EP0401106B1 - Reaktionskammer und Verfahren zu ihrer Herstellung - Google Patents

Reaktionskammer und Verfahren zu ihrer Herstellung Download PDF

Info

Publication number
EP0401106B1
EP0401106B1 EP19900401424 EP90401424A EP0401106B1 EP 0401106 B1 EP0401106 B1 EP 0401106B1 EP 19900401424 EP19900401424 EP 19900401424 EP 90401424 A EP90401424 A EP 90401424A EP 0401106 B1 EP0401106 B1 EP 0401106B1
Authority
EP
European Patent Office
Prior art keywords
chamber
densification
wall
fluid
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19900401424
Other languages
English (en)
French (fr)
Other versions
EP0401106A1 (de
Inventor
Philippe H. Ramette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Europeenne de Propulsion SEP SA
Original Assignee
Societe Europeenne de Propulsion SEP SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Europeenne de Propulsion SEP SA filed Critical Societe Europeenne de Propulsion SEP SA
Publication of EP0401106A1 publication Critical patent/EP0401106A1/de
Application granted granted Critical
Publication of EP0401106B1 publication Critical patent/EP0401106B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components

Definitions

  • the present invention relates to a reactor chamber, in particular a ramjet or turbojet, and more particularly a chamber of the type in which a fluid is introduced by transpiration through a porous refractory wall.
  • the use of a porous refractory material in a turboprop jet tube is described in GB-A-2 089 434 and US-A-2,658,332.
  • the tube is formed by an internal conduit made of low density porous refractory material and an external reinforcement whose presence is necessary due to the lack of mechanical strength of the porous refractory material.
  • the latter is formed from silica and alumina fibers, while the external reinforcement comprises a network of circumferential and axial tubes and an external envelope of metal or resin reinforced with carbon fibers.
  • the pipes can be traversed by a refrigerant or fuel and have perforated walls allowing the refrigerant or fuel to infiltrate the interior insulating material.
  • the object of the present invention is to provide a reactor chamber in which the functions of resistance to high temperatures, of mechanical resistance and of fuel injection can be ensured with a structure as simple as possible.
  • the wall of the reactor chamber is made of refractory composite material, comprising a reinforcement texture densified by a matrix, and comprises at least one injection zone defined by a porous wall part permeable to a fluid. to be injected into the chamber, the permeability of the or each part of the wall defining an injection zone resulting from a less densification of the composite material in comparison with the rest of the wall which is impermeable to the fluid to be injected.
  • refractory composite material is meant here a ceramic or carbon matrix composite.
  • the or each wall part defining an injection zone is for example in the form of a ring whose surface opposite to that which constitutes an internal surface part of the chamber is in communication with a source of the fluid to be injected.
  • a ceramic matrix (CMC) or carbon matrix refractory composite material is particularly suitable for producing a reactor chamber in the wall of which one or more zones for injecting fluid by transpiration through a porous material are integrated.
  • thermostructural properties that is to say mechanical behavior and resistance to high temperatures, which make it suitable for producing structural elements of the chamber.
  • an external reinforcement around the composite wall such as that described in document GB-A-2 089 434, is not necessary.
  • the porosity of a composite can be easily controlled by acting on the volume ratio of fibers constituting its fibrous reinforcing texture and / or on the degree of densification by the material constituting the matrix, in order to obtain the permeability or the non-permeability to the fluid to be injected.
  • a material of type C / SiC (reinforcement of carbon fibers and matrix of silicon carbide) or of type SiC / SiC (reinforcement of fibers essentially of silicon carbide and matrix of silicon carbide), or also of type C / C protected (carbon fiber reinforcement, carbon matrix and anti-oxidation protection), may be suitable.
  • connection between the or each wall part defining an injection zone and the or each wall part forming the rest of the chamber is advantageously carried out by assembling all the constituent parts of the wall in an incompletely densified state relative to the level desired final densification for each of the parts, and by co-densification of the assembled wall parts.
  • This co-densification is preferably carried out by chemical vapor infiltration.
  • the chamber 10 is of cylindrical shape with circular section and comprises, in the direction of air flow (arrow A), an upstream sealed section 12, an injection ring 20 for injection of a gaseous fuel flow, and a downstream sealed section 14.
  • the interior surfaces of the sections 12, 14 and of the injection ring 20 define the cylindrical continuous internal wall of the ramjet chamber.
  • the outer surface of the ring 20 delimits a fuel injection chamber 22 which communicates with a fuel source (not shown).
  • the fuel is for example hydrogen which is injected in the gaseous state, the pressure prevailing in the injection chamber 22 being greater than that prevailing in the combustion chamber of the ramjet.
  • the ring 20 is made in a single piece of porous composite material with a ceramic or carbon matrix.
  • the porosity of the material constituting the ring 20 gives the latter the permeability necessary to allow the injection of the gaseous flow of fuel by transpiration through the injection ring.
  • the flow rate of fuel injected into the combustion chamber is defined by the porosity of the injection ring, its length, and the pressure difference between the outer and inner surfaces of the ring.
  • the constituent material of the ring 20 is a composite material consisting of a fibrous reinforcement partially densified by a ceramic material or by carbon.
  • an annular preform is formed which constitutes the fibrous reinforcement.
  • the preform is made of carbon fibers or ceramic fibers, for example fibers essentially of silicon carbide.
  • the fibrous preform is produced by winding on a mandrel of a strip of fabric until the desired thickness is obtained.
  • the superimposed layers of fabric can be linked together by needling or implantation of threads.
  • the preform is densified by gas or by liquid.
  • densification is carried out by chemical vapor infiltration of the material constituting the matrix, for example silicon carbide or carbon.
  • the preform is impregnated with a precursor of the material constituting the matrix, the latter then being obtained by heat treatment.
  • an injection ring made of ceramic material C / SiC can be produced by manufacturing a carbon fiber preform having a fiber volume content of around 35% and densifying it by chemical vapor infiltration of silicon carbide until a residual porosity of about 40% is reached.
  • the sections 12, 14 of the ramjet chamber are preferably also made of a composite material with a ceramic or carbon matrix.
  • a material having a reinforcement and a matrix of the same type as that of the injection ring 20 will be chosen.
  • the sections 12, 14 are sealed, the seal being obtained by a densification sufficiently advanced to fill the porosity of the fibrous reinforcement until the material is impermeable.
  • connection between the sections 12, 14 of the wall of the chamber 10 and the injection ring 20 is produced by co-densification.
  • the sections 12, 14 and the ring 20 are produced separately while being incompletely densified with respect to the desired degree of final densification.
  • the elements are then assembled end to end and placed in an infiltration oven to undergo a final co-densification by chemical vapor infiltration.
  • the continuity of the matrix material at the interfaces between the sections 12, 14 and the ring 20 ensures the connection between these elements.
  • This final co-densification is continued until the desired degree of porosity for the injection ring 20 is obtained, the sections 12, 14 having previously been sufficiently pre-densified to finally obtain the desired seal.
  • the number of injection zones can be greater than 1 by providing one or more additional injection rings to carry out an additional injection of fuel or to carry out an injection of oxidant, for example for dilution purposes, downstream of the fuel injection.
  • shapes other than annular may be given to the injection areas.
  • the wall parts defining the injection zones can be produced and assembled with the rest of the wall of the chamber as described above with regard to the injection ring 20.
  • the injection of a gaseous combustible fluid inside a ramjet chamber can also be used in the case of the injection of a liquid fuel, by adapting for this purpose the porosity of the CMC or of the protected C / C in the injection zone.
  • the field of application of the invention is not limited to ramjet chambers, whether they are subsonic or supersonic combustion, and also includes the chambers of turbojets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Products (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Moulding By Coating Moulds (AREA)

Claims (5)

  1. Reaktorkammer, bei der ein Fluid durch Transpiration über eine hitzebeständige, poröse Injektionszone, die einen Teil der Kammer bildet, eingeleitet wird,
    dadurch gekennzeichnet, daß die Reaktorkammer aus einer einzigen Wand besteht, die aus einem Verbundmaterial mit einer keramischen Matrix hergestellt ist und wenigstens eine Injektionszone aufweis, die durch einen porösen, für das in die Kammer zu injizierende Fluid permeablen Teil der Wand (20) gebildet wird, wobei die Permeabilität des bzw. jedes Teils der Wand eine Injektionszone bildet, die sich durch eine geringere Verdichtung des Verbundmaterials mit keramischer Matrix im Vergleich zum restlichen Teil der Wand (12, 14) ergibt, der gegenüber dem zu injizierenden Fluid dicht ist.
  2. Kammer nach Anpruch 1,
    dadurch gekennzeichnet, daß der bzw. jeder Teil der Wand, der eine Injektionszone bildet, z. B. die Form eines Ringes (20) hat, dessen Oberfläche, die derjenigen gegenüberliegt, die einen Teil der inneren Oberfläche der Kammer bildet, mit einer Quelle des zu injizierenden Fluids in Verbindung steht.
  3. Kammer nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß das Verbundmaterial mit keramischer Matrix aus einem Verbundmaterial des Typs C/SiC und einem Verbundmaterial des Typs SiC/SiC ausgewählt ist.
  4. Verfahren zur Herstellung einer Reaktorkammer nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß der bzw. jeder Teil der Wand, der eine Injektionszone bildet, und der bzw. jeder Teil der Wand, der den restlichen Teil der Kammer bildet, gesondert hergestellt werden, indem sie bezüglich des gewünschten Grades der abschließenden Verdichtung für jeden Teil der Hauptteile der Wand unvollständig verdichtet werden, daß die Hauptteile der Wand montiert werden und daß die montierten Hauptteile der Wand miteinander durch Mischverdichtung verbunden werden, bis der gewünschte Grad der abschließenden Verdichtung für jeden Hauptteil erreicht wird.
  5. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet, daß die Mischverdichtung durch chemische Infiltration in der Dampfphase durchgeführt wird.
EP19900401424 1989-05-29 1990-05-29 Reaktionskammer und Verfahren zu ihrer Herstellung Expired - Lifetime EP0401106B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8907020A FR2647534B1 (fr) 1989-05-29 1989-05-29 Chambre de reacteur et procede pour sa fabrication
FR8907020 1989-05-29

Publications (2)

Publication Number Publication Date
EP0401106A1 EP0401106A1 (de) 1990-12-05
EP0401106B1 true EP0401106B1 (de) 1994-09-14

Family

ID=9382107

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900401424 Expired - Lifetime EP0401106B1 (de) 1989-05-29 1990-05-29 Reaktionskammer und Verfahren zu ihrer Herstellung

Country Status (4)

Country Link
EP (1) EP0401106B1 (de)
JP (1) JPH0395308A (de)
DE (1) DE69012427T2 (de)
FR (1) FR2647534B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453719C1 (ru) * 2010-11-09 2012-06-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Способ организации горения в гиперзвуковом прямоточном воздушно-реактивном двигателе и гиперзвуковой прямоточный воздушно-реактивный двигатель

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4365027B2 (ja) * 1998-03-10 2009-11-18 シーメンス アクチエンゲゼルシヤフト 燃焼器とその運転方法
TW522127B (en) * 2001-02-21 2003-03-01 Daifuku Kk Cargo storage facility
RU2542652C1 (ru) * 2013-09-18 2015-02-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Гиперзвуковой прямоточный воздушно-реактивный двигатель
FR3070626B1 (fr) * 2017-09-07 2020-12-11 Safran Ceram Procede de fabrication d'une piece en materiau composite munie d'un capteur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2658332A (en) * 1951-03-21 1953-11-10 Carborundum Co Fluid cooled, refractory, ceramic lined rocket structure
US3114961A (en) * 1959-03-20 1963-12-24 Power Jets Res & Dev Ltd Treatment of porous bodies
CH427118A (de) * 1963-11-28 1966-12-31 Bbc Brown Boveri & Cie Verfahren zum Schützen von durch heisse Medien überstrichenen Oberflächenteilen eines hitzebeständigen Körpers
FR2461690B1 (fr) * 1979-07-19 1985-08-16 Europ Propulsion Materiau d'isolation thermique a haute temperature et son procede de fabrication
GB2089434A (en) * 1980-12-09 1982-06-23 Rolls Royce Composite Ducts for Jet Pipes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453719C1 (ru) * 2010-11-09 2012-06-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Способ организации горения в гиперзвуковом прямоточном воздушно-реактивном двигателе и гиперзвуковой прямоточный воздушно-реактивный двигатель

Also Published As

Publication number Publication date
FR2647534B1 (fr) 1991-09-13
FR2647534A1 (fr) 1990-11-30
EP0401106A1 (de) 1990-12-05
JPH0395308A (ja) 1991-04-19
DE69012427T2 (de) 1995-02-02
DE69012427D1 (de) 1994-10-20

Similar Documents

Publication Publication Date Title
EP1045971B1 (de) Wärmetauscher aus verbundwerkstoff und dessen herstellungsverfahren
EP2118448B1 (de) Turbinenringanordnung für eine gasturbine
CA2940565C (fr) Secteur de stator pour turbomachine et son procede de fabrication
EP2315734B1 (de) Verfahren zur herstellung einer düse oder eines divergenten düsenelements aus einem verbundwerkstoff
FR2913718A1 (fr) Ensemble d'anneau de turbine pour turbine a gaz
EP3830056A1 (de) Verfahren zur herstellung eines aus cmc gefertigten teils
FR2852003A1 (fr) Procede de realisation d'une piece multiperforee en materiau composite a matrice ceramique
EP0517593B1 (de) Innenverbundmantel für ein Waffenrohr und Verfahren zu seiner Herstellung
EP0466603B1 (de) Gekühlte, feuerfeste Körper und Verfahren zu ihrer Herstellung
EP0239439B1 (de) Verfahren zur Herstellung eines rohrförmigen Schichtkörpers zur Verstärkung eines aus mehreren Bestandsteilen zusammengesetzten Teils und danach hergestelltes Teil
EP0401106B1 (de) Reaktionskammer und Verfahren zu ihrer Herstellung
EP1342905A1 (de) Raketenmotor
EP0401107B1 (de) Brennkammer für Staustrahltriebwerk
EP0628235B1 (de) Verfahren zur erzeugung einer abgedichten durchführung in einem feuerfesten verbundstück und anwendung auf der herstellung einer durch flüssigkeitsumlauf gekühlten feuerfesten verbundstruktur
FR2782378A1 (fr) Piece de structure comportant une partie en materiau composite thermostructural refroidie par circulation de fluide
EP0421865A1 (de) Raketenbrennkammer
FR3101078A1 (fr) Outillage de conformation et installation pour l’infiltration chimique en phase gazeuse de préformes fibreuses
FR3141164A1 (fr) Preforme fibreuse et son procede de fabrication pour realiser une piece en materiau composite a matrice ceramique
EP4251588A1 (de) Teil aus cmc und verfahren zur herstellung eines solchen teils
FR3027959B1 (fr) Protection anti-feu d'une piece en materiau composite d'une turbine a gaz
WO2020157409A1 (fr) Carter en materiau composite avec variation locale d'epaisseur
FR2645071A1 (fr) Procede pour la realisation de trous dans une piece en materiau composite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19901217

17Q First examination report despatched

Effective date: 19920109

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOCIETE EUROPEENNE DE PROPULSION

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 69012427

Country of ref document: DE

Date of ref document: 19941020

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000512

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000523

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010529

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301