |
JPS63150391A (en) | Builder-containing non-aqueous liquid nonionic detergent composition containing hexylene glycol and its use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB IT LU SE |
|
17P | Request for examination filed |
Effective date: 19910716 |
|
17Q | First examination report despatched |
Effective date: 19931011 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT LU SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19950329 |
|
REF | Corresponds to: |
Ref document number: 69018158 Country of ref document: DE Date of ref document: 19950504 |
|
ITF | It: translation for a ep patent filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950630 |
|
ET | Fr: translation filed | ||
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAV | Examination of admissibility of opposition |
Free format text: ORIGINAL CODE: EPIDOS OPEX |
|
PLAV | Examination of admissibility of opposition |
Free format text: ORIGINAL CODE: EPIDOS OPEX |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: PROCTER & GAMBLE EUROPEAN TECHNICAL CENTER N.V. Effective date: 19951228 |
|
26 | Opposition filed |
Opponent name: UNILEVER N.V. Effective date: 19951221 Opponent name: PROCTER & GAMBLE EUROPEAN TECHNICAL CENTER N.V. Effective date: 19951228 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970325 Year of fee payment: 8 |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19970425 Year of fee payment: 8 Ref country code: FR Payment date: 19970425 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19970509 Year of fee payment: 8 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 19970502 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Free format text: 970502 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |