EP0402005B1 - Antenne à montage affleurant - Google Patents
Antenne à montage affleurant Download PDFInfo
- Publication number
- EP0402005B1 EP0402005B1 EP90305620A EP90305620A EP0402005B1 EP 0402005 B1 EP0402005 B1 EP 0402005B1 EP 90305620 A EP90305620 A EP 90305620A EP 90305620 A EP90305620 A EP 90305620A EP 0402005 B1 EP0402005 B1 EP 0402005B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- cavity
- pair
- microstrip
- openings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 claims description 10
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 239000003989 dielectric material Substances 0.000 claims 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0485—Dielectric resonator antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/28—Adaptation for use in or on aircraft, missiles, satellites, or balloons
- H01Q1/286—Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft
Definitions
- This invention relates to an antenna comprising:
- antennas In many radio frequency systems, limited space is available for antennas. Antennas designed for small spaces, however, must meet various performance requirements. For example, the antenna must have a specified angular coverage and frequency bandwidth. Thus, existing antennas may not meet both the size and performance requirements in a system.
- flush mount antennas For example, annular slot antennas, cavity inductors, strip inductors, patch antennas, surface-wave antennas and slot antennas can all be mounted flush with a surface.
- these types of antennas generally have narrow frequency bandwidths. They are thus not well suited for systems requiring frequency bandwidths of 3:1.
- Printed log-periodic dipoles can be cavity backed and flush mounted. These antennas can be built with 3:1 frequency bandwidths, but cannot be made small enough to meet the size constraints of some applications.
- GB-A-1598545 describes a waveguide aerial consisting of a rectangular waveguide formed in a circular brass flange and filled with polytetrafluoroethylene (PTFE) made flush with one face of the flange, the longitudinal axis of the waveguide being at an acute angle to the axis of the flange.
- Energy is coupled into the waveguide by a probe extending from a seating in the other face of the flange.
- PTFE polytetrafluoroethylene
- US-A-4415900 describes an antenna of the kind defined hereinbefore at the beginning, the antenna being a multi-mode cavity antenna consisting of a microstrip antenna mounted within an open waveguide having one end with a square end closure and the other with a ramp closure.
- the open side of the waveguide has a dielectric cover.
- Energy is coupled to the microstrip antenna by a coaxial-to-microstrip adapter that is mounted through the bottom of the waveguide, which faces the dielectric cover.
- the microstrip antenna comprises a first square microstrip element fed asymmetrically by coaxial feed, and a second square microstrip element fed from the first square element via a microstrip transmission line.
- an antenna of the kind defined hereinbefore at the beginning is characterised in that the said walls have surface portions inclined with respect to the substantially planar microstrip circuit, and in that the other of the pair of ends of the microstrip circuit is electrically coupled to a proximal one of the said pair of openings, the arrangement being such that the said radio frequency energy serially passes through the pair of openings and the microstrip circuit or vice versa.
- a preferred embodiment takes the form of an antenna having a radiating cavity filled with dielectric.
- the radiating cavity has two opposing taper walls. Radio frequency energy is fed to the radiating cavity via a microstrip horn.
- the dielectric in the radiating cavity conforms with the upper surface of the antenna.
- the upper surface of the antenna in turn, conforms with the surface in which the antenna is mounted.
- FIG. 1 shows an exploded view of an antenna 10 constructed according to the present invention.
- the antenna 10 has a base 12 and a top 20 formed from a conductive metal.
- a dielectric board 14 is mounted, for example by gluing or mounting screws, to the base 12.
- the relative dielectric constant of board 14 is ⁇ rs .
- a microstrip horn 16 is patterned, in a known manner, on the upper surface (not numbered) of dielectric board 14.
- base 12 is at ground potential and forms the second conductor of the microstrip.
- a signal is applied to microstrip horn 16 through feed 28.
- a coaxial cable (not shown) could pass through feed 28 and have its center conductor connected to microstrip horn 16.
- a dielectric slab 18 with relative dielectric constant ⁇ r is also mounted, such as by gluing or captivation by top 20, to base 12.
- Dielectric slab 18 has a taper surface 34 which conforms to taper surface 32 of base 12.
- Dielectric slab 18 has a second taper surface 30 which conforms to a tapered surface (element 50, FIG. 3) in top 20.
- Top 20 is secured to base 12 by screws through screw holes 22 and 24 or by any other convenient means such as conductive epoxy. With top 20 secured to the base, a radiating cavity 26 is formed. The radiating cavity 26 is bounded on the bottom by base 12. Two sides of radiating cavity 26 are bounded by the inside surface of prongs 42A and 42B of top 20. A third side of radiating cavity 26 is bounded by taper surface 50 (FIG. 3) of top 20. The fourth side of radiating cavity 26 is bounded by taper surface 32. Dielectric slab 18 thus fills radiating cavity 26.
- top 20 and dielectric slab 40 are constructed to form a flush upper surface.
- upper surfaces 36, 38 and 40 form a surface without discontinuities.
- that surface is shown to be a plane.
- Antenna 10 could thus be recessed into a planar surface to create a flush surface.
- the invention is not limited to a planar flush surface.
- FIG. 2 shows additional details of the antenna 10, as would be seen by looking at the top of antenna 10 (FIG. 1) with top 20 removed.
- like reference numbers denote like elements.
- superimposed on the structure of FIG. 2 is an x-axis and an angle ⁇ AZ measured relative to the x-axis.
- the angle ⁇ AZ indicates the azimuthal direction relative to the antenna 10.
- FIG. 2 also indicates various dimensions of components in antenna 10.
- Dielectric board 14 has a width W S and a length L S .
- Dielectric slab 18 has a width W.
- Upper surface 40 has a length L.
- the total length of dielectric board 14 and dielectric slab 18 is L T .
- FIG. 3 shows a cross-sectional view of antenna 10 taken along the line 3-3 of FIG. 1. Details of top 20 can be seen in FIG. 3.
- Top 20 has a taper surface 50 which conforms with taper surface 30 of dielectric slab 18. Additionally, top 20 has formed in it a cavity 54 of length L MC and extending a height H MC above microstrip horn 16. Inside cavity 54, there is an absorber 52, which is any known material which absorbs radio frequency energy. Cavity 54 and absorber 52 present a load to microstrip horn 16 very similar to the load that would be present if microstrip horn 16 were in free space. In addition, absorber 52 is selected to prevent resonance in cavity 54 while absorbing a minimum of RF energy.
- Top 20 is in electrical contact with dielectric horn 16. Electrically, taper surface 50 is like an extension of microstrip horn 16. Taper surface 50 therefore launches electrical signals travelling down microstrip horn 16 into radiating cavity 26.
- Dielectric slab 18 is shown to have a height H C .
- the bottom of dielectric slab 18 excluding taper surface 34 is shown to have a length L B .
- Dielectric board 14 is shown to have a height of t.
- taper surface 50 is shown to make an angle ⁇ FE with base 12.
- Taper surface 32 is shown to make an angle ⁇ f with the x-axis.
- the angle ⁇ EL is shown. Angle ⁇ EL defines the elevation direction relative to antenna 10.
- the various dimensions of the antenna are selected based on two major considerations. First, the dimensions are selected based on the wavelength, ⁇ 0, of the center frequency, f o , of operation of the antenna. Additionally, some parameters are selected such that antenna 10 projects a beam in the desired azimuthal and elevational angles.
- Table I shows dimensions selected for the various parameters of antenna 10.
- FIG. 4A shows the azimuthal beam pattern resulting when an antenna with the dimensions of Table I is operated at a frequency equal to 0.917f o .
- the abscissa of the plot shows azimuthal angle.
- the ordinate shows the gain relative to an isotropically radiating antenna measured in the far field at the azimuthal angle with the elevation angle of 0°.
- FIG. 4B shows the elevation pattern when an antenna with the dimensions of Table I is operated at a frequency of 0.917f o .
- the abscissa of the plot shows elevation angle.
- the ordinate shows the gain relative to an isotropically radiating antenna measured in the far field at the elevation angle with an azimuthal angle of 0°.
- antenna 10 has a 3dB beamwidth in the azimuthal plane of approximately 160°.
- Line 400B in FIG. 48 shows antenna 10 has a 3dB beamwidth in the elevation plane of approximately 60°. The beam center in the elevation plane occurs at an elevation angle of approximately 20°.
- the performance of antenna 10 can be changed by varying the parameters of antenna construction. If the parameter L is shortened, the 3dB beamwidth in the elevation plane increases. In addition, the beam becomes centered closer to the value of ⁇ EL equal to 90°. In other words, the antenna has a near broadside radiation pattern. Conversely, an increase in L tends to concentrate the beam in the elevation plane closer to values of ⁇ EL near zero. In other words, the antenna has a end-fire radiation pattern.
- FIG. 5 shows an alternative embodiment of the antenna.
- Antenna 10A contains a dielectric slab 10A which tapers outwards away from microstrip horn 16 (not shown). The added width of the taper tends to decrease the 3dB beamwidth in the azimuthal direction.
- FIG. 5 also shows how an antenna can be flush mounted to a surface.
- Antenna 10A is recessed into surface 56.
- surface 56 is curved.
- Upper surface 36A, 38A, and 40A are shaped to conform to surface 56.
- the antenna has been described only in relation to the transmission of signals, but could be used to receive signals. Additionally, the antenna has been shown to mount flush with planar or curved surfaces, but could be readily extended to conform to any shape surface. The flush mount antenna could be arrayed, resulting in a flush mount array antenna.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
Claims (4)
- Antenne comprenant :a) un circuit à micro-bande essentiellement planar (14,16) pour coupler une énergie à haute fréquence entre un couple d'extrémités du circuit, le circuit possédant un conducteur en forme de bande (16) séparé d'un conducteur (12) de plan de masse par un diélectrique (14);b) une structure conductrice (12,20) comprenant des parois opposées (32,50) formant des parois latérales d'une cavité (26) formée dans la structure (12,20), la cavité (26) possédant un couple d'ouvertures, lesdites parois (32,50) possédant des extrémités extérieures qui se terminent à une extrémité distale du couple d'ouvertures de la cavité (26) et sont disposées sur une surface commune, ladite surface commune et ledit conducteur en forme de bande (16) étant disposés au-dessus du niveau du conducteur (12) de plan de masse au niveau dudit diélectrique (14); etc) une alimentation en énergie à haute fréquence couplée à l'un des couples d'extrémités du circuit à micro-bande (14,16), et dans lequel une énergie à haute fréquence passant entre l'espace libre et l'alimentation, traverse lesdites ouvertures de la cavité (26) et du circuit à micro-bande (14,16);
caractérisée en ce que lesdites parois possèdent des éléments de surface (32,50) inclinés par rapport au circuit à micro-bande essentiellement planar (14,16), et en ce que l'autre extrémité du couple d'extrémités du circuit à micro-bande (14,16) est couplée électriquement à une extrémité proximale dudit couple d'ouvertures, l'agencement étant tel que ladite énergie à haute fréquence est transmise en série par le couple d'ouvertures et par le circuit à micro-bande (14,16) ou vice versa. - Antenne selon la revendication 1, caractérisée par un matériau diélectrique (18) disposé dans ladite cavité (26), ledit matériau diélectrique (18) possédant une surface (40) se terminant au niveau des extrémités extérieures des parois.
- Antenne selon la revendication 2, caractérisée en ce que le circuit à microbande essentiellement plan (14,16) comprend un cornet à micro-bande (16) possédant une partie étroite couplée à l'alimentation et une partie large disposée au voisinage de l'ouverture proximale de la cavité (26).
- Antenne selon la revendication 2, caractérisée en ce qu'elle est adaptée pour un montage de niveau avec une surface adaptée (56) et en ce que la surface (40a) du matériau diélectrique (18A) disposé dans la cavité (26) est de niveau avec la surface adaptée (56).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36440489A | 1989-06-09 | 1989-06-09 | |
US364404 | 1989-06-09 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0402005A2 EP0402005A2 (fr) | 1990-12-12 |
EP0402005A3 EP0402005A3 (fr) | 1991-05-15 |
EP0402005B1 true EP0402005B1 (fr) | 1995-12-13 |
Family
ID=23434390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90305620A Expired - Lifetime EP0402005B1 (fr) | 1989-06-09 | 1990-05-23 | Antenne à montage affleurant |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0402005B1 (fr) |
JP (1) | JP3045522B2 (fr) |
DE (1) | DE69024103T2 (fr) |
IL (1) | IL94458A0 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10322803A1 (de) * | 2003-05-19 | 2004-12-23 | Otto-Von-Guericke-Universität Magdeburg | Mikrostreifenantenne |
CN103606732A (zh) * | 2013-11-29 | 2014-02-26 | 东南大学 | 薄基片相位幅度校正振子平面喇叭天线 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103956566B (zh) * | 2014-05-14 | 2016-04-27 | 武汉虹信通信技术有限责任公司 | 一种适用于td-lte天线的小型化宽频辐射单元 |
US10297919B2 (en) | 2014-08-29 | 2019-05-21 | Raytheon Company | Directive artificial magnetic conductor (AMC) dielectric wedge waveguide antenna |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2822542A (en) * | 1954-10-18 | 1958-02-04 | Motorola Inc | Directive antenna |
GB1598545A (en) * | 1975-09-03 | 1981-09-23 | Marconi Co Ltd | Waveguide aerials |
FR2445042A1 (fr) * | 1978-12-21 | 1980-07-18 | Onera (Off Nat Aerospatiale) | Perfectionnements aux antennes plaquees pour ondes electromagnetiques millimetriques |
US4415900A (en) * | 1981-12-28 | 1983-11-15 | The United States Of America As Represented By The Secretary Of The Navy | Cavity/microstrip multi-mode antenna |
-
1990
- 1990-05-21 IL IL94458A patent/IL94458A0/xx not_active IP Right Cessation
- 1990-05-23 DE DE69024103T patent/DE69024103T2/de not_active Expired - Lifetime
- 1990-05-23 EP EP90305620A patent/EP0402005B1/fr not_active Expired - Lifetime
- 1990-06-07 JP JP2149706A patent/JP3045522B2/ja not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10322803A1 (de) * | 2003-05-19 | 2004-12-23 | Otto-Von-Guericke-Universität Magdeburg | Mikrostreifenantenne |
CN103606732A (zh) * | 2013-11-29 | 2014-02-26 | 东南大学 | 薄基片相位幅度校正振子平面喇叭天线 |
CN103606732B (zh) * | 2013-11-29 | 2016-02-10 | 东南大学 | 薄基片相位幅度校正振子平面喇叭天线 |
Also Published As
Publication number | Publication date |
---|---|
EP0402005A3 (fr) | 1991-05-15 |
DE69024103T2 (de) | 1996-08-29 |
JP3045522B2 (ja) | 2000-05-29 |
EP0402005A2 (fr) | 1990-12-12 |
DE69024103D1 (de) | 1996-01-25 |
JPH0326101A (ja) | 1991-02-04 |
IL94458A0 (en) | 1991-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4125839A (en) | Dual diagonally fed electric microstrip dipole antennas | |
US5400041A (en) | Radiating element incorporating impedance transformation capabilities | |
US6043785A (en) | Broadband fixed-radius slot antenna arrangement | |
Howell | Microstrip antennas | |
US4733245A (en) | Cavity-backed slot antenna | |
US4063246A (en) | Coplanar stripline antenna | |
US4843400A (en) | Aperture coupled circular polarization antenna | |
EP0873577B1 (fr) | Antenne en spirale a fentes a source primaire et symetriseur integres | |
EP0886336B1 (fr) | Réseau d'antennes plan de profil bas à commande de phase, à large bande, à balayage large utilisant radiateurs de disques empilés | |
US4847625A (en) | Wideband, aperture-coupled microstrip antenna | |
US6133878A (en) | Microstrip array antenna | |
US6285325B1 (en) | Compact wideband microstrip antenna with leaky-wave excitation | |
CA1197317A (fr) | Antenne microbande a large bande avec diodes varactors | |
US4204212A (en) | Conformal spiral antenna | |
US5319378A (en) | Multi-band microstrip antenna | |
US20040032378A1 (en) | Broadband starfish antenna and array thereof | |
US5126751A (en) | Flush mount antenna | |
US7173566B2 (en) | Low-sidelobe dual-band and broadband flat endfire antenna | |
US5444452A (en) | Dual frequency antenna | |
US4605933A (en) | Extended bandwidth microstrip antenna | |
CA1166743A (fr) | Antenne de systeme de navigation omnidirectionnel vhf | |
US11799207B2 (en) | Antennas for reception of satellite signals | |
US9431713B2 (en) | Circularly-polarized patch antenna | |
EP0989628B1 (fr) | Antenne à plaque avec plaque de terre courbé | |
US3978487A (en) | Coupled fed electric microstrip dipole antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE DE FR GB IT NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19911024 |
|
17Q | First examination report despatched |
Effective date: 19931111 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT NL |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 69024103 Country of ref document: DE Date of ref document: 19960125 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20090527 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090529 Year of fee payment: 20 Ref country code: FR Payment date: 20090513 Year of fee payment: 20 Ref country code: DE Payment date: 20090525 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20090622 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090522 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20100523 |
|
BE20 | Be: patent expired |
Owner name: *RAYTHEON CY Effective date: 20100523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100523 |