EP0398013A2 - Getter composition for light sources - Google Patents
Getter composition for light sources Download PDFInfo
- Publication number
- EP0398013A2 EP0398013A2 EP90106595A EP90106595A EP0398013A2 EP 0398013 A2 EP0398013 A2 EP 0398013A2 EP 90106595 A EP90106595 A EP 90106595A EP 90106595 A EP90106595 A EP 90106595A EP 0398013 A2 EP0398013 A2 EP 0398013A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- zirconium
- nickel
- getter
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 38
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 25
- 229910001093 Zr alloy Inorganic materials 0.000 claims abstract description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 15
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 13
- 239000002904 solvent Substances 0.000 claims abstract description 10
- 150000002739 metals Chemical class 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims abstract description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 21
- 239000000956 alloy Substances 0.000 claims description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 238000005247 gettering Methods 0.000 claims description 6
- 239000000049 pigment Substances 0.000 claims description 5
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- DNXNYEBMOSARMM-UHFFFAOYSA-N alumane;zirconium Chemical compound [AlH3].[Zr] DNXNYEBMOSARMM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- HZPNKQREYVVATQ-UHFFFAOYSA-L nickel(2+);diformate Chemical compound [Ni+2].[O-]C=O.[O-]C=O HZPNKQREYVVATQ-UHFFFAOYSA-L 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 238000010791 quenching Methods 0.000 claims 1
- 230000000171 quenching effect Effects 0.000 claims 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 12
- 239000004411 aluminium Substances 0.000 abstract 1
- 239000001257 hydrogen Substances 0.000 description 13
- 229910052739 hydrogen Inorganic materials 0.000 description 13
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 229910052726 zirconium Inorganic materials 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- ZSJFLDUTBDIFLJ-UHFFFAOYSA-N nickel zirconium Chemical compound [Ni].[Zr] ZSJFLDUTBDIFLJ-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 206010027146 Melanoderma Diseases 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- DIVGJYVPMOCBKD-UHFFFAOYSA-N [V].[Zr] Chemical compound [V].[Zr] DIVGJYVPMOCBKD-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J7/00—Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
- H01J7/14—Means for obtaining or maintaining the desired pressure within the vessel
- H01J7/18—Means for absorbing or adsorbing gas, e.g. by gettering
- H01J7/183—Composition or manufacture of getters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/24—Means for obtaining or maintaining the desired pressure within the vessel
- H01J61/26—Means for absorbing or adsorbing gas, e.g. by gettering; Means for preventing blackening of the envelope
Definitions
- the invention relates to an active material or a composition which contains a material which has a getter effect, i.e. a so-called smearable getter composition which is suitable for setting gases or vapors which are present in small quantities in a closed space or which arise over time.
- Getters are reactive materials that either react with the few gases and vapors and form those compounds that are non-volatile and neutral to the space or the device in which the intent is to getter, or that contain gases or gases that are present in small quantities Absorb vapors, dissolve them quasi-physically, remove them from the room, collect them in their own material and keep them bound there. It often happens that the same getter composition can have both effects, i.e. that the gases and vapors to be removed are bound chemically and physically at the same time. Getters are also widely used in the light source industry, since there is a requirement for operating a light source that the room in which light is generated may contain only those materials which are absolutely necessary for operating the light source, and no such materials, that can be harmful. Such harmful materials can, on the one hand, end up as residues during manufacture in the room in which light is generated; on the other hand, such materials can evaporate from the components thereof during the operation of the light source.
- the remaining harmful gases and vapors include, for example, oxygen, hydrogen, carbon dioxide, carbon monoxide, water vapor, etc.
- water vapor is considered dangerous because it produces hydrogen in the decomposed state.
- Such decomposition easily occurs during operation of the light source on the hot surface of metals.
- the resulting oxygen forms a metal oxide, which may be on the wall of the piston can precipitate, with hydrogen present there reducing the metal oxide to metal, which remains as a black spot; Water vapor is generated again, which repeats the process described. The repetition of the process can be prevented if the hydrogen is bound. Therefore, hydrogen plays a key role in the operation and lifespan of the light source, and therefore its binding is extremely important.
- the getters that are used in the light sources include the metal getters. These are metals that can dissolve the pollutants, especially hydrogen, in their own material. As such getters e.g. Titanium, tantalum or zirconium can be used. Zirconium is a widespread getter, especially its hydrogen binding ability is excellent.
- the getter is mainly applied in the form of a so-called smearable getter to the room to be gettered.
- smearable getter substances are mixtures which contain the getter-effect material, for example the metal, suspended in powder form in any carrier substance.
- This suspension is usually applied to the current-introducing wire, for example in the case of an incandescent lamp.
- the suspension adheres to the current conductor and under the action of the heat generated during production, the volatile and decomposing components of the suspension leave the space to be gettered, these components usually being suctioned off during the evacuation.
- the components of the suspension that deviate from the getter composition and leave the space during the manufacture of the light source can in no way be chosen freely.
- the first requirement is that they leak completely, the other that they are water-free.
- the getter suspensions used in the light source industry often contain carbon-containing binder, dissolved in some volatile solvent, as the carrier substance; so For example, it is well known to use nitrocellulose as a binder for smearable getters. If this binding agent decomposes, water vapor, hydrocarbon and carbon oxides are formed. Therefore, efforts have been made to develop a binder which, when disassembled, does not produce any harmful materials.
- DE-A-2 740 602 describes an embodiment in which, as a binder for getter compositions used in halogen lamps, e.g. Metal chlorides are proposed, and ethanol is mainly used as the polar solvent. This volatile solvent can easily escape during evacuation in the course of manufacture.
- a lubricable getter composition can also be produced without a binder if the metal components are selected appropriately. In this way the disadvantages associated with the decomposition of the binders can be eliminated; the volatile solvent per se is sufficient as the carrier substance.
- a volatile solvent we think it is advantageous to use pure alcohol or anhydrous petrol; the latter is preferred.
- a zirconium alloy is used instead of zirconium for the smearable getter composition used. It is known per se that zirconium alloys have good hydrogen binding capacity; with certain compositions, the effect of pure zirconium is simply exceeded. As an example, we would like the authors Kenji Ichimura et al. mention (J.Vac, Sci. Technol. Zeitschrift, 1988 (Volume 6) No. 4, pages 2541-5). However, this article does not describe the properties of the metal powder, but rather the properties of the compact band-shaped zirconium and the zirconium alloys. Only metal powder whose properties are not identical to those of the compact metal can be used for lubricable getters.
- Metal alloys are used for the getter composition according to the invention, which are brittle, easy to grind, and also bind the hydrogen as well as the zirconium.
- Some well-known zirconium alloys meet this expectation, e.g. primarily the zirconium-aluminum alloy labeled "St 101", but also the zirconium-vanadium alloy labeled "St 707” or the zirconium-nickel alloy labeled "St 199". These alloys are already listed in the magazine mentioned.
- any zirconium alloy can be used for getter compositions which can be ground well, whose hydrogen bonding capacity corresponds at least to that of zirconium and which has no getter effect below 350 ° C.
- This last-mentioned requirement is also very important, so that the heat during assembly of the light source - which occurs at a maximum temperature of 350 ° C - can in no way impair the gettering ability of the powdered alloy.
- the composition and grain size of the alloy must be selected so that the alloy is not pyrogenic or even reacts with the air at the soldering temperature.
- nickel powder and preferably also aluminum powder must be mixed in so that the composition is sintered firmly onto the carrier element to which it has been lubricated.
- nickel powder is an independent component in addition to the zirconium alloy. (However, it is not excluded that nickel is also present in the getter alloy in addition to the zirconium base metal as an alloy component; but even in this case, this cannot replace the powdered nickel). It is of the utmost importance that the nickel powder be included in the getter composition.
- no binder is proposed for our getter composition; by the way, we propose to use nickel powder as a separate component.
- Nickel powder does a double job; on the one hand it promotes sintering, on the other hand - as already mentioned - it increases the gettering effect of the zirconium alloy. Namely, when the nickel in the composition contacts the zirconium alloy, it helps the alloy to take up the hydrogen at a lower temperature, thereby eliminating the usual activation difficulties.
- our getter composition for light sources in particular for incandescent lamps, which consists of a metal with a getter effect and an accompanying metal as well as a solvent.
- the composition consists of 20-80 vol.% Volatile solvent and in the remaining part of metals in finely divided form, in such a way that the metallic component, based on the total amount of dry matter, is 30-70% by weight, preferably 40-60 % By weight, a powdered zirconium alloy, 35-15% by weight of nickel powder and a residual amount composed of lamellar aluminum grains.
- the composition advantageously contains one Zirconium aluminum alloy; it is considered even more advantageous if the alloy contains at most up to 5% by weight of vanadium, iron and silicon.
- the composition contains a zirconium alloy made from the remelted, degassed alloy melt and pre-comminuted from thin platelets in the manner described in HU-A-192 912.
- composition advantageously contains reduced nickel from nickel formate with a grain size of 1 - 3 ⁇ m, furthermore aluminum also contains the quality of the "silver dye”.
- Aluminum pigment of the quality of the silver dye is freed from the stabilizer - organic origin - by washing.
- the washed pigment is processed immediately. If there is no possibility of immediate processing, the pigment must be stored in a protective gas atmosphere, because if it is stored in air, an excessively thick oxide layer is formed on the surface of the grains, which leads to sintering at one relatively low temperature is prevented. So much of the freshly washed aluminum pigment is weighed in that its amount in the metallic component is 30% by weight.
- Reduced nickel with an average grain size of 1-3 ⁇ m is added to this aluminum from nickel formate, so that it accounts for 20% by weight in the metallic component.
- a powdered zirconium alloy containing 16% by weight of aluminum, 1% by weight of vanadium, 0.5% by weight of iron and 0.1% by weight of silicon is added to these two metals.
- This alloy can be cast better than if it contained only aluminum, since this alloy does not attack the quartz in the molten state; however, the gettering ability is at least the same as that of the known zirconium aluminum alloy.
- the alloy melt is pre-comminuted with the composition described above.
- the pre-shredded alloy is ground in anhydrous petrol in a planetary mill to an average grain size of 2-5 ⁇ m.
- the ground powder is added to the metal mixture, after which the mixture is mixed with an amount of gasoline which gives a paste which is easy to lubricate. Based on the total volume of the composition, 60-70% by volume of gasoline is used for this purpose.
- composition produced in the manner described from the materials mentioned is very suitable for use in light sources.
- a small amount is applied with a brush to the power supply, for example an incandescent lamp.
- the power supply for example an incandescent lamp.
- the solvent evaporates from the composition, the metals are sintered onto the power lead and remain there for the life of the lamp.
- Example 1 The procedure of Example 1 is followed with the difference that the grinding process is carried out in a stream of argon, namely in a mill containing a titanium cylinder with a diameter of 250-300 mm and a beater bar with a speed of 800-1000 rpm.
- the argon stream discharges the alloy grains with a diameter of 2-5 ⁇ m.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Discharge Lamp (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Gas Separation By Absorption (AREA)
- Gas-Filled Discharge Tubes (AREA)
Abstract
Description
Die Erfindung betrifft ein aktives Material bzw. eine Zusammensetzung, die ein eine Getterwirkung ausübendes Material enthält, d.h. eine sogenannte aufschmierbare Getterzusammensetzung, die zum Abbinden von in einem geschlossenen Raum in geringer Menge anwesenden oder mit der Zeit dort entstandenden Gasen oder Dämpfen geeignet ist.The invention relates to an active material or a composition which contains a material which has a getter effect, i.e. a so-called smearable getter composition which is suitable for setting gases or vapors which are present in small quantities in a closed space or which arise over time.
Getter sind reaktionfähige Materialien, die entweder mit den wenigen Gasen und Dämpfen in Reaktion treten und solche Verbindungen bilden, die nicht flüchtig und gegenüber dem Raum bzw. der Vorrichtung, bei denen zu gettern beabsichtigt ist, neutral sind oder die in geringen Mengen vorhandene Gase bzw. Dämpfe absorbieren, quasi-physikalisch auflösen, aus dem Raum entfernen, in ihrem eigenen Werkstoff ansammeln und dort gebunden halten. Es kommt oft vor, daß dieselbe Getterzusammensetzung beide Wirkungen ausüben kann, d.h. daß die zu entfernenden Gase und Dämpfe chemisch und gleichzeitig physikalisch gebunden werden. Auch in der Lichtquellen-Industrie werden Getter weitgehend angewendet, da zum Betrieb einer Lichtquelle die Forderung besteht, daß der Raum, in dem Licht erzeugt wird, nur solche Materialien enthalten darf, die zum Betrieb der Lichtquelle unbedingt erforderlich sind, und keine solchen Materialien, die schädlich sein können. Solche schädlichen Materialien können einerseits als Reste während der Herstellung in den Raum gelangen, in dem Licht erzeugt wird; anderseits können derartige Materialien während des Betriebs der Lichtquelle aus deren Bestandteilen verdampfen.Getters are reactive materials that either react with the few gases and vapors and form those compounds that are non-volatile and neutral to the space or the device in which the intent is to getter, or that contain gases or gases that are present in small quantities Absorb vapors, dissolve them quasi-physically, remove them from the room, collect them in their own material and keep them bound there. It often happens that the same getter composition can have both effects, i.e. that the gases and vapors to be removed are bound chemically and physically at the same time. Getters are also widely used in the light source industry, since there is a requirement for operating a light source that the room in which light is generated may contain only those materials which are absolutely necessary for operating the light source, and no such materials, that can be harmful. Such harmful materials can, on the one hand, end up as residues during manufacture in the room in which light is generated; on the other hand, such materials can evaporate from the components thereof during the operation of the light source.
Zu den zurückbleibenden schädlichen Gasen und Dämpfen gehören z.B. Sauerstoff, Wasserstoff, Kohlendioxid, Kohlenmonoxid, Wasserdampf, usw. Insbesondere Wasserdampf wird als gefährlich angesehen, da dieser im zersetzten Zustand Wasserstoff erzeugt. Eine derartige Zersetzung kommt im Betrieb der Lichtquelle auf der heißen Oberfläche von Metallen leicht zustande. Der entstehende Sauerstoff bildet ein Metalloxid, das sich eventuell an der Wand des Kolbens niederschlagen kann, wobei dort vorhandener Wasserstoff das Metalloxid zu Metall reduziert, das als schwarzer Fleck zurückbleibt; Wasserdampf entsteht erneut, wodurch der beschriebene Prozeß sich wiederholt. Die Wiederholung des Prozesses kann verhindert werden, wenn der Wasserstoff gebunden wird. Daher spielt der Wasserstoff für den Betrieb und die Lebensdauer der Lichtquelle eine Schlüsselrolle und daher ist sein Binden äußerst wichtig.The remaining harmful gases and vapors include, for example, oxygen, hydrogen, carbon dioxide, carbon monoxide, water vapor, etc. In particular, water vapor is considered dangerous because it produces hydrogen in the decomposed state. Such decomposition easily occurs during operation of the light source on the hot surface of metals. The resulting oxygen forms a metal oxide, which may be on the wall of the piston can precipitate, with hydrogen present there reducing the metal oxide to metal, which remains as a black spot; Water vapor is generated again, which repeats the process described. The repetition of the process can be prevented if the hydrogen is bound. Therefore, hydrogen plays a key role in the operation and lifespan of the light source, and therefore its binding is extremely important.
Zu den Gettern, die in den Lichtquellen zur Verwendung kommen, gehören die Metallgetter. Diese sind solche Metalle, die die Schadstoffe, insbesondere Wasserstoff, in dem eigenen Material auflösen können. Als solche Getter können z.B. Titan, Tantal oder Zirkonium verwendet werden. Zirkonium ist ein weitverbreitetes Getter, insbesondere dessen Wasserstoffbindefähigkeit ist ausgezeichnet.The getters that are used in the light sources include the metal getters. These are metals that can dissolve the pollutants, especially hydrogen, in their own material. As such getters e.g. Titanium, tantalum or zirconium can be used. Zirconium is a widespread getter, especially its hydrogen binding ability is excellent.
In der Lichtquellen-Industrie wird das Getter hauptsächlich in Form von sogenanntem aufschmierbaren Getter in den zu getternden Raum aufgetragen. Diese aufschmierbaren Getterstoffe stellen Gemische dar, die das Material mit Getterwirkung, z.B. das Metall, pulverisiert in irgendeiner Trägersubstanz suspendiert enthalten. Diese Suspension wird meistens z.B. bei einer Glühlampe, auf den stromeinleitenden Draht aufgetragen. Infolge der Adhäsion haftet die Suspension auf dem Stromleiter und unter der Einwirkung der während der Herstellung entstehenden Wärme verlassen die flüchtigen und sich zersetzenden Komponenten der Suspension den zu getternden Raum, wobei diese Komponenten meistens beim Evakuieren abgesaugt werden. Selbstverständlich können die von der Getterzusammensetzung abweichenden und während der Herstellung der Lichtquelle den Raum verlassenden Komponenten der Suspension keinesfalls frei gewählt werden. Die erste Voraussetzung liegt darin, daß sie restlos austreten, die andere, daß sie wasserfrei sind. Die in der Lichtquellen-Industrie angewendeten Gettersuspensionen enthalten oft kohlenstoffhaltiges, in irgendeinem flüchtigen Lösungsmittel aufgelöstes Bindemittel als Trägersubstanz; so z.B. ist es wohlbekannt, für aufschmierbare Getter Nitrozellulose als Bindemittel anzuwenden. Wenn nun sich dieses Bindemittel zersetzt, entstehen Wasserdampf, Kohlenwasserstoff und Kohlenoxide. Daher hat man danach gestrebt, ein Bindemittel zu entwickeln, das in zerlegtem Zustand keine schädlichen Materialien erzeugt.In the light source industry, the getter is mainly applied in the form of a so-called smearable getter to the room to be gettered. These smearable getter substances are mixtures which contain the getter-effect material, for example the metal, suspended in powder form in any carrier substance. This suspension is usually applied to the current-introducing wire, for example in the case of an incandescent lamp. As a result of the adhesion, the suspension adheres to the current conductor and under the action of the heat generated during production, the volatile and decomposing components of the suspension leave the space to be gettered, these components usually being suctioned off during the evacuation. Of course, the components of the suspension that deviate from the getter composition and leave the space during the manufacture of the light source can in no way be chosen freely. The first requirement is that they leak completely, the other that they are water-free. The getter suspensions used in the light source industry often contain carbon-containing binder, dissolved in some volatile solvent, as the carrier substance; so For example, it is well known to use nitrocellulose as a binder for smearable getters. If this binding agent decomposes, water vapor, hydrocarbon and carbon oxides are formed. Therefore, efforts have been made to develop a binder which, when disassembled, does not produce any harmful materials.
In der DE-A-2 740 602 wird eine Ausführungsform beschrieben, bei der als Bindemittel für bei Halogenlampen verwendeten Getterzusammensetzungen z.B. Metallchloride vorgeschlagen werden, und als polares Lösungsmittel hauptsächlich Äthanol verwendet wird. Dieses flüchtige Lösungsmittel kann leicht während des Evakuierens im Laufe der Herstellung entweichen.DE-A-2 740 602 describes an embodiment in which, as a binder for getter compositions used in halogen lamps, e.g. Metal chlorides are proposed, and ethanol is mainly used as the polar solvent. This volatile solvent can easily escape during evacuation in the course of manufacture.
Bei unseren Experimenten gelangten wir zu der Erkenntnis, daß eine aufschmierbare Getterzusammensetzung auch ohne Bindemittel hergestellt werden kann, wenn die Metallkomponenten zweckdienlich gewählt werden. Auf diese Weise können die mit der Zersetzung der Bindemittel verbundenen Nachteile eliminiert werden; als Trägersubstanz genügt das flüchtige Lösungsmittel an sich. Als flüchtiges Lösungsmittel halten wir es für vorteilhaft, reinen Alkohol oder wasserfreies Benzin zu verwenden; das zuletzterwähnte wird bevorzugt.In our experiments, we came to the conclusion that a lubricable getter composition can also be produced without a binder if the metal components are selected appropriately. In this way the disadvantages associated with the decomposition of the binders can be eliminated; the volatile solvent per se is sufficient as the carrier substance. As a volatile solvent, we think it is advantageous to use pure alcohol or anhydrous petrol; the latter is preferred.
Weiterhin haben wir erkannt, daß es nicht zweckdienlich ist, für das aufschmierbare Getter reines Metall - insbesondere Zirkonium - als solches anzuwenden. Pulverisiertes Zirkonium kann nämlich nur mit Schwierigkeiten von dem enthaltenen Wasserstoff befreit werden; ferner entsteht oft auf der Oberfläche der Körner eine dicke Oxid-Nitridschicht. Auf diese Weise kommt die Getterwirkung des Metalls nur bei hoher Temperatur zur Geltung. Darüberhinaus kann das Zirkonium nur schwer zermahlen werden; es ist ein duktiles Metall, wodurch die Herstellung des Metallpulvers mit Schwierigkeiten verbunden ist.Furthermore, we have recognized that it is not expedient to use pure metal - in particular zirconium - as such for the smearable getter. Powdered zirconium can only be freed of the hydrogen contained with difficulty; furthermore, a thick oxide nitride layer often forms on the surface of the grains. In this way, the gettering effect of the metal only comes into play at a high temperature. In addition, the zirconium is difficult to grind; it is a ductile metal, which makes the production of the metal powder difficult.
Aus diesem Grunde wird erfindungsgemäß eine Zirkoniumlegierung anstatt Zirkonium für die aufschmierbare Getterzusammensetzung verwendet. Es ist an sich bekannt, daß Zirkoniumlegierungen eine gute Wasserstoffbindefähigkeit aufweisen; bei gewissen zusammensetzungen wird die Wirkung des reinen Zirkoniums eben übertroffen. Als Beispiel möchten wir die Autoren Kenji Ichimura et al. erwähnen (J.Vac, Sci. Technol. Zeitschrift, 1988 (Band 6) Nr. 4, Seiten 2541-5). In diesem Artikel werden jedoch nicht die Eigenschaften der Metallpulver beschrieben, sondern die Eigenschaften des kompakten bandförmigen Zirkoniums und der Zirkorniumlegierungen diskutiert. Für aufschmierbare Getter kann aber nur Metallpulver verwendet werden, dessen Eigenschaften nicht mit denen des kompakten Metalls identisch sind.For this reason, according to the invention, a zirconium alloy is used instead of zirconium for the smearable getter composition used. It is known per se that zirconium alloys have good hydrogen binding capacity; with certain compositions, the effect of pure zirconium is simply exceeded. As an example, we would like the authors Kenji Ichimura et al. mention (J.Vac, Sci. Technol. Zeitschrift, 1988 (Volume 6) No. 4, pages 2541-5). However, this article does not describe the properties of the metal powder, but rather the properties of the compact band-shaped zirconium and the zirconium alloys. Only metal powder whose properties are not identical to those of the compact metal can be used for lubricable getters.
Zu der erfindungsgemäßen Getterzusammensetzung werden Metall-Legierungen verwendet, die spröde sind, sich gut mahlen lassen, desweiteren den Wasserstoff ebenso gut abbinden, wie das Zirkonium. Einige wohlbekannten Zirkoniumlegierungen entsprechen dieser Erwartung, z.B. in erster Linie die mit "St 101" bezeichnete Zirkonium-Aluminiumlegierung, aber auch die mit "St 707" bezeichnete Zirkonium-Vanadiumlegierung oder die mit "St 199" bezeichnete Zirkonium-Nickellegierung. Diese Legierungen sind bereits in der erwähnten Zeitschrift aufgelistet.Metal alloys are used for the getter composition according to the invention, which are brittle, easy to grind, and also bind the hydrogen as well as the zirconium. Some well-known zirconium alloys meet this expectation, e.g. primarily the zirconium-aluminum alloy labeled "St 101", but also the zirconium-vanadium alloy labeled "St 707" or the zirconium-nickel alloy labeled "St 199". These alloys are already listed in the magazine mentioned.
Demrach kann jede Zirkoniumlegierung für Getterzusammensetzungen verwendet werden, die sich gut mahlen läßt, deren Wasserstoffbindefähigkeit wenigstens der des Zirkoniums entspricht und die unter 350 °C keinen Gettereffekt ausübt. Diese letzterwähnte Forderung ist ebenfalls sehr wichtig, damit die Wärmeeinwirkung während des Zusammenbauens der Lichtquelle - das bei einer Maximaltemperatur von 350 °C vor sich geht - keinesfalls die Getterfähigkeit der pulverisierten Legierung beeinträchtigen kann. Im Zusammenhang damit müssen die Zusammensetzung und Korngröße der Legierung so gewählt werden, daß die Legierung nicht pyrogen ist oder gar bei der Einlötungstemperatur mit der Luft in Reaktion tritt.Accordingly, any zirconium alloy can be used for getter compositions which can be ground well, whose hydrogen bonding capacity corresponds at least to that of zirconium and which has no getter effect below 350 ° C. This last-mentioned requirement is also very important, so that the heat during assembly of the light source - which occurs at a maximum temperature of 350 ° C - can in no way impair the gettering ability of the powdered alloy. In connection with this, the composition and grain size of the alloy must be selected so that the alloy is not pyrogenic or even reacts with the air at the soldering temperature.
Desweiteren haben wir erkannt, daß dem aufschmierbaren Getter neben dem als Wirkstoff wirkenden Legierungpulver auch Nickelpulver und vorzugsweise auch Aluminiumpulver zugemischt werden muß, damit die Zusammensetzung fest auf das Trägerelement, auf das sie aufgeschmiert worden ist, aufgesintert wird.Furthermore, we have recognized that the smearable getter In addition to the alloy powder acting as active ingredient, nickel powder and preferably also aluminum powder must be mixed in so that the composition is sintered firmly onto the carrier element to which it has been lubricated.
Dies bedeutet, daß das Nickelpulver eine selbstständige Komponente neben der Zirkoniumlegierung darstellt. (Es ist aber nicht ausgeschlossen, daß auch Nickel in der Getterlegierung neben dem Zirkonium-Grundmetall als Legierungsbestandteil vorhanden ist; aber auch in diesem Fall kann dieser das pulverisierte Nickel nicht ersetzen). Es ist von äußerster Wichtigkeit, daß das Nickelpulver in der Getterzusammensetzung enthalten ist.This means that the nickel powder is an independent component in addition to the zirconium alloy. (However, it is not excluded that nickel is also present in the getter alloy in addition to the zirconium base metal as an alloy component; but even in this case, this cannot replace the powdered nickel). It is of the utmost importance that the nickel powder be included in the getter composition.
Demnach weicht unsere Zusammensetzung von den Ausführungsformen nach der Vacuum-Zeitschrift, 1980 (Band 30) Heft 6, Seiten 213-16, und der DE-OS 2 827 132 ab, in denen die Getterwirkung der Zirkonium-Nickel-Zusammensetzungen oder Sinterkörper geschildert ist. Der guten Ordnung halber soll bemerkt werden, daß in der DE-OS 2 827 132 nicht eine pulverisierte Zirkoniumlegierung und Nickelpulver beschrieben sind, sondern es handelt sich um Zirkoniummetallpulver und ein damit eine zusammenhängende Einheit bildendes Nickelpulver. Ein weiterer Unterschied zeigt sich darin, daß hier gegenüber der erfindungsgemäßen Legierung ein Bindemittel enthalten ist.Accordingly, our composition deviates from the embodiments according to the Vacuum-Zeitschrift, 1980 (Volume 30) No. 6, pages 213-16, and DE-OS 2 827 132, in which the gettering effect of the zirconium-nickel compositions or sintered bodies is described . For the sake of good order, it should be noted that DE-OS 2 827 132 does not describe a powdered zirconium alloy and nickel powder, but rather zirconium metal powder and a nickel powder which forms a coherent unit. Another difference can be seen in the fact that it contains a binder compared to the alloy according to the invention.
Erfindungsgemäß wird für unsere Getterzusammensetzung kein Bindemittel vorgeschlagen; übrigens schlagen wir vor, Nickelpulver als selbstständige Komponente anzuwenden. Nickelpulver erfüllt eine doppelte Aufgabe; einerseits fördert es die Sinterung, anderseits - wie bereits erwähnt - erhöht es die Getterwirkung der Zirkoniumlegierung. Wenn nämlich das Nickel in der Zusammensetzung mit der Zirkoniumlegierung in Berührung kommt, trägt es dazu bei, daß die Legierung den Wasserstoff bei einer niedrigeren Temperatur aufnehmen kann, wodurch die üblichen Aktivierungsschwierigkeiten eliminiert werden können. Dies bedeutet nämlich, daß das auf das Getterkorn auftreffende Wasserstoffmolekül durch die auf der Kornoberfläche absorbierten sonstigen Gase hindurchdiffundieren muß, wonach das Molekül gezwungen ist, durch die dünne Oxid-Nitridschicht hindurchzudiffundieren und erst dann - wenn es sich um ein Molekül handelt, nach Dissoziation - im Inneren der Legierung in atomarer Form gelöst werden kann. Wenn nun das Legierungskorn mit dem Nickel metallisch in Berührung kommt, diffundiert das Wasserstoffatom aus dem Nickel in das Korn der Legierung. Jedoch kann das Nickelkorn den Wasserstoff viel leichter aufnehmen, da auf dem Korn eine viel schwächere absorbierte Gasschicht und eine dünnere Oxidschicht vorhanden sind. Es soll noch bemerkt werden, daß das Nickel durch jedes bei katalytischer Hydrierung verwendbares Metall, z.B. Kobalt, teilweise oder im Ganzen ersetzt werden kann.According to the invention, no binder is proposed for our getter composition; by the way, we propose to use nickel powder as a separate component. Nickel powder does a double job; on the one hand it promotes sintering, on the other hand - as already mentioned - it increases the gettering effect of the zirconium alloy. Namely, when the nickel in the composition contacts the zirconium alloy, it helps the alloy to take up the hydrogen at a lower temperature, thereby eliminating the usual activation difficulties. This means that this means that Getterkorn impinging hydrogen molecule must diffuse through the other gases absorbed on the grain surface, after which the molecule is forced to diffuse through the thin oxide nitride layer and only then - if it is a molecule after dissociation - dissolved in an atomic form inside the alloy can be. Now when the alloy grain comes into metallic contact with the nickel, the hydrogen atom diffuses from the nickel into the grain of the alloy. However, the nickel grain can absorb the hydrogen much more easily because there is a much weaker absorbed gas layer and a thinner oxide layer on the grain. It should also be noted that the nickel can be replaced in part or in whole by any metal that can be used in catalytic hydrogenation, for example cobalt.
Wir gelangten auch zu der Erkenntnis, daß ein lamellares Aluminium in Feinverteilung anzuwenden ist; dieses Aluminium entspricht morphologisch der Qualität des "Silberfarbstoffs". Die Form der Aluminiumpartikeln ist von äußerster Wichtigkeit, da das Aluminium nur auf diese Weise die Rolle des Bindemittelersatzes übernehmen kann.We also came to the conclusion that a finely divided lamellar aluminum should be used; this aluminum corresponds morphologically to the quality of the "silver dye". The shape of the aluminum particles is of the utmost importance, as this is the only way that aluminum can take on the role of substitute for binders.
Aufgrund unserer Erkenntnisse haben wir unsere Getterzusammensetzung für Lichtquellen, insbesondere für Glühlampen ausgearbeitet, die aus einem Getterwirkung aufweisenden Metall und einem begleitenden Metall sowie aus einem Lösungsmittel besteht.Based on our knowledge, we have developed our getter composition for light sources, in particular for incandescent lamps, which consists of a metal with a getter effect and an accompanying metal as well as a solvent.
Erfindungsgemäß besteht die zusammensetzung aus 20-80 Vol.% flüchtigem Lösungsmittel und in dem restlichen Teil aus Metallen in feiner Verteilung, und zwar so, daß die metallische Komponente auf die Gesamtmenge der Trockensubstanz bezogen aus 30-70 Gew.%, vorzugsweise 40-60 Gew.%, einer pulverisierten Zirkoniumlegierung, 35-15 Gew.% Nickelpulver und als Restmenge aus lamellaren Aluminiumkörnern zusammengesetzt ist.According to the invention, the composition consists of 20-80 vol.% Volatile solvent and in the remaining part of metals in finely divided form, in such a way that the metallic component, based on the total amount of dry matter, is 30-70% by weight, preferably 40-60 % By weight, a powdered zirconium alloy, 35-15% by weight of nickel powder and a residual amount composed of lamellar aluminum grains.
Vorteilhaft enthält die Zusammensetzung eine Zirkonium-Aluminiumlegierung; es wird als noch vorteilhafter betrachtet, wenn die Legierung als Ergänzung höchstens bis zu 5 Gew.% Vanadium, Eisen und Silizium enthält.The composition advantageously contains one Zirconium aluminum alloy; it is considered even more advantageous if the alloy contains at most up to 5% by weight of vanadium, iron and silicon.
Bei einer der vorteilhaftesten Ausführungsformen enthält die Zusammensetzung eine aus der umschmolzenen entgasten Legierungschmelze hergestellte, in in der HU-A-192 912 beschriebener Weise vorzerkleinerte, aus dünnen Plättchen gemahlene Zirkoniumlegierung.In one of the most advantageous embodiments, the composition contains a zirconium alloy made from the remelted, degassed alloy melt and pre-comminuted from thin platelets in the manner described in HU-A-192 912.
Die wesentliche Charakteristik der in dem erwähnten HU-A-192 912 Patent beschriebenen Methode zeigt sich darin, daß die umgeschmolzene entgaste Legierungschmelze über einen Quarztrichter auf einen sich drehenden gekühlten Zylinder fließen gelassen wird, wo die Schmelze sich zu einem Band oder zu Teilchen verfestigt und in dünne Plättchen zerbricht. Dieses Vorprodukt kann erfolgreich gemahlen werden, entweder im Argongasstrom oder in dem bevorzugten Lösungsmittel der erfindungsgemäßen Zusammensetzung.The essential characteristic of the method described in the mentioned HU-A-192 912 patent is shown in that the remelted degassed alloy melt is flowed over a quartz funnel onto a rotating cooled cylinder, where the melt solidifies into a band or particles and breaks into thin plates. This precursor can be successfully milled, either in the argon gas stream or in the preferred solvent of the composition according to the invention.
Unsere Zusammensetzung enthält vorteilhaft aus Nickel-Formiat reduziertes Nickel mit einer Korngröße von 1 - 3 µm, desweiteren ist auch Aluminium in der Qualität des "Silberfarbstoffs" enthalten.Our composition advantageously contains reduced nickel from nickel formate with a grain size of 1 - 3 µm, furthermore aluminum also contains the quality of the "silver dye".
Die Erfindung wird anhand von Beispielen näher erläutert, ohne die Erfindung auf diese zu beschränken.The invention is explained in more detail by means of examples, without restricting the invention to these.
Aluminiumpigment der Qualität des Silberfarbstoffes wird von dem Stabilisator - organischen Ursprungs - durch Waschen befreit. Das gewaschene Pigment wird sofort verarbeitet. Falls die Möglichkeit für eine sofortige Verarbeitung nicht gegeben ist, muß das Pigment in einer Schutzgasatmosphäre gelagert werden, denn wenn es in Luft gelagert wird, entsteht eine zu dicke Oxidschicht an der Oberfläche der Körner, wodurch ein Sintern bei einer verhältnismäßig niedrigen Temperatur verhindert wird. Von dem frischgewaschenen Aluminiumpigment wird so viel eingewogen, daß seine Menge in der metallischen Komponente 30 Gew.% beträgt.Aluminum pigment of the quality of the silver dye is freed from the stabilizer - organic origin - by washing. The washed pigment is processed immediately. If there is no possibility of immediate processing, the pigment must be stored in a protective gas atmosphere, because if it is stored in air, an excessively thick oxide layer is formed on the surface of the grains, which leads to sintering at one relatively low temperature is prevented. So much of the freshly washed aluminum pigment is weighed in that its amount in the metallic component is 30% by weight.
Zu diesem Aluminium wird aus Nickel-Formiat reduziertes Nickel in einer durchschnittlichen Korngröße von 1-3 µm zugegeben, so daß es in der metallischen Komponente 20 Gew.% ausmacht.Reduced nickel with an average grain size of 1-3 μm is added to this aluminum from nickel formate, so that it accounts for 20% by weight in the metallic component.
Diesen beiden Metallen wird eine 16 Gew.% Aluminium, 1 Gew.% Vanadium, 0,5 Gew.% Eisen und 0,1 Gew.% Silizium enthaltende pulverisierte Zirkoniumlegierung zugegeben. Diese Legierung kann besser gegossen werden, als wenn sie nur Aluminium enthalten würde, da diese Legierung im geschmolzenen Zustand den Quarz weniger angreift; jedoch ist die Getterfähigkeit wenigstens mit derjenigen der bekannten Zirkoniumaluminiumlegierung gleich. Im Sinne der HU-A-192 912 wird die Legierungsschmelze mit der obenbeschriebenen Zusammensetzung vorzerkleinert. Die vorzerkleinerte Legierung wird in wasserfreiem Benzin in einer Planetenmühle auf eine durchschnittliche Korngröße von 2-5 µm gemahlen.A powdered zirconium alloy containing 16% by weight of aluminum, 1% by weight of vanadium, 0.5% by weight of iron and 0.1% by weight of silicon is added to these two metals. This alloy can be cast better than if it contained only aluminum, since this alloy does not attack the quartz in the molten state; however, the gettering ability is at least the same as that of the known zirconium aluminum alloy. According to HU-A-192 912, the alloy melt is pre-comminuted with the composition described above. The pre-shredded alloy is ground in anhydrous petrol in a planetary mill to an average grain size of 2-5 µm.
Das gemahlene Pulver wird dem Metallgemisch zugegeben, wonach das Gemisch mit einer Benzinmenge vermischt wird, die eine gut schmierbare Paste ergibt. Auf das ganze Volumen der Zusammensetzung bezogen werden zu diesem Zwecke 60-70 Vol.% Benzin verwendet.The ground powder is added to the metal mixture, after which the mixture is mixed with an amount of gasoline which gives a paste which is easy to lubricate. Based on the total volume of the composition, 60-70% by volume of gasoline is used for this purpose.
Die in der beschriebenen Weise aus den erwähnten Materialien hergestellte Zusammensetzung ist für die Anwendung in Lichtquellen bestens geeignet. Im allgemeinen wird eine geringe Menge mit einem Pinsel auf den Stromzuleiter z.B. einer Glühlampe aufgetragen. Während des Verschließens des Kolbens verdampft das Lösungsmittel aus der Zusammensetzung, die Metalle werden auf den Stromzuleiter gesintert und bleiben dort während der Lampenlebensdauer.The composition produced in the manner described from the materials mentioned is very suitable for use in light sources. In general, a small amount is applied with a brush to the power supply, for example an incandescent lamp. As the bulb closes, the solvent evaporates from the composition, the metals are sintered onto the power lead and remain there for the life of the lamp.
Man verfährt nach Beispiel 1 mit dem Unterschied, daß der Mahlvorgang im Argonstrom vorgenonmen wird, und zwar in einer einen Titanzylinder mit 250-300 mm Durchmesser und eine Schlagstange mit einer Drehzahl von 800-1000 Upm enthaltenden Mühle. Der Argonstrom trägt die einen Durchmesser von 2-5 µm aufweisenden Legierungskörner aus.The procedure of Example 1 is followed with the difference that the grinding process is carried out in a stream of argon, namely in a mill containing a titanium cylinder with a diameter of 250-300 mm and a beater bar with a speed of 800-1000 rpm. The argon stream discharges the alloy grains with a diameter of 2-5 µm.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HU892443A HU207398B (en) | 1989-05-17 | 1989-05-17 | Getter composition for light sources |
HU244389 | 1989-05-17 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0398013A2 true EP0398013A2 (en) | 1990-11-22 |
EP0398013A3 EP0398013A3 (en) | 1991-07-10 |
EP0398013B1 EP0398013B1 (en) | 1994-11-30 |
Family
ID=10959382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90106595A Expired - Lifetime EP0398013B1 (en) | 1989-05-17 | 1990-04-06 | Getter composition for light sources |
Country Status (5)
Country | Link |
---|---|
US (1) | US5130047A (en) |
EP (1) | EP0398013B1 (en) |
JP (1) | JPH03129637A (en) |
DE (1) | DE59007799D1 (en) |
HU (1) | HU207398B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0562680A1 (en) * | 1992-03-27 | 1993-09-29 | Koninklijke Philips Electronics N.V. | High pressure discharge lamp |
WO2007012500A1 (en) | 2005-07-28 | 2007-02-01 | Westfaliasurge Gmbh | Milking station and method for milking |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5908579A (en) * | 1994-12-02 | 1999-06-01 | Saes Getters, S.P.A. | Process for producing high-porosity non-evaporable getter materials and materials thus obtained |
US6110807A (en) * | 1995-06-07 | 2000-08-29 | Saes Getters S.P.A. | Process for producing high-porosity non-evaporable getter materials |
DE19640275C2 (en) * | 1996-09-30 | 2001-02-08 | Siemens Ag | X-ray tube |
US6586878B1 (en) * | 1999-12-16 | 2003-07-01 | Koninklijke Philips Electronics N.V. | Metal halide lamp with improved getter orientation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB755804A (en) * | 1953-09-30 | 1956-08-29 | Philips Electrical Ind Ltd | Improvements in or relating to methods of producing getters |
US3544829A (en) * | 1968-02-03 | 1970-12-01 | Tokyo Shibaura Electric Co | Low pressure mercury vapour discharge lamp |
JPS51115766A (en) * | 1975-04-03 | 1976-10-12 | Toshiba Corp | Non-varorized getter material |
SU1003199A1 (en) * | 1980-02-07 | 1983-03-07 | Научно-исследовательский и экспериментальный институт автомобильного электрооборудования и автоприборов | Method of manufacturing incandescent lamps |
JPS61281001A (en) * | 1985-06-05 | 1986-12-11 | Mitsubishi Heavy Ind Ltd | Hydrogen getter material |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3654533A (en) * | 1970-05-01 | 1972-04-04 | Getters Spa | Electrical capacitor |
IT963874B (en) * | 1972-08-10 | 1974-01-21 | Getters Spa | IMPROVED GETTER DEVICE CONTAINING NON-EVAPORABLE MATERIAL |
IT971931B (en) * | 1972-12-14 | 1974-05-10 | Getters Spa | GETTER DEVICE WITH POROUS SUPPORT |
US4124659A (en) * | 1973-05-02 | 1978-11-07 | S.A.E.S. Getters S.P.A. | Gettering in nuclear fuel elements |
US4119488A (en) * | 1975-04-10 | 1978-10-10 | S.A.E.S. Getters S.P.A. | Nuclear reactor fuel element employing Zr2 Ni as a getter metal |
NL7707079A (en) * | 1977-06-27 | 1978-12-29 | Philips Nv | ELECTRIC LAMP. |
US4970114A (en) * | 1979-03-30 | 1990-11-13 | Alloy Surfaces Company, Inc. | Coating and activation of metals |
IT1198325B (en) * | 1980-06-04 | 1988-12-21 | Getters Spa | STRUCTURE AND COMPOSITION GETTERANTS, PARTICULARLY SUITABLE FOR LOW TEMPERATURES |
IT1157286B (en) * | 1982-06-28 | 1987-02-11 | Getters Spa | PROCEDURE FOR ABSORBING HYDROGEN ISOTOPES AND RELATED ENCAPSULATED ABSORPTION PAD |
DE3225751C1 (en) * | 1982-07-09 | 1984-01-26 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Device for separating the gaseous hydrogen isotopes |
US4874339A (en) * | 1985-08-09 | 1989-10-17 | Saes Getters S.P.A. | Pumping tubulation getter |
-
1989
- 1989-05-17 HU HU892443A patent/HU207398B/en not_active IP Right Cessation
-
1990
- 1990-04-06 DE DE59007799T patent/DE59007799D1/en not_active Expired - Fee Related
- 1990-04-06 EP EP90106595A patent/EP0398013B1/en not_active Expired - Lifetime
- 1990-04-13 US US07/509,339 patent/US5130047A/en not_active Expired - Fee Related
- 1990-05-16 JP JP2126514A patent/JPH03129637A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB755804A (en) * | 1953-09-30 | 1956-08-29 | Philips Electrical Ind Ltd | Improvements in or relating to methods of producing getters |
US3544829A (en) * | 1968-02-03 | 1970-12-01 | Tokyo Shibaura Electric Co | Low pressure mercury vapour discharge lamp |
JPS51115766A (en) * | 1975-04-03 | 1976-10-12 | Toshiba Corp | Non-varorized getter material |
SU1003199A1 (en) * | 1980-02-07 | 1983-03-07 | Научно-исследовательский и экспериментальный институт автомобильного электрооборудования и автоприборов | Method of manufacturing incandescent lamps |
JPS61281001A (en) * | 1985-06-05 | 1986-12-11 | Mitsubishi Heavy Ind Ltd | Hydrogen getter material |
Non-Patent Citations (5)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 1, no. 18 (E-003) 24 März 1977, & JP-A-51 115 766 (TOSHIBA CORP) 12 Oktober 1976, & Derwent Auszug 1976-89459X/48, Woche 76/48 * |
PATENT ABSTRACTS OF JAPAN vol. 1, no. 18 (E-003) 24 März 1977, & JP-A-51 115766 & Derwent Auszug 76-89459X/48 * |
PATENT ABSTRACTS OF JAPAN vol. 11, no. 141 (C-421) 8 Mai 1987, & JP-A-61 281 001 (MITSUBISHI HEAVY IND LTD) 11 Dezember 1986, & Derwent Auszug 1987-025049/04, Woche 87/04 * |
PATENT ABSTRACTS OF JAPAN vol. 11, no. 141 (C-421) 8 Mai 1987, & JP-A-61 281001 & Derwent Auszug 87-025049/04 * |
SOVIET INVENTIONS ILLUSTRATED Derwent Publications Ltd, Woche 84/02 Auszug Nummer 1984-010736/02, 22. Februar 1984 & SU-A-1003199 (CAEE) 7. März 1983 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0562680A1 (en) * | 1992-03-27 | 1993-09-29 | Koninklijke Philips Electronics N.V. | High pressure discharge lamp |
WO2007012500A1 (en) | 2005-07-28 | 2007-02-01 | Westfaliasurge Gmbh | Milking station and method for milking |
Also Published As
Publication number | Publication date |
---|---|
EP0398013B1 (en) | 1994-11-30 |
HUT53982A (en) | 1990-12-28 |
DE59007799D1 (en) | 1995-01-12 |
US5130047A (en) | 1992-07-14 |
HU207398B (en) | 1993-03-29 |
JPH03129637A (en) | 1991-06-03 |
EP0398013A3 (en) | 1991-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60106149T2 (en) | Hydrogen-absorbing alloy powder and method for producing the same and fuel tank for storing hydrogen | |
DE2050838A1 (en) | Mercury-releasing Gettervor direction and material for use m this device and method for bringing mercury into an electron tube | |
DE69525998T2 (en) | Manufacturing process and composition of substances for mercury-releasing device and devices made therewith | |
DE2816342A1 (en) | METHOD FOR PRODUCING AGGLOMERATED POWDERS | |
EP0956173A1 (en) | Metal powder granulates, method for their production and use of the same | |
EP0228005B1 (en) | Storage element for dosing and introducing liquid mercury into a discharge lamp | |
EP0398013B1 (en) | Getter composition for light sources | |
DE2625213A1 (en) | Process for the production of sintered molded bodies | |
EP0170812A2 (en) | Method for the manufacture of sintered contact material | |
DE2415035B2 (en) | Process for the powder-metallurgical production of a sliding piece of high strength, in particular a crown seal for rotary piston machines | |
DD270797A5 (en) | ELECTRIC LAMP WITH A GETTER | |
DE2537112C3 (en) | Method for producing a welding electrode for hard overlay welding | |
DE69726305T2 (en) | METHOD FOR PRODUCING TITANIUM-BASED HYDROGEN-ABSORBING ALLOY POWDER | |
DE1251133B (en) | Process for the production of welding fluxes with low bulk weight for submerged arc welding | |
DE3717048C1 (en) | Process for the preparation of alloy powders for dental amalgams | |
DE1182016B (en) | Surface hardening of a metal body, which consists of titanium or zirconium or contains such metals | |
DE60025876T2 (en) | Highly activated, hydrogenous material and process for its preparation | |
DE2113588C3 (en) | Process for the production of powders with particles which have an inner core enclosed by an alloy | |
DE69516383T2 (en) | Process for producing a hydrogen storage alloy | |
EP0152522B1 (en) | Process for producing a metal powder or metal alloy powder | |
DE2341730C2 (en) | Powdered alloy for making electrical contacts and a process for making the powder | |
AT393178B (en) | PERMANENT MAGNET (MATERIAL) AND METHOD FOR PRODUCING THE SAME | |
DE2151603A1 (en) | Screen printing metal coatings - for prodn of electrical contacts | |
DE3321438A1 (en) | COPPER-BASED REACTION LOT | |
DE1283545B (en) | Sintered friction material made from a metallic component based on iron and copper with the addition of molybdenum and from non-metallic friction and sliding compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE GB IT NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE GB IT NL |
|
17P | Request for examination filed |
Effective date: 19920110 |
|
17Q | First examination report despatched |
Effective date: 19940222 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB IT NL |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19941207 |
|
REF | Corresponds to: |
Ref document number: 59007799 Country of ref document: DE Date of ref document: 19950112 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970314 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19970430 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970630 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980406 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19981101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050406 |