EP0403462B1 - Process for the catalytic dehydrogenation of hydrocarbons - Google Patents

Process for the catalytic dehydrogenation of hydrocarbons Download PDF

Info

Publication number
EP0403462B1
EP0403462B1 EP90870071A EP90870071A EP0403462B1 EP 0403462 B1 EP0403462 B1 EP 0403462B1 EP 90870071 A EP90870071 A EP 90870071A EP 90870071 A EP90870071 A EP 90870071A EP 0403462 B1 EP0403462 B1 EP 0403462B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
dehydrogenation
hydrocarbons
process according
dehydrogenated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90870071A
Other languages
German (de)
French (fr)
Other versions
EP0403462A1 (en
Inventor
Luc Florent Léon Delorme
Francisco Martins Mendes Cerejo
Jacques François Grootjans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Total Petrochemicals Research Feluy SA
Total Research and Technology Feluy SA
Original Assignee
Fina Research SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BE8900514A external-priority patent/BE1004207A3/en
Priority claimed from BE8900513A external-priority patent/BE1004206A3/en
Priority claimed from BE8900512A external-priority patent/BE1004205A4/en
Priority claimed from BE8900515A external-priority patent/BE1004274A3/en
Application filed by Fina Research SA filed Critical Fina Research SA
Publication of EP0403462A1 publication Critical patent/EP0403462A1/en
Application granted granted Critical
Publication of EP0403462B1 publication Critical patent/EP0403462B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • C07C2523/22Vanadium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/86Borosilicates; Aluminoborosilicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a process for the catalytic dehydrogenation of hydrocarbons. More particularly the process of the invention uses catalytic systems of the redox type. Particularly the present invention relates to the dehydrogenation of paraffinic hydrocarbons to produce the corresponding olefinic hydrocarbons and possibly the corresponding diolefinic hydrocarbons or to the dehydrogenation of olefinic hydrocarbons to produce the corresponding diolefinic hydrocarbons.
  • Catalytic dehydrogenation of hydrocarbons has been carried out for many years and constitutes an important catalytic process in view of the increasing demand in dehydrogenated products which may be valorized under the most various forms such as high octane gasolines, plastic materials and synthetic rubbers.
  • US 4,607,129 discloses a process for the catalytic dehydrocyclization and dehydrogenation of hydrocarbons.
  • the example 5 illustrates the dehydrogenation of propane and isobutane on a calcined and redox-treated V 2 O 5 /SiO 2 catalyst to primarily propylene and isobutylene respectively.
  • An object of the present invention is to provide an improved process for the catalytic dehydrogenation of hydrocarbons in the presence of a redox catalytic system.
  • An object of the present invention is to provide an improved process for the catalytic dehydrogenation of hydrocarbons such as paraffinic hydrocarbons or olefinic hydrocarbons.
  • Another object of the present invention is to provide an improved process for the catalytic dehydrogenation of hydrocarbons in the absence of molecular oxygen.
  • a further object of the present invention is to provide an improved process for the catalytic dehydrogenation of hydrocarbons in the presence of a redox catalytic system and of which one or more oxidation stages show a dehydrogenating activity.
  • Still a further object of the present invention is to provide a continuous process for the dehydrogenation of hydrocarbons in the presence of a redox catalytic system.
  • the present invention provides for a process for the catalytic dehydrogenation of C 2 -C 20 paraffinic hydrocarbons, C 3 -C 20 olefinic hydrocarbons and mixtures thereof into corresponding dehydrogenated hydrocarbons which comprises:
  • the feedstock of hydrocarbons to be dehydrogenated is contacted with a catalyst which has to fulfil several conditions.
  • the catalyst comprises at least a reducible oxide of a metal being vanadium; reducible oxides as used herein mean the hereabove metal oxides which are reduced by contact with hydrocarbons, when operating under dehydrogenation conditions.
  • the metal oxide used has to have a dehydrogenating action under the reaction conditions.
  • the Applicant has found that it is advantageous that these oxides be deposited on a support.
  • suitable supports it may be cited the oxides of metals selected from Zn, Mg, Ca and Ba as well as clays, and zeolitic materials of the metallo-silicate or metallo-alumino-phosphate type. Within the latter type, it may be cited the alumino-silicates, the borosilicates, silico-alumino-phosphates and other analogs.
  • the supported catalysts may be prepared according to usual methods such as absorption, precipitation or still impregnation.
  • the contact between the feedstock to be dehydrogenated and the catalyst may be performed according to different ways; for instance the catalyst particles may be used in a fixed bed, or they may be used in a fluidized bed reactor wherein said particles are circulated and thereafter recovered, what implies a suitable distribution of the particles sizes.
  • the catalyst is placed in a fixed bed and contacted with the feedstock of hydrocarbons to be dehydrogenated, in the absence of a molecular oxygen containing gas, at a temperature comprised between 360 and 800°C, in order to maintain the feedstock in the vapor phase.
  • a molecular oxygen containing gas at a temperature comprised between 360 and 800°C.
  • the catalyst particles whose sizes are comprised between 0.02 and 0.3 mm, the catalyst being taken in its oxidized form, are circulating in the dehydrogenation reaction zone, and contacted with the feedstock to be dehydrogenated, in the absence of an oxygen containing gas, at a temperature comprised between 360 and 800°C in order to maintain the feedstock in the vapor phase.
  • the gas pressure at the outlet of the reactor is generally comprised between 10 5 and 1.3 10 5 Pa while residence time of the feedstock in the reactor is of 0.5 to 15 seconds, while the residence time of the catalyst is comprised between 0.5 second and 5 minutes; the upper limit of the residence time of the catalyst depends obviously on its activity.
  • the dehydrogenation reaction and the transportation of the catalyst to the regenerator are more particularly carried out in a fluidized bed reactor.
  • the catalyst in the reactor effluent is separated from the hydrocarbon effluent by suitable means.
  • the separated catalyst is a reduced catalyst because it is in a lower oxidation state than that of the fresh catalyst which enters the reaction zone.
  • the separated catalyst is sent to a regeneration zone where it is regenerated with gaseous stream containing molecular oxygen.
  • This regeneration comprises at least a mild oxidation of the catalyst.
  • the temperature in the regeneration zone is most often maintained between 200 and 1000°C; the residence time of the catalyst in said zone is of 5 seconds to 5 minutes, while that of the gas containing molecular oxygen is of 1 to 30 seconds.
  • the amount of gas together with the oxygen concentration must be sufficient to reoxidize the catalyst in its initial form. If this embodiment is used for the regeneration of the catalyst, then the dehydrogenation process may be carried out continuously, while it was not the case with the previous embodiment.
  • the process of the invention is suitable for the dehydrogenation of C 2 -C 20 paraffinic hydrocarbons and C 3 -C 20 olefinic hydrocarbons.
  • the process of the invention is applied to the catalytic dehydrogenation of ethane into ethylene, of propane into propylene, of butane into butene, or of butene into butadiene.
  • the process is generally carried out at a temperature comprised between 60 and 800°C and preferably between 400 and 650°C, at a pressure comprised between 0.001 and 1 MPa, and at a hourly space velocity comprised between 0.01 and 20.0 kg of hydrocarbon per hour and per kg of catalyst, preferably between 1 and 10.
  • Preferred embodiments of the invention are also described by way of the drawings according to which Figures 1 and 2 represent schematic diagrams of the reaction zone and the regeneration zone of the catalyst.
  • FIG 1 shows the dehydrogenation reaction zone 10 wherein the feedstock of hydrocarbons to be dehydrogenated enters through pipe 12 while the catalyst under its oxidized form enters through pipe 14.
  • the dehydrogenated hydrocarbons are withdrawn through pipe 16 while the reduced catalyst is collected in the area 18 of the dehydrogenation reactor and transported to the top of the regeneration reactor 20.
  • the gas containing molecular oxygen is introduced into pipe 22 while the reduced catalyst is introduced into pipe 24.
  • the catalyst is recovered in the outlet pipe 14 and transported under its oxidized form in the dehydrogenation reactor 10.
  • the feedstock of hydrocarbons to be dehydrogenated enters the dehydrogenation zone 10 through pipe 12 while the catalyst under its oxidised form enters through pipe 14.
  • the reduced catalyst is separated in the area 18 of the reactor, using e.g. a nitrogen or steam flow entering through pipe 19.
  • the dehydrogenated feed is withdrawn through pipe 16, while the reduced catalyst is collected into pipe 24 and transported to the top of the regeneration reactor 20.
  • Gas containing molecular oxygen is introduced into reactor 20 through pipe 22 and exits through pipe 23, while the oxidized catalyst is recovered in the outlet pipe 14 and recycled into the dehydrogenation reactor 10.
  • the process of the present invention shows many advantages with respect to the usual processes and particularly it enables to avoid drastically the formation of oxygenated products, due to the fact that the presence of molecular oxygen is excluded. Moreover, hydrogen is eliminated upon its formation, which enables to displace the equilibrium of the reaction and to run at less high temperatures. Therefore, it is no more necessary to use diluents such as inert gases to displace the equilibrium; however the process of the invention may also be carried out in the presence of usual diluents.
  • Another non-negligible advantage of the process of the invention resides in the fact that it allows to work with quasi isothermal reactors at a less high temperature, while with the prior processes it was practically necessary to work under adiabatic conditions.
  • the mixture temperature was then raised to 120°C and the excess water was evaporated during 18 hours under a nitrogen flow.
  • the resulting solid catalyst was calcined at 600°C during 4 hours and pelletized.
  • the pellets were ground and sieved to give a V 2 O 5 -type catalyst supported on magnesium oxide.
  • Butene-1 was passed over 500 mg catalyst (as obtained from example A) at a temperature of 580°C, under atmospheric pressure, the amount of butene-1 being of 0.95 mg per pulse. The following results were obtained :
  • a standard Pt-Sn catalyst for dehydrogenation of propane described as catalyst A in Belgian Patent Application n° 8800157, was used at a temperature of 600°C, under a pressure of 0,11 MPa and with a hourly space velocity by weight of 3.
  • This comparative example shows that a higher yield is obtained by the process of the invention, at lower temperatures.
  • example 2 The procedure of example 2 was repeated, with catalysts prepared as described in example A except that there was used a solution of 5.99 g ammonium metavanadate in 100 ml of hot deionized water (example 5) or of 1.41 g in 50 ml (example 6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The hydrocarbons to be dehydrogenated are contacted with a supported catalyst of the redox type wherein the metal is at a valency such that it is not in its most reduced state, and the catalyst is regenerated before being contacted with fresh feed.

Description

  • The present invention relates to a process for the catalytic dehydrogenation of hydrocarbons. More particularly the process of the invention uses catalytic systems of the redox type. Particularly the present invention relates to the dehydrogenation of paraffinic hydrocarbons to produce the corresponding olefinic hydrocarbons and possibly the corresponding diolefinic hydrocarbons or to the dehydrogenation of olefinic hydrocarbons to produce the corresponding diolefinic hydrocarbons.
  • Catalytic dehydrogenation of hydrocarbons has been carried out for many years and constitutes an important catalytic process in view of the increasing demand in dehydrogenated products which may be valorized under the most various forms such as high octane gasolines, plastic materials and synthetic rubbers.
  • In the field of dehydrogenation of alkylaromatic hydrocarbons, known processes include thermal dehydrogenation, catalytic dehydrogenation in the presence of an inert diluent such as steam, and oxidative dehydrogenation, the latter involving the injection of molecular oxygen in the reaction medium. However, although the oxidative dehydrogenation may have same advantages regarding reaction yield and selectivity of the desired product, it is also well known that the presence of molecular oxygen in the reaction medium leads to the formation of indesirable oxidation products such as aldehydes.
  • In view to partially obviate these drawbacks, it has often been proposed to use very specific catalysts having a particular selectivity towards oxidative dehydrogenation of certain hydrocarbons whether or not of the alkylaromatic type.
  • In this respect, it has already been proposed in US patent 4,777,319 to Kung et al. to use vanadates or mobybdates of metals for the selective dehydrogenation of paraffinic hydrocarbons having from 3 to 6 carbon atoms. However, the dehydrogenation reaction is necessarily carried out in the presence of molecular oxygen, which displaces the thermodynamic equilibrium but leads to the formation of secondary oxidation products.
  • It has also been proposed in US 4,742,180 to Gaffney to use supported catalysts, the support being essentially an oxide of praseodymium on which there is deposited an alkaline metal having a dehydrogenating action. However, the availability of praseodymium oxide for the production of huge amounts of dehydrogenated products has to be taken into account. Moreover, it has to be noted that no significant result is indicated for the dehydrogenation of hydrocarbons. Oganowski has also proposed to use a catalyst of the Mg3(VO4)2 type for the dehydrogenation of ethylbenzene, but the reaction necessarily occurs in the presence of a gas containing molecular oxygen. Moreover, it is known that oxides of the V2O5 type lead to reaction of complete combustion when used in dehydrogenation reaction of hydrocarbons carried out without bringing in molecular oxygen.
  • US 4,607,129 discloses a process for the catalytic dehydrocyclization and dehydrogenation of hydrocarbons. The example 5 illustrates the dehydrogenation of propane and isobutane on a calcined and redox-treated V2O5/SiO2 catalyst to primarily propylene and isobutylene respectively.
  • An object of the present invention is to provide an improved process for the catalytic dehydrogenation of hydrocarbons in the presence of a redox catalytic system.
  • An object of the present invention is to provide an improved process for the catalytic dehydrogenation of hydrocarbons such as paraffinic hydrocarbons or olefinic hydrocarbons.
  • Another object of the present invention is to provide an improved process for the catalytic dehydrogenation of hydrocarbons in the absence of molecular oxygen.
  • A further object of the present invention is to provide an improved process for the catalytic dehydrogenation of hydrocarbons in the presence of a redox catalytic system and of which one or more oxidation stages show a dehydrogenating activity.
  • Still a further object of the present invention is to provide a continuous process for the dehydrogenation of hydrocarbons in the presence of a redox catalytic system.
  • The present invention provides for a process for the catalytic dehydrogenation of C2-C20 paraffinic hydrocarbons, C3-C20 olefinic hydrocarbons and mixtures thereof into corresponding dehydrogenated hydrocarbons which comprises:
    • contacting the hydrocarbon feedstock to be dehydrogenated under dehydrogenation conditions, in the absence of added water vapour and of any gas containing molecular oxygen, with a catalyst consisting of at least one reducible oxide of a metal (I) being vanadium supported on a material selected from clays, zeolitic materials of the metallo-silicate or metallo-alumino-phosphate type, and oxides of a metal (II) selected from Zn, Mg, Ca and Ba, said catalyst having a dehydrogenation activity when said metal (I) has a valency such that it is not in its most reduced state,
    • recovering the dehydrogenated hydrocarbons,
    • regenerating the used catalyst, and
    • contacting the regenerated catalyst with fresh hydrocarbon feedstock to be dehydrogenated.
  • The Applicant has now found that with the process of the invention, the presence of the molecular oxygen to perform the dehydrogenation reaction was no longer necessary, this fact constituting an important advantage over the prior processes.
  • According to the process of the invention, the feedstock of hydrocarbons to be dehydrogenated is contacted with a catalyst which has to fulfil several conditions. The catalyst comprises at least a reducible oxide of a metal being vanadium; reducible oxides as used herein mean the hereabove metal oxides which are reduced by contact with hydrocarbons, when operating under dehydrogenation conditions. Moreover, the metal oxide used has to have a dehydrogenating action under the reaction conditions.
  • Further, the Applicant has found that it is advantageous that these oxides be deposited on a support. By way of examples of suitable supports, it may be cited the oxides of metals selected from Zn, Mg, Ca and Ba as well as clays, and zeolitic materials of the metallo-silicate or metallo-alumino-phosphate type. Within the latter type, it may be cited the alumino-silicates, the borosilicates, silico-alumino-phosphates and other analogs.
  • The supported catalysts may be prepared according to usual methods such as absorption, precipitation or still impregnation.
  • Among the various catalysts which may be used in the process of the invention, the Applicant has found that favourable results are obtained with catalysts of the vanadium oxide type deposited on a support comprising magnesium oxide.
  • The contact between the feedstock to be dehydrogenated and the catalyst may be performed according to different ways; for instance the catalyst particles may be used in a fixed bed, or they may be used in a fluidized bed reactor wherein said particles are circulated and thereafter recovered, what implies a suitable distribution of the particles sizes.
  • According to an embodiment of the process of the present invention the catalyst is placed in a fixed bed and contacted with the feedstock of hydrocarbons to be dehydrogenated, in the absence of a molecular oxygen containing gas, at a temperature comprised between 360 and 800°C, in order to maintain the feedstock in the vapor phase. When the activity of the catalyst is reduced over the limits which are currently acceptable, generally a reduction of about 10% of the conversion, the feedstock is no longer contacted with the catalyst, but an air stream is passed over the catalyst bed at a temperature of from 200°C to 1000°C in order to regenerate said catalyst under mild conditions. This regeneration comprises at least a mild oxidation of the catalyst. When the catalyst is regenerated the feedstock is again contacted with the catalyst.
  • According to a preferred embodiment of the present invention, the catalyst particles, whose sizes are comprised between 0.02 and 0.3 mm, the catalyst being taken in its oxidized form, are circulating in the dehydrogenation reaction zone, and contacted with the feedstock to be dehydrogenated, in the absence of an oxygen containing gas, at a temperature comprised between 360 and 800°C in order to maintain the feedstock in the vapor phase. The gas pressure at the outlet of the reactor is generally comprised between 105 and 1.3 105 Pa while residence time of the feedstock in the reactor is of 0.5 to 15 seconds, while the residence time of the catalyst is comprised between 0.5 second and 5 minutes; the upper limit of the residence time of the catalyst depends obviously on its activity. According to this preferred embodiment, the dehydrogenation reaction and the transportation of the catalyst to the regenerator are more particularly carried out in a fluidized bed reactor.
  • The catalyst in the reactor effluent is separated from the hydrocarbon effluent by suitable means. The separated catalyst is a reduced catalyst because it is in a lower oxidation state than that of the fresh catalyst which enters the reaction zone. The separated catalyst is sent to a regeneration zone where it is regenerated with gaseous stream containing molecular oxygen. This regeneration comprises at least a mild oxidation of the catalyst. The temperature in the regeneration zone is most often maintained between 200 and 1000°C; the residence time of the catalyst in said zone is of 5 seconds to 5 minutes, while that of the gas containing molecular oxygen is of 1 to 30 seconds. The amount of gas together with the oxygen concentration must be sufficient to reoxidize the catalyst in its initial form. If this embodiment is used for the regeneration of the catalyst, then the dehydrogenation process may be carried out continuously, while it was not the case with the previous embodiment.
  • The process of the invention is suitable for the dehydrogenation of C2-C20 paraffinic hydrocarbons and C3-C20 olefinic hydrocarbons. Particularly, the process of the invention is applied to the catalytic dehydrogenation of ethane into ethylene, of propane into propylene, of butane into butene, or of butene into butadiene. The process is generally carried out at a temperature comprised between 60 and 800°C and preferably between 400 and 650°C, at a pressure comprised between 0.001 and 1 MPa, and at a hourly space velocity comprised between 0.01 and 20.0 kg of hydrocarbon per hour and per kg of catalyst, preferably between 1 and 10.
    Preferred embodiments of the invention are also described by way of the drawings according to which Figures 1 and 2 represent schematic diagrams of the reaction zone and the regeneration zone of the catalyst.
  • Referring now to Figure 1, which shows the dehydrogenation reaction zone 10 wherein the feedstock of hydrocarbons to be dehydrogenated enters through pipe 12 while the catalyst under its oxidized form enters through pipe 14. The dehydrogenated hydrocarbons are withdrawn through pipe 16 while the reduced catalyst is collected in the area 18 of the dehydrogenation reactor and transported to the top of the regeneration reactor 20. The gas containing molecular oxygen is introduced into pipe 22 while the reduced catalyst is introduced into pipe 24. The catalyst is recovered in the outlet pipe 14 and transported under its oxidized form in the dehydrogenation reactor 10.
  • Referring to Figure 2, the feedstock of hydrocarbons to be dehydrogenated enters the dehydrogenation zone 10 through pipe 12 while the catalyst under its oxidised form enters through pipe 14. The reduced catalyst is separated in the area 18 of the reactor, using e.g. a nitrogen or steam flow entering through pipe 19. The dehydrogenated feed is withdrawn through pipe 16, while the reduced catalyst is collected into pipe 24 and transported to the top of the regeneration reactor 20. Gas containing molecular oxygen is introduced into reactor 20 through pipe 22 and exits through pipe 23, while the oxidized catalyst is recovered in the outlet pipe 14 and recycled into the dehydrogenation reactor 10.
  • The process of the present invention shows many advantages with respect to the usual processes and particularly it enables to avoid drastically the formation of oxygenated products, due to the fact that the presence of molecular oxygen is excluded. Moreover, hydrogen is eliminated upon its formation, which enables to displace the equilibrium of the reaction and to run at less high temperatures.
    Therefore, it is no more necessary to use diluents such as inert gases to displace the equilibrium; however the process of the invention may also be carried out in the presence of usual diluents.
  • Another non-negligible advantage of the process of the invention resides in the fact that it allows to work with quasi isothermal reactors at a less high temperature, while with the prior processes it was practically necessary to work under adiabatic conditions.
  • A substantial increase of the conversion and the yield in dehydrogenated hydrocarbons is also noted. Further, it has been found that it was no more necessary to work under vacuum.
  • The process of the invention will be better illustrated by way of the following examples.
  • Example A Preparation of the catalyst
  •    11.21 g of ammonium metavanadate were dissolved in 200 ml of hot deionised water.
       30 g of magnesium oxide powder were homogeneized into 200 ml of water at 90°C during 1 hour. The metavanadate solution was then added, and the resulting mixture was homogeneized at 90°C for a further hour.
  • The mixture temperature was then raised to 120°C and the excess water was evaporated during 18 hours under a nitrogen flow.
  • The resulting solid catalyst was calcined at 600°C during 4 hours and pelletized. The pellets were ground and sieved to give a V2O5-type catalyst supported on magnesium oxide.
  • Example 1
  • Butene-1 was passed over 500 mg catalyst (as obtained from example A) at a temperature of 580°C, under atmospheric pressure, the amount of butene-1 being of 0.95 mg per pulse.
       The following results were obtained :
    • conversion of butene-1 : 96.8 mol %
    • butadiene 1,3 selectivity : 72.3 mol %
    • yield : 70.0 %
  • When the conversion was reduced by about 10% with regard to the initial conversion, butene-1 injections were stopped and the catalyst was regenerated by passing air in pulse mode at a temperature of 500°C.
  • After regeneration, butene-1 injections were resumed under the same conditions, and the following results were obtained.
    • conversion of butene-1 : 95.4 mol %
    • butadiene 1,3 selectivity : 72.5 mol %
    • yield : 69.1 %
    Example 2
  • Propane was passed over 500 mg catalyst (as obtained from example A)at a temperature of 580°C, under atmospheric pressure, the amount of propane being of 0.7 mg per pulse.
       The following results were obtained.
    • conversion of propane : 49.7 mol %
    • propylene selectivity : 89.0 mol %
    • yield : 42.2 %
  • When the conversion was reduced by about 10% with regard to the initial conversion, propane injections were stopped and the catalyst was regenerated by passing air in pulse mode at a temperature of 500°C.
  • After regeneration, propane injections were resumed under the same conditions, and the following results were obained.
    • conversion of propane : 48.2 mol %
    • propylene selectivity : 89.5 mol %
    • yield : 43.1 %
  • For comparison, a standard Pt-Sn catalyst for dehydrogenation of propane, described as catalyst A in Belgian Patent Application n° 8800157, was used at a temperature of 600°C, under a pressure of 0,11 MPa and with a hourly space velocity by weight of 3.
    • propylene selectivity : 96.7%
    • yield : 26.0%
  • This comparative example shows that a higher yield is obtained by the process of the invention, at lower temperatures.
  • Examples 3 and 4
  • The procedure of example 2 was repeated, with catalysts prepared as described in example A except that there was used a solution of 5.99 g ammonium metavanadate in 100 ml of hot deionized water (example 5) or of 1.41 g in 50 ml (example 6).
  • The following results were obtained :
    example 5 example 6
    - propane conversion (mol %) 48.2 37.2
    - propylene selectivity (mol %) 75.2 71.4
    - yield (mol %) 36.2 26.6

Claims (8)

  1. Process for the catalytic dehydrogenation of C2-C20 paraffinic hydrocarbons, C3-C20 olefinic hydrocarbons and mixtures thereof into the corresponding dehydrogenated hydrocarbons, characterized in that it comprises the steps of
    - contacting the hydrocarbon feedstock to be dehydrogenated under dehydrogenation conditions, in the absence of added water vapour and of any gas containing molecular oxygen, with a catalyst consisting of at least one reducible oxide of a metal (I) being vanadium, supported on a material selected from clays, zeolitic materials of the metallo-silicate or metallo-alumino-phosphate type, and oxides of a metal (II) selected from Zn, Mg, Ca and Ba, said catalyst having a dehydrogenation activity when said metal (I) has a valency such that it is not in its most reduced state,
    - recovering the dehydrogenated hydrocarbons,
    - regenerating the used catalyst, and
    - contacting the regenerated catalyst with fresh hydrocarbon feedstock to be dehydrogenated.
  2. Process according to claim 1, characterized in that the catalyst is supported on magnesium oxide or on zinc oxide.
  3. Process according to claim 1, characterized in that the catalyst is supported on a zeolitic material selected from alumino-silicates, borosilicates and silico-alumino-phosphates.
  4. Process according to any one of claims 1 to 3, wherein the catalyst recovered from the dehydrogenation reactor is regenerated by sending it into a second reactor wherein a gaseous flow is passed at a temperature of from 200 to 1000°C, with a residence time of from 5 seconds to 5 minutes, and recovered for recycling to the dehydrogenation reactor.
  5. Process according to claim 4, wherein the second reactor is of the fluidized bed type and the gaseous flow contains molecular oxygen.
  6. Process according to any one of claims 1 to 3, characterized in that the supported catalyst is regenerated by passing on the catalyst bed a gaseous flow containing molecular oxygen at a temperature of from 200 to 1000°C.
  7. Process according to 6, wherein the catalyst is regenerated when a reduction of about 10% of the conversion of hydrocarbons is observed.
  8. Process according to any one of claims 1 to 7, characterized in that the dehydrogenation reaction is carried out at a temperature of from 360 to 800°C, preferably between 400 and 650°C, at a pressure of from 0.001 to 1 MPa, and with an hourly spatial velocity comprised between 0.01 and 20 kg of hydrocarbon per hour and per kg of catalyst.
EP90870071A 1989-05-12 1990-05-14 Process for the catalytic dehydrogenation of hydrocarbons Expired - Lifetime EP0403462B1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
BE8900514 1989-05-12
BE8900514A BE1004207A3 (en) 1989-05-12 1989-05-12 Olefinic hydrocarbon catalytic dehydrogenation method
BE8900513A BE1004206A3 (en) 1989-05-12 1989-05-12 Paraffinic hydrocarbon catalytic dehydrogenation method
BE8900512 1989-05-12
BE8900512A BE1004205A4 (en) 1989-05-12 1989-05-12 Dehydrogenation catalytic process oil alkylaromatic.
BE8900513 1989-05-12
BE8900515 1989-05-12
BE8900515A BE1004274A3 (en) 1989-05-12 1989-05-12 Hydrocarbon catalytic dehydrogenation method

Publications (2)

Publication Number Publication Date
EP0403462A1 EP0403462A1 (en) 1990-12-19
EP0403462B1 true EP0403462B1 (en) 1996-12-18

Family

ID=27425098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90870071A Expired - Lifetime EP0403462B1 (en) 1989-05-12 1990-05-14 Process for the catalytic dehydrogenation of hydrocarbons

Country Status (6)

Country Link
EP (1) EP0403462B1 (en)
AT (1) ATE146451T1 (en)
DE (1) DE69029432T2 (en)
DK (1) DK0403462T3 (en)
ES (1) ES2095247T3 (en)
GR (1) GR3022739T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11746070B2 (en) * 2018-12-21 2023-09-05 ExxonMobil Technology and Engineering Company Conversion of paraffins to olefins and heavier hydrocarbons mediated by metal oxides

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0556489A1 (en) * 1992-02-19 1993-08-25 Shell Internationale Researchmaatschappij B.V. Process for the dehydrogenation of hydrocarbons
DE4423347A1 (en) * 1994-07-04 1996-01-11 Basf Ag Catalyst and process for the catalytic oxidative dehydrogenation of alkyl aromatics and paraffins
DE4423975A1 (en) * 1994-07-07 1996-01-11 Basf Ag Catalyst and process for the catalytic oxidative dehydrogenation of alkyl aromatics and paraffins
DE4436385A1 (en) * 1994-10-12 1996-04-18 Basf Ag Olefinically unsatd. cpds. prodn. by catalytic oxidn.-oxidative dehydrogenation
DE4437252A1 (en) * 1994-10-18 1996-04-25 Basf Ag Regenerative process for prodn. of olefinically unsatd. cpds. using regeneratable oxygen transfer catalyst in absence of molecular oxygen@
DE4446384A1 (en) * 1994-12-23 1996-06-27 Basf Ag Process for the preparation of olefinically unsaturated compounds, in particular styrene, by catalytic oxidation
DE19601750A1 (en) 1996-01-19 1997-07-24 Basf Ag Process for the oxidation and oxydehydrogenation of hydrocarbons in the fluidized bed
DE19654391A1 (en) 1996-12-27 1998-07-02 Basf Ag Catalyst for the selective production of propylene from propane
DK199900477A (en) * 1999-04-12 2000-10-13 Haldor Topsoe As Process for dehydrogenation of hydrocarbon
US6521808B1 (en) * 2000-02-17 2003-02-18 The Ohio State University Preparation and use of a catalyst for the oxidative dehydrogenation of lower alkanes
ATE390205T1 (en) 2002-12-10 2008-04-15 Haldor Topsoe As METHOD FOR CATALYTIC DEHYDRATION AND CATALYST THEREOF
DE102010001910A1 (en) 2010-02-12 2012-05-10 Leibniz-Institut Für Katalyse E.V. An Der Universität Rostock Continuously producing olefins and hydrogen by dehydrogenation of hydrocarbons, comprises contacting gaseous hydrocarbon with catalyst exhibiting silicon containing carrier, and applying it on highly dispersed vanadium oxide
DE102012206543A1 (en) 2012-04-20 2013-10-24 Leibniz-Institut Für Katalyse E.V. An Der Universität Rostock Producing olefins and hydrogen by dehydrogenation of hydrocarbons with oxidative catalyst regeneration, comprises contacting gaseous hydrocarbon with catalyst, and contacting catalyst for regeneration with oxygen-containing gas flow
DE102015112612A1 (en) 2015-07-31 2017-02-02 Leibniz-Institut Für Katalyse E.V. An Der Universität Rostock Process for the preparation of olefins and catalyst
US20220203340A1 (en) * 2020-12-30 2022-06-30 Uop Llc Light paraffin dehydrogenation catalysts and their application in fluidized bed dehydrogenation processes
CN114011425B (en) * 2021-12-08 2023-12-05 湘潭大学 Dual-function catalyst and preparation method and application method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR827068A (en) * 1936-10-15 1938-04-15 Universal Oil Prod Co Process for the dehydrogenation of aliphatic hydrocarbons
US3118007A (en) * 1956-09-24 1964-01-14 Bayer Ag Dehydrogenation of hydrocarbons
GB840082A (en) * 1958-01-10 1960-07-06 Bataafsche Petroleum A process for the preparation of diolefins by dehydrogenation of mono-olefins
US4607129A (en) * 1985-06-10 1986-08-19 Phillips Petroleum Company Catalytic dehydrocyclization and dehydrogenation of hydrocarbons
US4644089A (en) * 1986-07-10 1987-02-17 Phillips Petroleum Company Catalytic reforming of hydrocarbons

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11746070B2 (en) * 2018-12-21 2023-09-05 ExxonMobil Technology and Engineering Company Conversion of paraffins to olefins and heavier hydrocarbons mediated by metal oxides

Also Published As

Publication number Publication date
GR3022739T3 (en) 1997-06-30
DK0403462T3 (en) 1997-04-07
DE69029432T2 (en) 1997-05-28
ATE146451T1 (en) 1997-01-15
ES2095247T3 (en) 1997-02-16
EP0403462A1 (en) 1990-12-19
DE69029432D1 (en) 1997-01-30

Similar Documents

Publication Publication Date Title
EP0403462B1 (en) Process for the catalytic dehydrogenation of hydrocarbons
EP0382164B1 (en) Dehydrogenation process
US5866737A (en) Oxidation and oxydehydrogenation of hydrocarbons in the fluidized bed
US8669406B2 (en) Process for the preparation of hydrogenated hydrocarbon compounds
CA1292248C (en) Steam dehydrogenation and oxidative reheat process using only one catalyst system
US3488402A (en) Dehydrogenation of hydrocarbons using dehydrogenation-oxidation catalyst system
US3810953A (en) Dehydrogenation of organic compounds
US3836603A (en) Process for preparing para-xylene
US2991320A (en) Catalytic dehydrogenation process
EP0482276B1 (en) Process for the catalytic dehydrogenation of alkylaromatic hydrocarbons
US5780700A (en) Catalytic oxidative dehydrogenation of alkylaromatics and paraffins
US20040181107A1 (en) Carbon dioxide promoted dehydrogenation process for olefins
US4973791A (en) Process of oxidizing aliphatic hydrocarbons employing an alkali-promoted molybdate catalyst
US4737595A (en) Hydrocarbon dehydrogenation
US5691262A (en) Regeneration of catalysts used in oxidative dehydrogenation of alkylaromatics and paraffins
US5510553A (en) Catalytic dehydrogenation of alkylaromatic hydrocarbons
US4560823A (en) Hydrocarbon dehydrogenation
US4229604A (en) Process for producing unsaturated hydrocarbons
EP0397637B1 (en) Process for the catalytic dehydrogenation of alkylaromatic hydrocarbons
US3119111A (en) Oxidative dehydrogenation of alkanes
US3781375A (en) Process for preparation of 1,5-dimethyl naphthalene and/or 1,6-dimethyl naphthalene and catalyst composition to be used for said process
US4902845A (en) Method to extend life of iron oxide-containing catalysts using low levels of oxygen
JPS62126140A (en) Dehydrogenation for isobutane
US4568789A (en) Hydrocarbon dehydrogenation
US3691247A (en) Selectively removing monoalkylbenzenes from mixtures thereof with dialkylbenzenes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19910121

17Q First examination report despatched

Effective date: 19921009

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 146451

Country of ref document: AT

Date of ref document: 19970115

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 69029432

Country of ref document: DE

Date of ref document: 19970130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2095247

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: 0403;80MIFUFFICIO BREVETTI RICCARDI & C.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3022739

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20010425

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20010427

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021206

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS & PARTNER PATENTANWAELTE

Ref country code: CH

Ref legal event code: PFA

Owner name: TOTAL PETROCHEMICALS RESEARCH FELUY

Free format text: FINA RESEARCH S.A.#ZONE INDUSTRIELLE C#B-7181 SENEFFE (FELUY) (BE) -TRANSFER TO- TOTAL PETROCHEMICALS RESEARCH FELUY#ZONE INDUSTRIELLE C#7181 SENEFFE (FELUY) (BE)

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: ATOFINA RESEARCH

Owner name: TOTAL PETROCHEMICALS RESEARCH FELUY

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20090513

Year of fee payment: 20

Ref country code: ES

Payment date: 20090521

Year of fee payment: 20

Ref country code: NL

Payment date: 20090527

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090515

Year of fee payment: 20

Ref country code: FR

Payment date: 20090513

Year of fee payment: 20

Ref country code: IT

Payment date: 20090527

Year of fee payment: 20

Ref country code: DE

Payment date: 20090525

Year of fee payment: 20

Ref country code: SE

Payment date: 20090514

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090622

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090518

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090522

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20100514

BE20 Be: patent expired

Owner name: S.A. *FINA RESEARCH

Effective date: 20100514

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20100513

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20100515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100514