EP0413130B1 - Pressure wave machine - Google Patents

Pressure wave machine Download PDF

Info

Publication number
EP0413130B1
EP0413130B1 EP90113155A EP90113155A EP0413130B1 EP 0413130 B1 EP0413130 B1 EP 0413130B1 EP 90113155 A EP90113155 A EP 90113155A EP 90113155 A EP90113155 A EP 90113155A EP 0413130 B1 EP0413130 B1 EP 0413130B1
Authority
EP
European Patent Office
Prior art keywords
rotor
cell
pressure wave
cells
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90113155A
Other languages
German (de)
French (fr)
Other versions
EP0413130A1 (en
Inventor
Rolf Dr. Althaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
Original Assignee
ABB Asea Brown Boveri Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd filed Critical ABB Asea Brown Boveri Ltd
Priority to AT90113155T priority Critical patent/ATE87712T1/en
Publication of EP0413130A1 publication Critical patent/EP0413130A1/en
Application granted granted Critical
Publication of EP0413130B1 publication Critical patent/EP0413130B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B7/00Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel
    • F02B7/02Engines characterised by the fuel-air charge being ignited by compression ignition of an additional fuel the fuel in the charge being liquid
    • F02B7/04Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F13/00Pressure exchangers

Definitions

  • the present invention relates to a pressure wave machine according to the preamble of claim 1.
  • pressure wave machines when used as a high-pressure compressor stage of a gas turbine, compressed air is further compressed to generate propellant gas for the high-pressure turbine part.
  • the further compression of the air takes place in a rotor, the circumference of which generally has axially parallel cells in which the air comes into direct contact with propellant gas branched off from the turbine chamber without a fixed separating element.
  • housings with channels for the supply and / or discharge of the two media involved in the pressure wave process are located on the two end faces of the rotor.
  • a pressure wave runs into the cell and compresses the air.
  • the pressure wave reaches the end of the cell as soon as it passes through the high pressure air outlet.
  • the air is pushed out there and the cell is then completely filled with gas.
  • expansion waves ensure that the gas leaves the cell and that fresh air is drawn in, whereupon the compression process is repeated.
  • the rotating rotor creates a radial pressure gradient in the cells due to the rotating movement of the rotor. In the vicinity of the cell end and junction box sets through the different radial pressure gradients a compensating flow.
  • the invention seeks to remedy this.
  • the invention has for its object to design the geometry of the inlet and outlet housings in a pressure wave machine of the type mentioned in such a way that the same radial pressure gradient is impressed on the fluid in the flow channels of these housings as in the rotor cells themselves.
  • the main advantage of the invention is to be seen in that, by bending the connection housing in the axial direction in the channel, an acceleration field is generated which prevents the above-mentioned compensation processes in the cells in the rotor end / housing area. This counteracts the risk of detachment and backflow.
  • the following explanations apply to a pressure wave machine with a countercurrent pressure wave process, in which the air enters and exits on the two opposite sides of the rotor 1, but also applies analogously to the process in which the air enters and exits on the same side of the rotor.
  • the counterflow process mentioned is mainly used in high pressure compressors for gas turbines.
  • the rotor 1 is only partially and schematically shown in the figure.
  • This illustration also shows a single cell 2 and the housings 3 and 4 adjoining it.
  • the jacket, which surrounds the rotor 1 and connects the housings, is not shown.
  • the rotor axis 5 is rotationally asymmetrical. Due to the rotary movement of the rotor 1, a radial and outwardly increasing pressure gradient is established in the cells.
  • the flow at the inlet 3a into the cell 2 is accelerated on the inside of the cell 2 because of the pressure gradients present there, and is slowed down on the outside of the cell. This means that a harmful secondary flow arises with such a configuration.
  • Another harmful secondary flow from the cell 2 arises when an outlet housing has a straight outflow geometry: in the area of the outlet 4a from the cell 2, a separation occurs in the flow, which leads to a backflow from the outlet housing back into the interior of the cell 2, the backflow leading from the location of a higher pressure gradient to the location of a lower pressure gradient.
  • the housing is designed according to the figure, the same centrifugal force on the flow is generated in the curvatures as it then forms in cell 2:
  • the fluid in the curved inlet housing 3 points into the inlet 3a
  • Cell 2 has the same pressure gradients as it finds there, ie radial pressure gradients increasing outwards, as a result of which no secondary flow can arise.
  • the same effects are generated in the curved outlet housing 4.
  • the cell 2 is continuously filled with fluid cleanly and can empty, which has a particularly positive effect on the power density of the pressure wave machine.
  • the length of the curvature of the housings 3, 4 is preferably three hydraulic cell diameters from the inlet opening 3a upstream and from the outlet opening 4a downstream. This area ensures that at most further up or emerging secondary currents resp. Compensating processes no longer the flow in the area of the entrance 3a into the cell 2 or. condition the outlet 4a from the cell 2. Of course, this length of curvature must take into account the geometrical conditions of the connection housing. Downstream of the outlet opening 4a takes place after said Length of curvature a diffuser for smooth transition of the flow into the subsequent guide. If no curvature is possible at the outlet 4a for design reasons, a diffuser can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Motor Or Generator Frames (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

In a pressure wave machine, the ducts of the connecting casings (3, 4) to and from the cells (2) are provided with a curvature running in the axial direction to the opening of the cells (2) and concave in the direction of the axis (5) of the rotor (1). By this means, the same radial pressure gradients as are found in the cells (2) due to the rotation of the rotor (1) are produced in the connecting casings (3, 4). Secondary flows and reverse flows respectively from the cells (2) into the connecting casings (3, 4) or out of them are therefore prevented.

Description

Die vorliegende Erfindung betrifft eine Druckwellenmaschine gemäss Oberbegriff des Anspruchs 1.The present invention relates to a pressure wave machine according to the preamble of claim 1.

Technisches Gebiet und Stand der TechnikTechnical field and state of the art

In Druckwellenmaschinen (ein Beispiel ist im GB-A-641167 beschrieben) wird bei ihrer Verwendung als Hochdruckverdichterstufe einer Gasturbine vorverdichtete Luft zur Erzeugung von Treibgas für den Hochdruckturbinenteil weiter verdichtet. Die weitere Kompression der Luft findet dabei in einem Rotor statt, dessen Umfang in der Regel achsparallel verlaufende Zellen aufweist, in denen die Luft mit aus der Turbinenkammer abgezweigten Treibgas ohne festes Trennelement direkt in Berührung kommt. Zur Steuerung der Ein- und Auslässe von Luft und Gas in die bzw. aus den Zellen befinden sich an den beiden Stirnseiten des Rotors Gehäuse mit Kanälen für die Zu- und/oder Abfuhr der beiden am Druckwellenprozess beteiligten Medien.In pressure wave machines (an example is described in GB-A-641167), when used as a high-pressure compressor stage of a gas turbine, compressed air is further compressed to generate propellant gas for the high-pressure turbine part. The further compression of the air takes place in a rotor, the circumference of which generally has axially parallel cells in which the air comes into direct contact with propellant gas branched off from the turbine chamber without a fixed separating element. To control the inlets and outlets of air and gas into and out of the cells, housings with channels for the supply and / or discharge of the two media involved in the pressure wave process are located on the two end faces of the rotor.

Kommt eine mit zu verdichtetender Luft gefüllte Zelle vor einem Hochdruckgaseinlass, so läuft eine Druckwelle in die Zelle und verdichtet die Luft. Die Druckwelle erreicht das Ende der Zelle, sobald diese den Hochdruckluftauslass passiert. Die Luft wird dort ausgeschoben und die Zelle ist dann ganz mit Gas gefüllt. Beim Weiterdrehen sorgen Expansionswellen dafür, dass das Gas die Zelle wieder verlässt und dass frische Luft angesaugt wird, worauf sich der Kompressionsvorgang wiederholt. Im bewegten Rotor stellt sich, im Gegensatz zu den ruhenden Gehäusen, aufgrund der Drehbewegung des Rotors ein radialer Druckgradient in den Zellen ein. In der Umgebung von Zellenende und Anschlussgehäuse setzt durch die verschiedenen radialen Druckgradienten eine Ausgleichsströmung ein. Das heisst, beim Ausströmen aus dem Rotor wird das Fluid an der Rotoraussenseite beschleunigt, an der Rotorinnenseite wird es abgebremst, oder es tritt sogar Ablösung und Rückströmung auf. Beim Eintritt in die Zelle wird die Strömung an der Innenseite des Rotors beschleunigt und an der Innenseite abgebremst. Es ist allgemein bekannt, dass stark verzogene Geschwindigkeitsprofile direkt in den Wirkungsgrad eingehen und ihn somit verschlechtern. Weiter wird durch die Versperrung an den Ein- bzw. Austritten die Leistungsdichte einer Druckwellenmaschine stark herabgesetzt.If a cell filled with air to be compressed comes in front of a high-pressure gas inlet, a pressure wave runs into the cell and compresses the air. The pressure wave reaches the end of the cell as soon as it passes through the high pressure air outlet. The air is pushed out there and the cell is then completely filled with gas. When turning further, expansion waves ensure that the gas leaves the cell and that fresh air is drawn in, whereupon the compression process is repeated. In contrast to the stationary housings, the rotating rotor creates a radial pressure gradient in the cells due to the rotating movement of the rotor. In the vicinity of the cell end and junction box sets through the different radial pressure gradients a compensating flow. This means that when it flows out of the rotor, the fluid on the outside of the rotor is accelerated, on the inside of the rotor it is braked, or even detachment and backflow occur. When entering the cell, the flow on the inside of the rotor is accelerated and slowed down on the inside. It is generally known that severely warped speed profiles directly affect the efficiency and thus worsen it. Furthermore, the blockage at the inlets and outlets greatly reduces the power density of a pressure wave machine.

Aufgabe der ErfindungObject of the invention

Hier will die Erfindung Abhilfe schaffen. Der Erfindung liegt die Aufgabe zugrunde, bei einer Druckwellenmaschine der eingangs genannten Art die Geometrie der Ein- und Austrittsgehäuse so zu gestalten, dass dem Fluid in den Strömungskanälen dieser Gehäuse der gleiche radiale Druckgradient aufgeprägt wird wie in den Rotorzellen selber.The invention seeks to remedy this. The invention has for its object to design the geometry of the inlet and outlet housings in a pressure wave machine of the type mentioned in such a way that the same radial pressure gradient is impressed on the fluid in the flow channels of these housings as in the rotor cells themselves.

Diese Aufgabe wird gelöst durch die Merkmale des kennzeichnenden Teils des Anspruchs 1.
Der wesentliche Vorteil der Erfindung ist darin zu sehen, dass durch Krümmen der Anschlussgehäuse in Achsrichtung im Kanal ein Beschleunigungsfeld erzeugt wird, das die obenerwähnten Ausgleichsvorgänge in den Zellen im Gebiet Rotorende/Gehäuse verhindert. Damit wird dort der Gefahr von Ablösungen und Rückströmungen entgegengewirkt.
This object is achieved by the features of the characterizing part of claim 1.
The main advantage of the invention is to be seen in that, by bending the connection housing in the axial direction in the channel, an acceleration field is generated which prevents the above-mentioned compensation processes in the cells in the rotor end / housing area. This counteracts the risk of detachment and backflow.

Im folgenden wird anhand der einzigen Figur ein Ausführungsbeispiel der Erfindung schematisch dargestellt. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind fortgelassen.An exemplary embodiment of the invention is shown schematically below with reference to the single figure. All elements not necessary for the immediate understanding of the invention have been omitted.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Die nachfolgenden Ausführungen gelten für eine Druckwellenmaschine mit einem Gegenstromdruckwellenprozess, bei dem Einund Austritt der Luft auf der zwei entgegengesetzten Seiten des Rotors 1 erfolgen, gelten aber in analoger Weise auch für den Prozess, bei dem Ein- und Austritt der Luft auf ein und derselben Seite des Rotors erfolgen. Der erwähnte Gegenstromprozess ist der vorwiegend bei Hochdruckverdichtern für Gasturbinen verwendete.The following explanations apply to a pressure wave machine with a countercurrent pressure wave process, in which the air enters and exits on the two opposite sides of the rotor 1, but also applies analogously to the process in which the air enters and exits on the same side of the rotor. The counterflow process mentioned is mainly used in high pressure compressors for gas turbines.

Der Rotor 1 ist in der Figur der besseren Übersichtlichkeit halber nur ausschnittsweise und schematisch dargestellt. In dieser Darstellung ist auch eine einzige Zelle 2 und die sich ihr anschliessenden Gehäuse 3 und 4, ersichtlich. Nicht dargestellt ist der Mantel, der den Rotor 1 umschliesst und die Gehäuse verbindet. Die Rotorachse 5 ist rotationsasymmetrisch. In den Zellen stellt sich aufgrund der Drehbewegung des Rotors 1 ein radialer und nach aussen zunehmender Druckgradient ein. Bei einem geraden Eintrittsgehäuse wird die Strömung beim Eintritt 3a in die Zelle 2, wegen der dort vorhandenen Druckgradienten, an der Innenseite der Zelle 2 beschleunigt und an der Aussenseite der Zelle abgebremst. Das heisst, bei einer solchen Konfiguration entsteht eine schädliche sekundäre Strömung. Eine weitere schädliche sekundäre Strömung aus der Zelle 2 entsteht, wenn ein Austrittsgehäuse eine gerade Ausströmungsgeometrie aufweist: Im Bereich des Austritts 4a aus der Zelle 2 entsteht in der Strömung eine Ablösung, welche zu einer Rückströmung aus dem Autrittsgehäuse zurück ins Innere der Zelle 2 führt, wobei die Rückströmung von der Stelle eines höheren Druckgradienten zu der Stelle eines tieferen Druckgradienten führt.For the sake of clarity, the rotor 1 is only partially and schematically shown in the figure. This illustration also shows a single cell 2 and the housings 3 and 4 adjoining it. The jacket, which surrounds the rotor 1 and connects the housings, is not shown. The rotor axis 5 is rotationally asymmetrical. Due to the rotary movement of the rotor 1, a radial and outwardly increasing pressure gradient is established in the cells. In the case of a straight inlet housing, the flow at the inlet 3a into the cell 2 is accelerated on the inside of the cell 2 because of the pressure gradients present there, and is slowed down on the outside of the cell. This means that a harmful secondary flow arises with such a configuration. Another harmful secondary flow from the cell 2 arises when an outlet housing has a straight outflow geometry: in the area of the outlet 4a from the cell 2, a separation occurs in the flow, which leads to a backflow from the outlet housing back into the interior of the cell 2, the backflow leading from the location of a higher pressure gradient to the location of a lower pressure gradient.

Werden die Gehäuse beispielsweise gemäss der Figur ausgeführt, so wird in den Krümmungen dieselbe Fliehkraft auf die Strömung erzeugt, wie sie sich in der Zelle 2 dann bildet: Das Fluid im gekrümmten Eintrittsgehäuse 3 weist am Eintritt 3a in die Zelle 2 dieselben Druckgradienten auf, wie es sie dort vorfindet, d.h. radiale nach aussen zunehmende Druckgradienten, wodurch keine sekundäre Strömung mehr entstehen kann. Dieselben Effekte werden im gekrümmten Austrittsgehäuse 4 erzeugt. Somit lässt sich sagen, dass durch Krümmen der Anschlussgehäuse (Eintrittsgehäuse 3, Austrittsgehäuse 4) in Achsrichtung im jeweiligen Kanal der Anschlussgehäuse ein Beschleunigungsfeld erzeugt wird, das die erwähnten Ausgleichsvorgänge im Bereich des Eintritts 3a und Austritts 4a in die resp. aus der Zelle 2 verhindert.If, for example, the housing is designed according to the figure, the same centrifugal force on the flow is generated in the curvatures as it then forms in cell 2: The fluid in the curved inlet housing 3 points into the inlet 3a Cell 2 has the same pressure gradients as it finds there, ie radial pressure gradients increasing outwards, as a result of which no secondary flow can arise. The same effects are generated in the curved outlet housing 4. Thus, it can be said that by bending the connection housing (inlet housing 3, outlet housing 4) in the axial direction in the respective channel of the connection housing, an acceleration field is generated which compensates for the above-mentioned compensation processes in the area of the inlet 3a and outlet 4a in the resp. prevented from cell 2.

Somit wird erreicht, dass die Zelle 2 fortlaufend sauber mit Fluid gefüllt wird und sich entleeren kann, was sich insbesondere positiv auf die Leistungsdichte der Druckwellenmaschine auswirkt.It is thus achieved that the cell 2 is continuously filled with fluid cleanly and can empty, which has a particularly positive effect on the power density of the pressure wave machine.

Der optimale Krümmungsradius R wird von 3 Variablen geprägt:

  • Von der Strömungsgeschwindigkeit V des Fluids;
  • Vom mittleren Durchmesser D des Rotors 1;
  • Von der Winkelgeschwindigkeit ω des Rotors 1.
The optimal radius of curvature R is characterized by 3 variables:
  • The flow velocity V of the fluid;
  • From the average diameter D of the rotor 1;
  • The angular velocity ω of the rotor 1.

Der Krümmungsradius R, bei welchem die dort entstehende Fliehkraft derjenigen in der Zelle 2 entspricht, wird nach folgender Funktion ermittelt: R = 2 · V² D · ω²

Figure imgb0001
The radius of curvature R, at which the centrifugal force generated there corresponds to that in cell 2, is determined according to the following function: R = 2 · V² D · ω²
Figure imgb0001

Die Länge der Krümmung der Gehäuse 3, 4 beträgt vorzugsweise ab Eintrittsöffnung 3a stromaufwärts und ab Austrittsöffnung 4a stromabwärts drei hydraulische Zellen-Durchmesser. Mit diesem Bereich ist gewährleistet, dass allenfalls weiter oben resp. unten entstehende sekundäre Strömungen resp. Ausgleichsvorgänge nicht mehr die Strömung im Bereich des Eintritts 3a in die Zelle 2 resp. des Austritts 4a aus der Zelle 2 konditionieren. Selbstverständlich muss diese Krümmungslänge die geometrischen Gegebenheiten der Anschlussgehäuse berücksichtigen. Stromabwärts der Austrittsöffnung 4a erfolgt nach besagter Länge der Krümmung ein Diffusor zum sanften Übergang der Strömung in die nachfolgende Führung. Wenn am Austritt 4a aus konstruktiven Gründen keine Krümmung möglich ist, kann man sich durch Einsetzen eines Diffusors behelfen.The length of the curvature of the housings 3, 4 is preferably three hydraulic cell diameters from the inlet opening 3a upstream and from the outlet opening 4a downstream. This area ensures that at most further up or emerging secondary currents resp. Compensating processes no longer the flow in the area of the entrance 3a into the cell 2 or. condition the outlet 4a from the cell 2. Of course, this length of curvature must take into account the geometrical conditions of the connection housing. Downstream of the outlet opening 4a takes place after said Length of curvature a diffuser for smooth transition of the flow into the subsequent guide. If no curvature is possible at the outlet 4a for design reasons, a diffuser can be used.

Claims (3)

  1. Pressure wave machine, consisting essentially of a rotor (1) with cells (2) directed parallel to the rotor axis (5) and evenly distributed about the periphery of the rotor, which cells are intended, in operation, to accept two gaseous media for the purpose of compressing the first medium by compression waves from the second medium, and of stationary connecting casings (3, 4) for guiding the media, characterised in that the ducts of the connecting casings (3, 4) upstream of the inlet opening (3a) of the cell (2) and downstream of the outlet opening (4a) of the cell (2) describe a curvature running in the axial direction to the opening of the cell (2) and concave in the direction of the rotor axis (5), the radius of curvature being given by the function R = 2 · V² D · W²
    Figure imgb0003
    where V is the flow velocity of the medium, D is the average rotor diameter and W is the angular velocity of the rotor (1).
  2. Pressure wave machine according to Claim 1, characterised in that the length of the curvature of the connecting casings (3, 4) upstream from the inlet opening (3a) and downstream from the outlet opening (4a) respectively is three times the hydraulic diameter of the cell (2).
  3. Pressure wave machine according to Claim 2, characterised in that a diffuser is connected downstream of the curvature of the outlet opening (4a).
EP90113155A 1989-08-17 1990-07-10 Pressure wave machine Expired - Lifetime EP0413130B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90113155T ATE87712T1 (en) 1989-08-17 1990-07-10 PRESSURE WAVE MACHINE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3005/89 1989-08-17
CH300589 1989-08-17

Publications (2)

Publication Number Publication Date
EP0413130A1 EP0413130A1 (en) 1991-02-20
EP0413130B1 true EP0413130B1 (en) 1993-03-31

Family

ID=4246489

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90113155A Expired - Lifetime EP0413130B1 (en) 1989-08-17 1990-07-10 Pressure wave machine

Country Status (10)

Country Link
US (1) US5052895A (en)
EP (1) EP0413130B1 (en)
JP (1) JP2974736B2 (en)
KR (1) KR910004923A (en)
AT (1) ATE87712T1 (en)
CA (1) CA2021728A1 (en)
DE (1) DE59001110D1 (en)
ES (1) ES2044333T3 (en)
PL (1) PL286270A1 (en)
RU (1) RU1828519C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2893086B1 (en) * 2005-11-09 2008-01-25 Onera (Off Nat Aerospatiale) HIGH PERFORMANCE THERMAL MACHINE

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2399394A (en) * 1940-12-07 1946-04-30 Bbc Brown Boveri & Cie Pressure exchanger
GB641167A (en) * 1946-07-29 1950-08-09 Bbc Brown Boveri & Cie Pressure exchangers
GB993288A (en) * 1962-11-15 1965-05-26 Dudley Brian Spalding Improvements in and relating to pressure exchangers
CH550937A (en) * 1972-10-25 1974-06-28 Bbc Brown Boveri & Cie AERODYNAMIC PRESSURE SHAFT MACHINE.
CH610986A5 (en) * 1975-10-10 1979-05-15 Bbc Brown Boveri & Cie
CH592809A5 (en) * 1976-10-15 1977-11-15 Bbc Brown Boveri & Cie

Also Published As

Publication number Publication date
JPH0396627A (en) 1991-04-22
PL286270A1 (en) 1991-12-02
JP2974736B2 (en) 1999-11-10
CA2021728A1 (en) 1991-02-18
KR910004923A (en) 1991-03-29
EP0413130A1 (en) 1991-02-20
DE59001110D1 (en) 1993-05-06
ES2044333T3 (en) 1994-01-01
US5052895A (en) 1991-10-01
RU1828519C (en) 1993-07-15
ATE87712T1 (en) 1993-04-15

Similar Documents

Publication Publication Date Title
EP0690206A2 (en) Diffusor for a turbomachine
EP1789653B1 (en) Rotor for a power plant
DE2436635C3 (en) Hydraulic machine
DE2042478A1 (en) Gas turbine jet engine for aircraft with devices for component cooling and compressor control
DE10037684A1 (en) Low pressure steam turbine with multi-channel diffuser
EP2123860A2 (en) Combined vortex reducer
EP2024606A1 (en) Annular flow duct for a turbomachine through which a main flow can flow in the axial direction
CH689400A5 (en) Centrifugal pump with one-piece diffuser and Abfuehrschaufel channel ring member.
DE4330037A1 (en) Pressure-wave machine with integral combustion and method for cooling the rotor of the said pressure-wave machine
EP0355312A1 (en) Axial turbine with a mixed radial-axial first stage
EP2993357A2 (en) Radial compressor stage
EP0040267B1 (en) Cooled turbine stator
DE3308140A1 (en) MULTI-STAGE DECKBAND TURBINE
EP0682399B1 (en) Electrical machine with an axial fan
DE4232385A1 (en) Gas turbine with flanged exhaust housing
DE2113514B2 (en) Supersonic axial compressor with a cylindrical or conical diverging body that extends the inlet opening at the rear
EP3390832B1 (en) Backfeed stage of a radial turbo fluid energy machine
EP0413130B1 (en) Pressure wave machine
DE2128217A1 (en) Multi-stage compressor with power recuperation
DE2103407B2 (en) Multi-stage compressor
DE102016217672A1 (en) Einwellenturboverdichter
DE2128233A1 (en) Multi-stage compressor
DE2638147A1 (en) SPIRAL HOUSING FOR TURBO MACHINERY
EP4015832A1 (en) Static flow guide, radial turbomachine
CH676487A5 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

17P Request for examination filed

Effective date: 19910717

17Q First examination report despatched

Effective date: 19920917

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

REF Corresponds to:

Ref document number: 87712

Country of ref document: AT

Date of ref document: 19930415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59001110

Country of ref document: DE

Date of ref document: 19930506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930610

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930614

Year of fee payment: 4

Ref country code: BE

Payment date: 19930614

Year of fee payment: 4

ITF It: translation for a ep patent filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19930630

Year of fee payment: 4

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930719

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930731

Year of fee payment: 4

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3008365

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2044333

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940711

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19940711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940731

BERE Be: lapsed

Owner name: ASEA BROWN BOVERI A.G.

Effective date: 19940731

EUG Se: european patent has lapsed

Ref document number: 90113155.7

Effective date: 19950210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940710

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950331

EUG Se: european patent has lapsed

Ref document number: 90113155.7

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3008365

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990617

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990622

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990626

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050710