EP0401259A1 - Process and device for depositing layers of a high-temperature superconducting material on substrates - Google Patents

Process and device for depositing layers of a high-temperature superconducting material on substrates

Info

Publication number
EP0401259A1
EP0401259A1 EP89902628A EP89902628A EP0401259A1 EP 0401259 A1 EP0401259 A1 EP 0401259A1 EP 89902628 A EP89902628 A EP 89902628A EP 89902628 A EP89902628 A EP 89902628A EP 0401259 A1 EP0401259 A1 EP 0401259A1
Authority
EP
European Patent Office
Prior art keywords
substrate
spraying
oxygen
nozzle
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89902628A
Other languages
German (de)
French (fr)
Inventor
Karl-Heinz Gunzelmann
Fritz Eberlein
Werner Herkert
Reiner Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE3806174A external-priority patent/DE3806174A1/en
Priority claimed from DE3806176A external-priority patent/DE3806176A1/en
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0401259A1 publication Critical patent/EP0401259A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0492Processes for depositing or forming copper oxide superconductor layers by thermal spraying, e.g. plasma deposition

Definitions

  • thermal spray processes are one of the options.
  • HTSL high-temperature materials
  • proposals have already been made to be sprayed on as closed cover layers with a thickness of> 20 ⁇ m onto any substrates or workpieces with complex surfaces.
  • plasma spraying or also high-speed flame spraying are suitable as thermal spraying methods. It is a matter of producing such closed layers which do not detach from the substrate when the components produced in this way are subsequently used as intended and which, in particular, ensure adequate current carrying capacity.
  • an oxygen annealing treatment is carried out after coating, for example at 900 ° C. for about 20 hours. This is the only way to regenerate the superconducting properties that are lost during the production of the thick layers by the spraying process due to the oxygen release of the layer material.
  • Subsequent oxygen annealing treatment poses problems: especially in the case of large-area components, the furnace size necessary for the substrates or their warpage must be taken into account.
  • substrates can be specified which only allow low annealing temperatures, for example plastics, printed circuit boards or aluminum.
  • the annealing process can lead to crack formation or detachment of the layer, so that the coated component is defective or at least does not guarantee sufficient current carrying capacity.
  • the object of the invention is therefore to improve the process of the type mentioned in the introduction in such a way that a subsequent oxygen annealing treatment is no longer necessary.
  • the necessary devices are to be created for this.
  • the object is achieved in that the thermal spraying takes place under an oxygen atmosphere with an adjustable oxygen partial pressure.
  • an oxygen-temperature treatment of the substrate be carried out, for which purpose the substrate C is brought at least through the spray jet to a temperature> 600 *. If necessary, the substrate is additionally heated.
  • the method according to the invention can advantageously be used both in the plasma spraying process and in the high-speed flame spraying process (so-called hypersonic process).
  • the spray nozzle with a protective gas tube is in a first embodiment Front part extended, which encloses the entire space between the opening of the spray nozzle and the substrate and can be acted upon with oxygen.
  • Front part extended which encloses the entire space between the opening of the spray nozzle and the substrate and can be acted upon with oxygen.
  • HTSL spray layers can be produced on the basis of the four-component systems yttrium-barium-copper-oxygen or lanthanum-strontium-copper-oxygen which have superconducting properties after the thermal spraying without oxygen annealing treatment Jump temperature T from 80 K to 90 K. This can only be achieved if, during the spraying process, alternatively using the plasma or the high-speed flame spraying process, there is a defined excess of oxygen which specifically counteracts the depletion of oxygen.
  • HTSL spray layers based on the bismuth-strontium-calcium-copper-oxygen or thallium-barium-calcium-copper-oxygen five-component systems, which are less critical with regard to the oxygen setting, can be applied.
  • the latter HTSL materials have transition temperatures T between 80 and 125 K.
  • the bismuth superconductors can stabilize the equilibrium phases with a higher transition temperature or increase the transition temperatures themselves.
  • FIGS. 3 to 5 show a protective gas tube as an attachment for the known spray nozzles in three views
  • FIG. 6 shows a chamber for receiving a complete coating system consisting of a spraying device, substrate and further aids,
  • FIG 7 shows a partial section of the chamber of FIG 6 with a
  • Heating device for the substrate is
  • the substrate is denoted by 1 and the spray layers produced on the substrate 1 by the different spraying methods are denoted by 2 or 3.
  • FIG. 1 shows a spraying device 10 for plasma spraying from a housing 11 in which a cathode 12 and an anodically connected copper nozzle 13 (anode) are arranged. There are supply lines for the powder inlet 14, for the plasma gas 15 and for water as a coolant 18.
  • a high voltage is applied between cathode 12 and anode 13 via an electrical generator 19, so that an arc is ignited.
  • the supply of the plasma gas 15 creates a plasma flame 16 at the opening of the spray nozzle 13, through which a conical spray jet 17 of the powder supplied laterally via the powder inlet 14 is formed.
  • a large-area spray layer 2 can thus be formed on the substrate 1.
  • a hypersonic spraying device 20 consists of a housing 21 with a proximal spray nozzle 23 and a distal powder inlet 24. Oxygen and fuel gas are supplied laterally via separate inlets 25 and 26, which are mixed in the nozzle 23 in a suitable mixing ratio for combustion reach. This applies to the supplied powder, which is accelerated to supersonic speed in a spray jet 27.
  • the complete housing 21 ' is cooled via cooling lines 28.
  • the focused spray jet 27 during hypersonic spraying allows spray layers 3 which are closely localized to be applied to the substrate 1. This spraying method is particularly advantageous for complicated geometries.
  • the protective gas tube 30 shown in FIGS. 3 to 5 is designed as a front part that can be placed on the spraying device 10 or 20.
  • the protective gas tube 30 consists of a tubular housing 31, for example made of brass, which is water-cooled over the entire circumference of the tube and whose inner contour is adapted to the formation of the spray jet.
  • the protective gas tube 30 can be cylindrical or flared towards the substrate 1.
  • the tubular housing 31 has a connection head 32 into which the sprayer 10 or 20 is inserted and fixed.
  • a U-shaped recess 33 is provided, which is open at the top and on the side, so that in particular the spray nozzle 23 according to FIG. 2 can be inserted tightly with the lateral outlet 28 for cooling water.
  • the spray nozzle 23 can be fixed by means of a screw 34 running through the recess 33.
  • connection head 32 there is a cooling water inlet 35 and an oxygen connection 36 on two surfaces lying perpendicular to one another, which can be connected to external lines. Specifically, the oxygen reaches the interior of the protective gas tube 30 from the connection 36 via a distributor nozzle 37, the size of the partial pressure of the oxygen being able to be precisely specified by means of external setting and control means.
  • an expanding concentric end part 38 is attached opposite the connection head 32, which carries a cooling water outlet 39.
  • An annular disk 40 is attached around the opening of the end part 38, which ensures a uniform distribution of the oxygen on the substrate surface. The annular disk 40 leaves the part of the substrate 1 to be coated free.
  • the disk 40 is only shown on one side in FIG. 4. It has the contour of the substrate surface and can in particular be adapted to the shape of the component to be produced if workpieces of a more complicated design are to be coated.
  • the chamber 60 shows a chamber 60 with a pump connection 61 and a gas connection 62.
  • the chamber 60 accommodates the entire device for spraying with a spraying device 10 for plasma spraying according to FIG. 1 or a spraying device 20 for hypersonic spraying according to FIG. 2 and the workpiece to be coated as substrate 1.
  • There is a handling device 65 which guides the nozzle 13 or 23 of the spraying device 10 or 20 in a suitable manner, controllable from the outside.
  • the chamber 60 according to FIG. 6 is first evacuated via the pump connection 61 before the coating process and then pressurized with oxygen predetermined partial pressure via the gas connection 62. The actual spraying process then takes place in the chamber 60, which is completely filled with oxygen.
  • a heating device 64 is assigned to a substrate 1 in a chamber 60 according to FIG.
  • the heating device 64 serves for the additional heating of the substrate in addition to the energy supply by the spray jet and advantageously works inductively or as resistance heating. Instead, a fuel gas flame can be used, the handling of which is simple.
  • the heating device 64 is used expediently, in particular in the case of larger workpieces, since the thermal energy of the spray jet is then generally not sufficient to uniformly heat the workpiece to a temperature of over 600.degree.
  • the alternatively described devices according to FIGS. 3 to 5 or FIGS. 6 and 7 can each be designed optionally for piasma spraying or also for hypersonic spraying.
  • the previously known HTSL materials can thus be sprayed onto substrates of any geometry in layers of a predetermined thickness. In this case, the oxygen depletion of the HTSL material is counteracted “in situ” immediately during spraying, so that the superconducting properties remain intact, without the need for afterglow in an oxygen atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Le dépôt d'un matériau supraconducteur à haute température sur des pièces peut s'effectuer par pulvérisation thermique, sur des substrats de forme quelconque, d'une poudre céramique faisant office de substance de base et ayant des propriétés supracondutrices, de manière à obtenir une couche de protection fermée. Jusqu'à présent, les pièces recouvertes d'une couche de protection devaient ensuite être frittées sous une atmosphère d'oxygène pour régénérer les propriétés supraconductrices. Avec le procédé objet de l'invention, la pulvérisation thermique sous atmosphère d'oxygène s'effectue avec une pression partielle d'oxygène réglable. En outre, dans un premier mode d'exécution, la buse (13, 23), nécessaire à l'application, qui équipe le pulvérisateur (10, 20) peut être prolongée par une conduite de gaz protecteur (30) qui entoure totalement l'espace situé entre l'orifice de la buse (13, 23) du pulvérisateur (10, 20) et le substrat (1) et qui peut être alimentée avec de l'oxygène (O2). Dans un deuxième mode d'exécution, on peut avoir une grande chambre (60) dans laquelle on peut disposer le pulvérisateur (10, 20), le substrat (1) et d'autres adjuvants pour l'enduction sous atmosphère d'oxygène.The deposition of a superconductive material at high temperature on parts can be carried out by thermal spraying, on substrates of any shape, of a ceramic powder acting as basic substance and having superconductive properties, so as to obtain a closed protective layer. Until now, the parts covered with a protective layer had then to be sintered under an oxygen atmosphere to regenerate the superconductive properties. With the process which is the subject of the invention, thermal spraying under an oxygen atmosphere is carried out with an adjustable partial pressure of oxygen. In addition, in a first embodiment, the nozzle (13, 23), necessary for the application, which equips the sprayer (10, 20) can be extended by a protective gas line (30) which completely surrounds the space located between the orifice of the nozzle (13, 23) of the sprayer (10, 20) and the substrate (1) and which can be supplied with oxygen (O2). In a second embodiment, it is possible to have a large chamber (60) in which the sprayer (10, 20), the substrate (1) and other adjuvants for coating under an oxygen atmosphere can be placed.

Description

Verfahren und Vorrichtung zum Aufbringen von Schichten aus hochtemperatur-supraleitendem Material auf SubstrateMethod and device for applying layers of high-temperature superconducting material to substrates
Die Erfindung bezieht sich auf ein Verfahren zum Aufbringen von Schichten aus hochtemperatur-supraleitendem Material (HTSL) auf Substrate, bei dem durch thermisches Spritzen von keramischem Pulver mit supraleitenden Eigenschaften als Ausgangsmaterial auf das beliebig geformte Substra.t eine geschlossene Deck¬ schicht aufgebracht wird. Daneben bezieht sich die Erfindung auch auf zugehörige Vorrichtungen zur Durchführung dieses Verfahrens, mit einem Spritzgerät mit Düse zum Spritzen des pul- verförmigeπ Ausgangsmaterials auf das Substrat.The invention relates to a method for applying layers of high-temperature superconducting material (HTSL) to substrates, in which a closed cover layer is applied to the arbitrarily shaped substrate by thermal spraying of ceramic powder with superconducting properties as the starting material. In addition, the invention also relates to associated devices for carrying out this method, with a spraying device with a nozzle for spraying the powdery starting material onto the substrate.
Zum Beschichten von Substraten mit Materialien, die als Pulver vorliegen, bieten sich unter anderem thermische Spritzverfahren an. Nach der Entdeckung der neuen, hochtemperatur-sjjpral_eiten- den Materialien (HTSL), insbesondere auf der Basis der Vier¬ stoffsysteme Yttrium-Barium-Kupfer-Sauerstoff oder Lanthan- Strontium-Kupfer-Sauerstoff, sind auch bereits Vorschläge ge¬ macht worden, diese als geschlossene Deckschichten der Dicke von > 20 μm auf beliebige Substrate bzw. Werkstücke mit kom¬ plexen Oberflächen aufzuspritzen. Zum Aufspritzen sind als thermische Spritzverfahren das Plasmaspritzen oder auch das Hochgeschwindigkeitsflammspritzen (sogenanntes Hypersonic-Ver- fahren) geeignet. Dabei geht es darum, solche geschlossene Schichten herzustellen, die sich bei der späteren bestim ungs- gemäßen Verwendung der so erzeugten Bauteile nicht vom Substrat ablösen und die insbesondere eine hinreichende Stromtragfähig¬ keit gewährleisten.For spraying substrates with materials that are available as powders, thermal spray processes are one of the options. After the discovery of the new high-temperature materials (HTSL), in particular on the basis of the four-component systems yttrium-barium-copper-oxygen or lanthanum-strontium-copper-oxygen, proposals have already been made to be sprayed on as closed cover layers with a thickness of> 20 μm onto any substrates or workpieces with complex surfaces. For spraying, plasma spraying or also high-speed flame spraying (so-called hypersonic method) are suitable as thermal spraying methods. It is a matter of producing such closed layers which do not detach from the substrate when the components produced in this way are subsequently used as intended and which, in particular, ensure adequate current carrying capacity.
Bei den bisher bekannten Verfahren zur Erzeugung von HTSL-Dick- schichten erfolgt durchweg nach dem Beschichten eine Sauerstoff¬ glühbehandlung, beispielsweise bei 900°C für etwa 20 Stunden. Nur so sind die supraleitenden Eigenschaften regenerierbar, die bei der Herstellung der Dickschichten durch den Spritzprozess aufgrund einer Sauerstoffabgabe des Schichtmaterials verloren¬ gehen. Die nachträgliche Sauerstoffglühbehandlung wirft aller¬ dings Probleme auf: Speziell bei großflächigen Bauteilen muß die für die Substrate notwendige Ofengröße bzw. deren Verzug beachtet werden. Weiterhin können Substrate vorgegeben sein, die nur niedrige Glühtemperaturen erlauben, beispielsweise Kunststoffe, Leiterplatten oder Aluminium. Schließlich kann es bei derartigen Substraten aufgrund unterschiedlicher thermi- scher Ausdehnungskoeffizienten durch den Glühprozeß zur Ri߬ bildung oder auch Ablösung der Schicht kommen, so daß das be¬ schichtete Bauteil fehlerhaft ist oder zumindest keine hin¬ reichende Stromtragfähigkeit gewährleistet.In the previously known processes for producing HTSL thick layers, an oxygen annealing treatment is carried out after coating, for example at 900 ° C. for about 20 hours. This is the only way to regenerate the superconducting properties that are lost during the production of the thick layers by the spraying process due to the oxygen release of the layer material. Subsequent oxygen annealing treatment, however, poses problems: especially in the case of large-area components, the furnace size necessary for the substrates or their warpage must be taken into account. Furthermore, substrates can be specified which only allow low annealing temperatures, for example plastics, printed circuit boards or aluminum. Finally, in the case of such substrates, due to different thermal expansion coefficients, the annealing process can lead to crack formation or detachment of the layer, so that the coated component is defective or at least does not guarantee sufficient current carrying capacity.
Aufgabe der Erfindung ist es daher, das Verfahren der eingangs genannten Art so zu verbessern, daß eine anschließende Sauer- stoffglühbehandlung nicht mehr notwendig ist. Dazu sollen die notwendigen Vorrichtungen geschaffen werden.The object of the invention is therefore to improve the process of the type mentioned in the introduction in such a way that a subsequent oxygen annealing treatment is no longer necessary. The necessary devices are to be created for this.
Die Aufgabe ist erfindungsgemäß dadurch gelöst, daß das thermi¬ sche Spritzen unter Sauerstoffatmosphäre mit einstellbarem Sauerstoffpartialdruck erfolgt. Dabei kann gleichzeitig beim Spritzen eine Sauerstofftemperaturbehandlung des Substrates erfolgen, wozu das Substrat zumindest durch den Spritzstrahl auf eine Temperatur > 600*C gebracht wird. Gegebenenfalls wird das Substrat zusätzlich geheizt.The object is achieved in that the thermal spraying takes place under an oxygen atmosphere with an adjustable oxygen partial pressure. In this case, at the same time for spraying an oxygen-temperature treatment of the substrate be carried out, for which purpose the substrate C is brought at least through the spray jet to a temperature> 600 *. If necessary, the substrate is additionally heated.
Vorteilhafterweise kann das erfindungsgemäße Verfahren sowohl beim Plasmaspritzverfahren als auch beim Hochgeschwindigkeits- flammspritzverfahren (sog. Hypersonic-Verfahren) angewandt werden.The method according to the invention can advantageously be used both in the plasma spraying process and in the high-speed flame spraying process (so-called hypersonic process).
Bei der zugehörigen Vorrichtung ist in einer ersten Ausfüh¬ rungsform die vorhandene Spritzdüse mit einem Schutzgasrohr als Vorsatzteil verlängert, das den gesamten Raum zwischen Öffnung der Spritzdüse und Substrat umschließt und mit Sauerstoff be¬ aufschlagbar ist. In einer zweiten Ausführungsform kann dagegen eine großvolumige Kammer vorhanden sein, in der das Spritzge¬ rät, das Substrat und weitere Hilfsmittel zur Durchführung des Beschichtungsverfahrens unter Sauerstoffatmosphäre eingebracht sind.In the case of the associated device, the spray nozzle with a protective gas tube is in a first embodiment Front part extended, which encloses the entire space between the opening of the spray nozzle and the substrate and can be acted upon with oxygen. In a second embodiment, on the other hand, there can be a large-volume chamber in which the spraying device, the substrate and further aids for carrying out the coating process are introduced under an oxygen atmosphere.
Im Rahmen der Erfindung wurde gefunden, daß HTSL-Spritzschich- ten auf der Basis der Vierstoffsysteme Yttrium-Barium-Kupfer- Sauerstoff oder Lanthan-Strontium-Kupfer-Sauerstoff erzeugt werden können, die ohne Sauerstoffglühbehandlung nach dem ther¬ mischen Spritzen supraleitende Eigenschaften mit einer Sprung¬ temperatur T von 80 K bis 90 K aufweisen. Dies gelingt nur, wenn während des Spritzprozesses alternativ nach dem Plas a- oder nach dem Hochgeschwindigkeitsflammspritz-Verfahren ein de¬ finiertes Sauerstoffüberangebot vorliegt, das gezielt der SäuerstoffVerarmung entgegenwirkt.In the context of the invention, it was found that HTSL spray layers can be produced on the basis of the four-component systems yttrium-barium-copper-oxygen or lanthanum-strontium-copper-oxygen which have superconducting properties after the thermal spraying without oxygen annealing treatment Jump temperature T from 80 K to 90 K. This can only be achieved if, during the spraying process, alternatively using the plasma or the high-speed flame spraying process, there is a defined excess of oxygen which specifically counteracts the depletion of oxygen.
Weiterhin können HTSL-Spritzschicnten auf der Basis der Fünf- stoffsysteme Wismut-Strontium-Calcium-Kupfer-Sauerstoff oder Thallium-Barium-Calcium-Kupfer-Sauerstoff aufgebracht werden, die hinsichtlich der Sauerstoffeinstellung unkritischer sind. Letztere HTSL-Materialien haben je nach Gleichgewichtsphase Sprungtemperaturen T zwischen 80 und 125 K. Durch gezielte Blei- bzw. Antimonzusätze können bei den Wismutsupraleitern die Gleichgewichtsphasen mit höherer Sprungtemperatur stabi¬ lisiert bzw. die Sprungtemperaturen selbst weiter angehoben werden.Furthermore, HTSL spray layers based on the bismuth-strontium-calcium-copper-oxygen or thallium-barium-calcium-copper-oxygen five-component systems, which are less critical with regard to the oxygen setting, can be applied. Depending on the equilibrium phase, the latter HTSL materials have transition temperatures T between 80 and 125 K. By adding specific lead or antimony, the bismuth superconductors can stabilize the equilibrium phases with a higher transition temperature or increase the transition temperatures themselves.
Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibuπg von Ausführungsbei¬ spielen anhand der Zeichnung in Verbindung mit den Unteransprü¬ chen. Es zeigen in schematischer DarstellungFurther advantages and details of the invention emerge from the following figure description of exemplary embodiments with reference to the drawing in conjunction with the subclaims. They show a schematic representation
FIG 1 das Plasmaspritzverfahren,1 shows the plasma spraying process,
FIG 2 das Hochgeschwindigkeitsflammspritz-(Hypersonic-)Ver- fahren, die Figuren 3 bis 5 ein Schutzgasrohr als Vorsatzteil für die bekannten Spritzdüsen in drei Ansichten,2 shows the high-speed flame spraying (hypersonic) method, FIGS. 3 to 5 show a protective gas tube as an attachment for the known spray nozzles in three views,
FIG 6 eine Kammer zur Aufnahme einer kompletten Beschichtungs- anlage aus Spritzgerät, Substrat und weiteren Hilfsmitteln,6 shows a chamber for receiving a complete coating system consisting of a spraying device, substrate and further aids,
FIG 7 einen Teilausschnitt der Kammer gemäß FIG 6 mit einer7 shows a partial section of the chamber of FIG 6 with a
Heizeinrichtung für das Substrat.Heating device for the substrate.
Bei den nachfolgenden Figuren ist das Substrat jeweils mit 1 und sind die auf dem Substrat 1 durch die unterschiedlichen Spritz¬ verfahren erzeugten Spritzschichten mit 2 oder 3 bezeichnet.In the following figures, the substrate is denoted by 1 and the spray layers produced on the substrate 1 by the different spraying methods are denoted by 2 or 3.
In FIG 1 besteht eine Spritzgerät 10 für das Plasmaspritzen aus einem Gehäuse 11, in dem eine Kathode 12 und eine anodisch geschaltete Kupferdüse 13 (Anode) angeordnet sind. Es sind Zu¬ führungen für den Pulvereintritt 14, für das Plasmagas 15 sowie für Wasser als Kühlmittel 18 vorhanden.1 shows a spraying device 10 for plasma spraying from a housing 11 in which a cathode 12 and an anodically connected copper nozzle 13 (anode) are arranged. There are supply lines for the powder inlet 14, for the plasma gas 15 and for water as a coolant 18.
Über einen elektrischen Generator 19 wird zwischen Kathode 12 und Anode 13 eine Hochspannung angelegt, so daß ein Lichtbogen gezündet wird. Durch die Zuführung des Plasmagases 15 entsteht eine Plasmaflamme 16 an der Öffnung der Spritzdüse 13, durch die ein konischer Spritzstrahl 17 des über den Pulvereintritt 14 seitlich zugeführten Pulvers gebildet wird. Es läßt sich so¬ mit auf dem Substrat 1 eine großflächige Spritzschicht 2 bilden.A high voltage is applied between cathode 12 and anode 13 via an electrical generator 19, so that an arc is ignited. The supply of the plasma gas 15 creates a plasma flame 16 at the opening of the spray nozzle 13, through which a conical spray jet 17 of the powder supplied laterally via the powder inlet 14 is formed. A large-area spray layer 2 can thus be formed on the substrate 1.
In FIG 2 besteht ein Hypersonic-Spritzgerät 20 aus einem Ge- häuse 21 mit einer proximalen Spritzdüse 23 und einem distalen Pulvereintritt 24. Seitlich wird über separate Zuführungen 25 und 26 Sauerstoff und Brenngas zugeführt, welche innerhalb der Düse 23 im geeigneten Mischungsverhältnis zur Verbrennung gelangen. Damit wird das zugeführte Pulver beaufschlagt, das in einem Spritzstrahl 27 auf Überschallgeschwindigkeit beschleu¬ nigt wird. Das komplette Gehäuse 21' wird über Kühlleitungen 28 gekühlt.In FIG. 2, a hypersonic spraying device 20 consists of a housing 21 with a proximal spray nozzle 23 and a distal powder inlet 24. Oxygen and fuel gas are supplied laterally via separate inlets 25 and 26, which are mixed in the nozzle 23 in a suitable mixing ratio for combustion reach. This applies to the supplied powder, which is accelerated to supersonic speed in a spray jet 27. The complete housing 21 'is cooled via cooling lines 28.
Durch den gebündelten Spritzstrahl 27 beim Hypersonicspritzen lassen sich auf dem Substrat 1 eng lokalisierte Spritzschichten 3 aufbringen. Insbesondere bei komplizierten Geometrien ist dieses Spritzverfahren vorteilhaft.The focused spray jet 27 during hypersonic spraying allows spray layers 3 which are closely localized to be applied to the substrate 1. This spraying method is particularly advantageous for complicated geometries.
Das in den Figuren 3 bis 5 gezeigte Schutzgasrohr 30 ist als Vorsatzteil ausgebildet, das sich auf das Spritzgerät 10 bzw. 20 aufsetzen läßt. Das Schutzgasrohr 30 besteht aus einem rohr¬ artigen Gehäuse 31, beispielsweise aus Messing, das über dem gesamten Rohrumfang wassergekühlt ist und in seiner Innenkontur der Ausbildung des Spritzstrahls angepaßt ist. Das Schutzgas¬ rohr 30 kann zylindrisch ausgebildet oder zum Substrat 1 hin konisch ausgestellt sein.The protective gas tube 30 shown in FIGS. 3 to 5 is designed as a front part that can be placed on the spraying device 10 or 20. The protective gas tube 30 consists of a tubular housing 31, for example made of brass, which is water-cooled over the entire circumference of the tube and whose inner contour is adapted to the formation of the spray jet. The protective gas tube 30 can be cylindrical or flared towards the substrate 1.
Das rohrartige Gehäuse 31 hat einen Anschlußkopf 32, in den das Spritzgerät 10 bzw. 20 eingesetzt und fixiert wird. Dafür ist speziell eine U-förmige Aussparung 33 vorhanden, die nach oben und seitlich offen ist, so daß insbesondere die Spritzdüse 23 gemäß Fig. 2 mit der seitlichen Abführung 28 für Kühlwasser dicht eingefügt werden kann. Mittels einer durch die Aussparung 33 verlaufenden Schraube 34 ist die Spritzdüse 23 fixierbar.The tubular housing 31 has a connection head 32 into which the sprayer 10 or 20 is inserted and fixed. For this purpose, a U-shaped recess 33 is provided, which is open at the top and on the side, so that in particular the spray nozzle 23 according to FIG. 2 can be inserted tightly with the lateral outlet 28 for cooling water. The spray nozzle 23 can be fixed by means of a screw 34 running through the recess 33.
Am Anschlußkopf 32 ist an zwei zueinander senkrecht liegenden Flächen ein Kühlwasserzulauf 35 und ein Sauerstoffanschluß 36 vorhanden, die an externe Leitungen anschließbar sind. Spe- ziell der Sauerstoff gelangt vom Anschluß 36 über eine Ver¬ teilerdüse 37 in das Innere des Schutzgasrohres 30, wobei der Sauerstoffpartialdruck mittels externer Einstell- und Steuer¬ mittel in seiner Größe exakt vorgebbar ist. Am anderen Ende des Gehäuses 31 ist gegenüber dem Anschlußkopf 32 ein sich erweiterndes konzentrisches Endteil 38 angebracht, das einen Kühlwasserablauf 39 trägt. Um die Öffnung des End¬ teiles 38 ist eine ringförmige Scheibe 40 angebracht, die eine gleichmäßige Verteilung des Sauerstoffes auf der Substratober- fläche gewährleistet. Die Ringscheibe 40 läßt jeweils den zu beschichtenden Teil des Substrates 1 frei.On the connection head 32 there is a cooling water inlet 35 and an oxygen connection 36 on two surfaces lying perpendicular to one another, which can be connected to external lines. Specifically, the oxygen reaches the interior of the protective gas tube 30 from the connection 36 via a distributor nozzle 37, the size of the partial pressure of the oxygen being able to be precisely specified by means of external setting and control means. At the other end of the housing 31, an expanding concentric end part 38 is attached opposite the connection head 32, which carries a cooling water outlet 39. An annular disk 40 is attached around the opening of the end part 38, which ensures a uniform distribution of the oxygen on the substrate surface. The annular disk 40 leaves the part of the substrate 1 to be coated free.
Die Scheibe 40 ist in Fig. 4 nur halbseitig dargestellt. Sie hat die Kontur der Substratoberfläche und kann insbesondere an die Form des herzustellenden Bauteiles angepaßt sein, wenn kom¬ plizierter ausgebildete Werkstücke beschichtet werden sollen.The disk 40 is only shown on one side in FIG. 4. It has the contour of the substrate surface and can in particular be adapted to the shape of the component to be produced if workpieces of a more complicated design are to be coated.
In Fig. 6 ist eine Kammer 60 mit Pumpanschluß 61 und Gasan¬ schluß 62 dargestellt. Die Kammer 60 nimmt die gesamte Einrich- tung zum Spritzen mit einem Spritzgerät 10 für das Plasmasprit¬ zen gemäß Fig. 1 oder einem Spritzgerät 20 für das Hypersonic¬ spritzen gemäß Fig. 2 und das zu beschichtende Werkstück als Substrat 1 auf. Es ist ein Handhabungsgerät 65 vorhanden, das die Düse 13 bzw. 23 des Spritzgerätes 10 bzw. 20 von außen steuerbar in geeigneter Weise führt.6 shows a chamber 60 with a pump connection 61 and a gas connection 62. The chamber 60 accommodates the entire device for spraying with a spraying device 10 for plasma spraying according to FIG. 1 or a spraying device 20 for hypersonic spraying according to FIG. 2 and the workpiece to be coated as substrate 1. There is a handling device 65 which guides the nozzle 13 or 23 of the spraying device 10 or 20 in a suitable manner, controllable from the outside.
Die Kammer 60 gemäß Fig. 6 wird vor dem Beschichtungsvorgang zunächst über den Pumpanschluß 61 evakuiert und anschließend über den Gasanschluß 62 mit Sauerstoff vorgegebenen Partial- druckes beaufschlagt. Der eigentliche Spritzvorgang findet dann in der komplett mit Sauerstoff gefüllten Kammer 60 statt.The chamber 60 according to FIG. 6 is first evacuated via the pump connection 61 before the coating process and then pressurized with oxygen predetermined partial pressure via the gas connection 62. The actual spraying process then takes place in the chamber 60, which is completely filled with oxygen.
In FIG 7 ist einem Substrat 1 -in einer Kammer 60 gemäß FIG 6 eine Heizeinrichtung 64 zugeordnet. Die Heizeinrichtung 64 dient zur zusätzlichen Heizung des Substrates neben der Ener¬ giezufuhr durch den Spritzstrahl und arbeitet vorteilhafter¬ weise induktiv oder als Widerstandsheizung. Es kann statt¬ dessen auch eine Brenngasflamme verwendet werden, deren Hand¬ habung einfach ist. Die Heizeinrichtung 64 wird insbesondere bei größeren Werk¬ stücken sinnvoll eingesetzt, da dann die thermische Energie des Spritzstrahles im allgemeinen nicht ausreicht, um das Werkstück gleichmäßig auf eine Temperatur von über 600°C zu erhitzen.In FIG. 7, a heating device 64 is assigned to a substrate 1 in a chamber 60 according to FIG. The heating device 64 serves for the additional heating of the substrate in addition to the energy supply by the spray jet and advantageously works inductively or as resistance heating. Instead, a fuel gas flame can be used, the handling of which is simple. The heating device 64 is used expediently, in particular in the case of larger workpieces, since the thermal energy of the spray jet is then generally not sufficient to uniformly heat the workpiece to a temperature of over 600.degree.
Die alternativ beschriebenen Vorrichtungen gemäß FIG 3 bis 5 oder FIG 6 und 7 können jeweils fakultativ für das Piasma¬ pritzen oder auch für das Hypersonicspritzen ausgebildet sein. Es können somit die bisher bekannten HTSL-Materialien zu Schichten vorgegebener Dicke auf Substrate beliebiger Geo¬ metrie gespritzt werden. Dabei wird unmittelbar beim Spritzen durch den Sauerstoffüberschuß der Sauerstoffverarmung des HTSL-Materials "in situ" entgegengewirkt, so daß die supra¬ leitenden Eigenschaften bestehen bleiben, ohne daß eine Nach- glühung unter Sauerstoffatmosphäre notwendig wäre. The alternatively described devices according to FIGS. 3 to 5 or FIGS. 6 and 7 can each be designed optionally for piasma spraying or also for hypersonic spraying. The previously known HTSL materials can thus be sprayed onto substrates of any geometry in layers of a predetermined thickness. In this case, the oxygen depletion of the HTSL material is counteracted “in situ” immediately during spraying, so that the superconducting properties remain intact, without the need for afterglow in an oxygen atmosphere.

Claims

Patentansprüche Claims
1. Verfahren zum Aufbringen von Schichten aus hochtemperatur- supraleitendem Material (HTSL) auf Substrate, bei dem durch thermisches Spritzen von keramischem Pulver mit supraleitenden Eigenschaften als Ausgangsmaterial auf das beliebig geformte Substrat eine geschlossene Deckschicht aufgebracht wird, d a- d u r c h g e k e n n z e i c h n e t, daß das thermische Spritzen unter Sauerstoffatmosphäre mit einstellbarem Sauer¬ stoffpartialdruck erfolgt.1. A method for applying layers of high-temperature superconducting material (HTSL) on substrates, in which a closed cover layer is applied by thermal spraying of ceramic powder with superconducting properties as a starting material on the arbitrarily shaped substrate, d a- characterized in that the thermal Spraying takes place under an oxygen atmosphere with adjustable oxygen partial pressure.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, daß gleichzeitig beim Spritzen eine Tempera¬ turbehandlung des Substrates erfolgt, wozu das Substrat zumin¬ dest durch den Spritzstrahl auf eine Temperatur > 600"C ge- bracht wird.2. The method according to claim 1, which also means that, during spraying, a temperature treatment of the substrate is carried out simultaneously, for which purpose the substrate is brought to a temperature> 600 ° C. at least by the spray jet.
3. Verfahrn nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, daß das Substrat zusätzlich geheizt wird.3. The method of claim 1, d a d u r c h g e k e n n ¬ z e i c h n e t that the substrate is additionally heated.
4. Verfahren nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, daß ein Plasmaspritzverfahren angewandt wird.4. The method of claim 1, d a d u r c h g e k e n n ¬ z e i c h n e t that a plasma spraying method is used.
5. Verfahren nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, daß ein Hochgeschwindigkeitsflammspritzver- fahren (sog. Hypersonic-Verfahren) angewandt wird.5. The method of claim 1, d a d u r c h g e k e n n ¬ z e i c h n e t that a high speed flame spraying process (so-called. Hypersonic process) is used.
6. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 oder einem der Ansprüche 2 und 3, mit einem Spritzgerät mit Düse zum Spritzen des pulverför igen Ausgangsmaterials auf das Substrat, d a d u r c h g e k e n n z e i c h n e t, daß die Spritzdüse (13, 23) mit einem Schutzgasrohr (30) als Vorsatz¬ teil verlängert ist, das den gesamten Raum zwischen Öffnung der Spritzdüse (13, 23) und Substrat (1) umschließt und mit Sauer¬ stoff (02) beaufschlagbar ist. (Fig. 3) 6. Device for performing the method according to claim 1 or one of claims 2 and 3, with a spraying device with a nozzle for spraying the pulverf uen starting material on the substrate, characterized in that the spray nozzle (13, 23) with a protective gas tube (30) as Extension part is extended, which encloses the entire space between the opening of the spray nozzle (13, 23) and substrate (1) and can be acted upon with oxygen (0 2 ). (Fig. 3)
7. Vorrichtung nach Anspruch 6, d a d u r c h g e k e n n ¬ z e i c h n e t, daß das Schutzgasrohr (30) wassergekühlt ist.7. The device according to claim 6, d a d u r c h g e k e n n ¬ z e i c h n e t that the protective gas tube (30) is water-cooled.
8. Vorrichtung nach Anspruch 6, d a d u r c h g e k e n n ¬ z e i c h n e t, daß das Schutzgasrohr (30) zylindrisch ausge- bildet oder zum Substrat (1) hin konisch erweitert ist.8. The device according to claim 6, so that the protective gas tube (30) is cylindrical or is flared towards the substrate (1).
9. Vorrichtung nach Anspruch 6, d a d u r c h g e k e n n ¬ z e i c h n e t, daß das Schutzgasrohr (30) am offenen Ende eine an die Kontur des Substrates angepaßte Ringscheibe (40) aufweist, die eine gleichmäßige Verteilung des Sauerstoffs auf der Substratoberfläche gewährleistet.9. The device according to claim 6, d a d u r c h g e k e n n ¬ z e i c h n e t that the protective gas tube (30) at the open end has an adapted to the contour of the substrate washer (40) which ensures a uniform distribution of oxygen on the substrate surface.
10. Vorrichtung zum Durchführen des Verfahrens nach Anspruch 1 oder einem der Ansprüche 2 bis 5, mit einem Spritzgerät mit Düse zum Spritzen des pulverförmigen Ausgangsmaterials auf das Substrat, d a d u r c h g e k e n n z e i c h n e t, daß eine Kammer (60) vorhanden ist, in der das Spritzgerät (10, 20), das Substrat (2) und weitere Hilfsmittel zur Durchführung des Be- schichtungsverfahrens unter definierter Sauerstoffatmosphäre einbringbar sind. (Fig. 6)10. Device for performing the method according to claim 1 or one of claims 2 to 5, with a spraying device with a nozzle for spraying the powdery starting material onto the substrate, characterized in that a chamber (60) is present in which the spraying device (10, 20), the substrate (2) and other aids for carrying out the coating process can be introduced under a defined oxygen atmosphere. (Fig. 6)
11. Vorrichtung nach Anspruch 10, d a d u r c h g e k e n n ¬ z e i c h n e t, daß die Kammer (60) evakuierbar ist.11. The device according to claim 10, d a d u r c h g e k e n n ¬ z e i c h n e t that the chamber (60) can be evacuated.
12. Vorrichtung nach Anspruch 10, d a d u r c h g e k e n n ¬ z e i c h n e t, daß in der Kammer (60) ein Handhabungsgerät (65) zum Führen der Düse (13, 23) des Spritzgerätes (10, 20) angeordnet ist.12. The apparatus of claim 10, d a d u r c h g e k e n n ¬ z e i c h n e t that a handling device (65) for guiding the nozzle (13, 23) of the spray device (10, 20) is arranged in the chamber (60).
13. Vorrichtung nach Anspruch 10, d a d u r c h g e k e n n ¬ z e i c h n e t, daß in der Kammer (60) eine Heizeinrichtung (64) für das Substrat (1) eingebracht ist. 13. The apparatus according to claim 10, characterized in that in the chamber (60) a heating device (64) for the substrate (1) is introduced.
14. Vorrichtung nach Anspruch 13, d a d u r c h g e ¬ k e n n z e i c h n e t, daß die Heizeinrichtung (64) induktiv arbeitet.14. The apparatus of claim 13, d a d u r c h g e ¬ k e n n z e i c h n e t that the heating device (64) works inductively.
15. Vorrichtung nach Anspruch 13, d a d u r c h g e - k e n n z e i c h n e t, daß als Heizeinrichtung (64) eine Brenngasflamme verwendet wird.15. The apparatus of claim 13, d a d u r c h g e - k e n n z e i c h n e t that a fuel gas flame is used as the heating device (64).
16. Vorrichtung nach Anspruch 13, d a d u r c h g e ¬ k e n n z e i c h n e t, daß als Heizeinrichtung (64) eine Widerstandsheizung verwendet wird. 16. The apparatus of claim 13, d a d u r c h g e ¬ k e n n z e i c h n e t that a resistance heater is used as the heating device (64).
EP89902628A 1988-02-26 1989-02-23 Process and device for depositing layers of a high-temperature superconducting material on substrates Withdrawn EP0401259A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3806176 1988-02-26
DE3806174 1988-02-26
DE3806174A DE3806174A1 (en) 1988-02-26 1988-02-26 Method and apparatus for applying layers of high-temperature superconducting material to substrates
DE3806176A DE3806176A1 (en) 1988-02-26 1988-02-26 Method and apparatus for applying layers of high-temperature superconducting material to substrates

Publications (1)

Publication Number Publication Date
EP0401259A1 true EP0401259A1 (en) 1990-12-12

Family

ID=25865271

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89902628A Withdrawn EP0401259A1 (en) 1988-02-26 1989-02-23 Process and device for depositing layers of a high-temperature superconducting material on substrates

Country Status (2)

Country Link
EP (1) EP0401259A1 (en)
WO (1) WO1989008332A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456600A1 (en) * 1990-05-11 1991-11-13 Plasma-Invent Ag Process for depositing thin layers of a superconducting mixceramic material
JPH04301321A (en) * 1991-03-28 1992-10-23 Ngk Insulators Ltd Manufacture of electric-conductivity ceramic film
DE29609637U1 (en) * 1996-05-30 1997-10-02 Siemens AG, 80333 München Device for the short-term vaporization of substances
DE102004059716B3 (en) * 2004-12-08 2006-04-06 Siemens Ag Cold gas spraying method uses particles which are chemical components of high temperature superconductors and are sprayed on to substrate with crystal structure corresponding to that of superconductors
CN103451592B (en) * 2013-08-28 2017-02-08 周星心 Surface treatment method of piston rod of locomotive oil-pressure type shock absorber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0288711B1 (en) * 1987-04-28 1995-02-22 International Business Machines Corporation Rapid, large area coating of high-Tc superconductors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8908332A1 *

Also Published As

Publication number Publication date
WO1989008332A1 (en) 1989-09-08

Similar Documents

Publication Publication Date Title
EP2009648B1 (en) Heating and/or cooling device with multiple layers
DE69123152T2 (en) HIGH-SPEED ARC SPRAYER AND METHOD FOR MOLDING MATERIAL
DE69506818T2 (en) Method and device for applying a layer to a substrate by thermal spraying
DE2444898C2 (en) Method and device for rapid vapor deposition of oxides in thin and firmly adhering layers on plastic substrates
DE19726443C2 (en) Process for the surface treatment of internal surfaces of hollow bodies and device for carrying out the process
DE69302398T2 (en) Device for microwave plasma CVD
DE3850285T2 (en) Process for the production of thin superconducting layers.
EP2107131A1 (en) Method and device for coating and treating the surfaces of substrates using a plasma beam
EP0223104A1 (en) Coating on a substrate and process for its manufacture
DD259586A5 (en) METHOD FOR THE PRODUCTION OF DEPRESSED RETRACTABLE COATINGS AND COATING MADE ACCORDING TO THE PROCESS
EP2439306A1 (en) Method for producing a thermal insulation layer construction
DE3206622C2 (en)
DE3933713C2 (en)
EP0532134A1 (en) Process and apparatus for coating a substrate with a heat resistant polymer
EP0328757B1 (en) Method for manufacturing thin films from high tc oxide superconductors
EP0432090A2 (en) Process for producing a coating and articles coated by the process
EP1165854B1 (en) Method and device for coating a product
EP0401259A1 (en) Process and device for depositing layers of a high-temperature superconducting material on substrates
DE3853094T2 (en) Fast, large-area coating made of superconductors with a high transition temperature.
EP2333133B1 (en) Method for manufacturing a multilayer coil
DE68908298T2 (en) Inner tube for a semiconductor diffusion furnace.
DE69106742T2 (en) Method and device for producing thin layers of superconducting oxide.
DE2721198C3 (en) Method and apparatus for making a preform for drawing optical fibers
DE3806174A1 (en) Method and apparatus for applying layers of high-temperature superconducting material to substrates
DE3806176A1 (en) Method and apparatus for applying layers of high-temperature superconducting material to substrates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19920901