EP0394932B1 - Photothermal inspection method, arrangement for its working out, and utilisation of the method - Google Patents

Photothermal inspection method, arrangement for its working out, and utilisation of the method Download PDF

Info

Publication number
EP0394932B1
EP0394932B1 EP90107682A EP90107682A EP0394932B1 EP 0394932 B1 EP0394932 B1 EP 0394932B1 EP 90107682 A EP90107682 A EP 90107682A EP 90107682 A EP90107682 A EP 90107682A EP 0394932 B1 EP0394932 B1 EP 0394932B1
Authority
EP
European Patent Office
Prior art keywords
laser
light signals
mirror
light
material sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90107682A
Other languages
German (de)
French (fr)
Other versions
EP0394932A2 (en
EP0394932A3 (en
Inventor
Erich Winschuh
Harald Dr. Petry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petry Harald Dr
Siemens AG
Original Assignee
Petry Harald Dr
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petry Harald Dr, Siemens AG filed Critical Petry Harald Dr
Publication of EP0394932A2 publication Critical patent/EP0394932A2/en
Publication of EP0394932A3 publication Critical patent/EP0394932A3/en
Application granted granted Critical
Publication of EP0394932B1 publication Critical patent/EP0394932B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • G01B21/085Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness using thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4242Modulated light, e.g. for synchronizing source and detector circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • G01N2021/1714Photothermal radiometry with measurement of emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/105Purely optical scan
    • G01N2201/1053System of scan mirrors for composite motion of beam

Definitions

  • the invention relates to a method for testing the properties of materials after the photothermal Effect such as are known from EP-A-105078, US-A-3,803,413 or WO-A-8200891.
  • EP-A1-0 105 078 discloses a device for carrying out the described method for examining the properties of absorbent materials according to the photothermal effect, in which the laser waves from a stationary or quasi-stationary laser to a test head that can be optically coupled to the material sample can be transported using flexible fiber optic cables.
  • the IR light signals can also be transported from the test head to an infrared detector arranged remotely from the test head via flexible optical waveguide cables.
  • the measuring head itself contains housing-internal beam-guiding means, specifically at the input of the laser beams and at the output of the IR light signals, here a focusing lens each, and also a coupling mirror arranged in the beam path of both lenses, designed as a dichroic mirror 1) .
  • a crystal rod in particular made of sapphire, is arranged in the light path common to the laser beams and the IR light signals, and this rod is followed by a focusing lens which focuses the laser radiation on the material sample or receives the IR light signals from it.
  • the optical fibers represent a sensitive element in the material examination; they also attenuate the laser radiation or IR light signals they carry.
  • the invention has for its object a method for Examining the properties of materials after the photothermal To create effect with which without the line the laser waves via optical fibers from an external stationary or quasi-stationary laser to the measuring head and without one Connection from an external infrared light detector to the measuring head can be managed via fiber optic cables.
  • a another object of the invention is the management of Laser beam from the laser light source on the one hand to the material sample on the other hand, as well as the guidance of the IR light signals from the To design material sample to the infrared light detector so that beam paths are as short as possible and the possibility is opened to couple a second laser light source.
  • the method can also be used to determine Material structures, material parameters, such as density, Conductivity, degree of hardness, and to determine material conditions.
  • Another advantageous use is in the measurement of Layer thicknesses, coverings, surface qualities, for example Surface roughness, and for measuring the adhesion of coatings.
  • a special use of the method extends to Searching for clues, e.g. for fingerprints.
  • the procedure is according to Another use also suitable for tracking and uncovering counterfeits, e.g. for banknotes, paintings, metal alloys, Coins, ceramics and antique furniture.
  • the invention further relates to an advantageous device according to claim 23 to carry out the method according to method claims 1 to 17 which explained the subject of claim 1 Underlying task.
  • laser light sources are relatively lower Power and small size can be used because the External and / or internal measurement head attenuation of the laser beams through the optical fibers and their coupling mechanism and coupling optics are omitted.
  • a diode pumped Neodymium / YAG laser with a wavelength of 1064 nm, which is invisible Emits light in the near infrared range which has a power of only 0.35 W, with a combined Degree of transmission and reflection for the laser beam of 82.9% could be achieved.
  • a very precise beam guidance which is in the sense of a Improves accuracy and sensitivity.
  • a pilot laser which is preferred a diode laser, also of low power, which e.g. in the visible red light range with a wavelength of 670 nm and emits a power of 3 mW.
  • the pilot beam For coupling the pilot beam is a cheap version in which the laser beam, which initially runs axially parallel to the pilot beam, over two Deflecting mirrors connected in series are deflected by 90 ° each is, after the second deflection of the laser beam and Pilot beam are on the same light path, i.e., the second Deflecting mirror is especially for this purpose as a dichroic mirror form which of the laser beam on its reflective side in his further ray path and that on his the other side receives the pilot beam and this like a permeable Windows lets through practically without loss.
  • the pilot beam is very advantageous for adjusting the measuring head, by e.g. a red spot of light on the material sample is thrown and now after this red light spot the scan zone can be chosen.
  • the second Deflecting mirror i.e. within the common light path for Pilot and laser beam to arrange an optics that together with the optics arranged directly at the laser output are expanded optics forms which advantageously parallel on a short beam path Laser light generated.
  • the expansion optics therefore consists of a Laser output side first optics, which show the beam divergence increased, and the aforementioned, the second deflecting mirror downstream second optics, which parallelizes the laser light.
  • This expansion optic is then optically connected Coupling mirror, from which the laser beam and the pilot beam over the scanner arrangement in the axis of the laser beam end light-guiding optics are thrown.
  • the latter is a lens or a lens system with special properties, which the Laser beam (and of course the pilot beam) in the direction transmits or transmits to the material sample. In the opposite direction, this lens system leaves the IR light signals through.
  • A is suitable for this purpose Zinc selenide glass with a coating on the front.
  • This front coating has the task of IR light transmission to improve in a certain spectral range e.g. in the range 2 - 5 ⁇ m. By a different interpretation (lens shape, However, it is also the choice of material and coating) possible to extend this improvement to a larger area especially the range 8 - 12 ⁇ m ("second IR window").
  • the measuring head points in the beam axis of the coupling mirror and of the first scanner arrangement - towards that of the material sample seen arriving IR light signals - a downstream IR deflecting mirror on which the IR light signals e.g. through 90 ° through a deflection mirror connected downstream Forwards the infrared lens to the at least one infrared detector, the infrared lens the IR light signals on the Focused receiving surfaces of the IR detector mentioned.
  • the named IR deflecting mirror can have a normal design, if it only serves to reflect the IR light signals that from the material sample to the scanner arrangement and the coupling mirror be sent to him.
  • IR radiation can also be injected by a Additional unit in the case of the radiographic test via its internal mirror system is fed, then it is appropriate execute and arrange this IR deflecting mirror so that it in Regarding the second light path as a translucent window acts and in relation to the first IR light path as a mirror.
  • the laser light source is expediently one Assigned expansion optics for the laser beam.
  • the scanner arrangement preferably has two scanner mirrors, which of associated Drives are moved so that a scanner mirror the beam deflection in the x direction and the other the Beam deflection in the y direction is used.
  • the measuring head can - as already indicated - by a Additional unit can be added, which - for material samples sufficient wall thickness behind the material sample is positioned and from the back of the material sample emitted IR radiation or corresponding IR light signals receives and has an internal deflection mirror system, which the IR light signals in the IR beam path of the actual Sensor sends or reflects.
  • FIG. 1 shows in three blocks the essential elements of the method for examining the properties of absorbent materials, in this case material sample B, after the photothermal effect and the device for carrying it out.
  • the measuring head A highlighted by a black border, is designed as an integral laser measuring head. It contains a directly modulated, diode-pumped neodymium / YAG laser FL, which emits in the 1064 nm wavelength range, ie in the invisible near IR range, and has an output of approx. 0.35 W.
  • This laser light source FL hereinafter abbreviated as laser, is indicated schematically by a square.
  • a diverging optic 1 the laser beam passes f 1 to a dielectric mirror 4a which the laser beam f 1 by 90 ° in the direction of a scanning mirror arrangement 5 deflects. From this, the laser beam passes through a light-guiding optic 6 at the end of the laser beam, shown as a convex lens, which also forms the exit window for the laser radiation f 1 of the measuring head A and the entry window for the IR light signals, focused on the front surface bl of the material sample B, namely at a measuring point b2. Above the material sample B, two coordinate axes ⁇ x and ⁇ y are shown in FIG.
  • the beam and scan path patterns preferably run in horizontal or vertical meanders or in spiral paths, as indicated schematically. Other spot and scan path patterns are possible, e.g. B. concentric circles.
  • the two coordinate axes ⁇ x and ⁇ y are dashed and framed by a line 9, which can be a scan zone, for example. Due to the incident laser radiation, which can be modulated according to a certain pulse-pause ratio, and in the respective measuring point a quantity of heat that has an energy of, for example, 2.
  • 10 -5 Ws corresponds to, generated, the material sample B emits IR light signals out of phase - ⁇ f 3 .
  • the minus sign is intended to symbolize the direction opposite to the incident laser radiation f 1 .
  • These IR light signals are emitted to the light-guiding optics 6 and let them pass, because this is what is referred to as double optics in the following, which transmits and focuses the laser radiation f 1 in the direction of the material sample B and which preferably favors in the opposite direction emits IR light signals.
  • This double optics 6 preferably has a coating on its front which acts as a window for a spectral range of 2-5 ⁇ m in the infrared range, but practically does not transmit the laser light with its wavelength of 1.064 ⁇ m in the beam direction of the IR light signals.
  • this double optic 6 consists of Zn selenide glass and / or Ca fluoride and / or Ba fluoride.
  • the IR radiation - ⁇ f 3 transmitted through the double optics 6 is first thrown onto the scanner mirror arrangement 5 and from there onto a semi-transparent coupling mirror 4a, which is designed as a dichroic mirror which reflects in the direction of the laser beam f 1 , but in the opposite direction acts as a window that is transparent to the IR light signals.
  • Double optics 6 and coupling mirror 4a act as a decoupling element for the emitted IR light signals.
  • the IR light signals are thrown from the coupling mirror 4a onto an IR deflecting mirror 4b which is optically connected to it and which deflects the IR light signals, for example by 90 °, and directs them to the IR objective 7.
  • the double optics 6 By appropriate design of the double optics 6 or by designing an optical system consisting of optics for visible light and for IR light, it is also possible to "run" the IR detection at a time interval that can be adjusted via the local distance from the laser excitation in order to detect a defined depth zone of the sample or to illuminate it - if its wall thickness is not too great - in such a way that it emits or emits IR light signals from its rear.
  • 6 glasses are preferably used for the double optics, the properties of which are designed such that the effect of a collective lens is achieved both for the laser beams f 1 and for the IR radiation - ⁇ f 3 .
  • the aperture of the double optics 6 for example by changing the structure and arrangement of the optical elements, a proportion of the IR light signals emitted by the material sample B that is adapted to the measurement purpose can be enlarged and directed to the IR detector.
  • the function of the double optics 6 can in principle be replaced by holographic / optical elements.
  • the IR light signals pass through the coupling mirror 4a and the deflection mirror 4b, the latter deflecting the signals mentioned by, for example, 90 °, onto the IR lens 7, which focuses the IR light signals onto the receiving surfaces 8a of the IR detector 8.
  • the IR lens 7 consists, for example, of calcium fluoride, or Ge or Si.
  • the IR detector which converts the incoming IR light signals into corresponding electrical signals, consists for example of an indium-antimonide compound and has a detection area of approx. 50 - 100 ⁇ m in diameter. Its signal / noise ratio is most favorable at a working temperature of approx. 100 K. This temperature is approximately achieved by cooling with nitrogen.
  • a corresponding detector cooling unit is indicated at 10; the corresponding cooling gas supply and discharge line is designated 11.
  • the IR detector is cooled in particular with a Joule-Thomson cooling (using N 2 ).
  • a Stirling cooler based on the Stirling engine principle can also be used.
  • the electrical signals generated in the IR detector pass through a signal line 12 to one arranged inside the measuring head A.
  • Preamplifier 13 small size, and from the output of Preamplifiers 13 are the pre-amplified electrical ones IR light signals analog signals via the signal line 14 an electronic amplifier stage, in particular a lock-in amplifier 15 forwarded, the latter within one portable electronic cabinet unit C is housed.
  • the modulation of the laser beam f 1 can be achieved via the electrical circuit of the laser; a separate modulator or chopper is then not required.
  • Amplifier stage 15 is e.g. a digital lock-in amplifier (DLI).
  • DPI digital lock-in amplifier
  • thermography in which the temporal largely constant temperature is detected
  • photothermal measuring method the amplitude and phase of the Temperature modulation determined.
  • the phase shift results derive from the time delay with which the maximum Surface temperature compared to the time of excitation is measured.
  • the phase shift is done with the lock-in amplifier certainly.
  • This amplifier 15 has signal directions with a module 16 "device control", and this control module 16 is again electrically and electronically interconnected with an integral electrical signal processing and storage unit 17 with Screen or monitor 18.
  • the unit 17 is in particular a Personal computer (PC).
  • PC Personal computer
  • the transportable electronic cabinet unit C includes means 15, 17 for electronic Signal processing, storage and display of electrical at least one IR light detector 8 supplied Signals and second means 16 for controlling the measuring head A.
  • These include: At least one electronic amplifier stage 15 and an associated electronic computing unit 17, further that between the amplifiers 13, 15 and the electronic Computer unit 17 turned on control module 16.
  • On the Screen 18 shows the IR light signals collected and processed data presented.
  • the control module 16 generates the control signals for setting the Laser beam characteristics for the Laser FL, such as pulse-pause ratio and beam power, beam path pattern, and scan path pattern as well as scan speed.
  • the electronic cabinet unit C and the integral measuring head A only by a highly flexible electrical cable C1 (cf. FIGS. 3 and 4) a relatively large range with one another connected. This also means that the electronic cabinet unit C possible, measuring points in wide range can be reached.
  • Figure 1 with 19 are an electrical signal line between the amplifier 15 and the laser FL and designated 20 one further electrical signal line for controlling the mirror scanner arrangement 5 of corresponding signal output terminals of the personal computer or the computing unit 17.
  • a cable for supplying the measuring head A with electrical Energy not shown separately. Such a power supply cable but is in the flexible connection cable C1 Figure 3 and Figure 4 included.
  • the mirror scanner arrangement 5 which consists of two scanners, can be seen more clearly -Mirrors 5a, 5b, which are optically connected in series, the scanner mirror 5a is mounted adjustably about the axis of rotation 21 and the scanner mirror 5b is rotatably mounted about the axis of rotation 22, so that the scanner mirror 5a on it thrown laser beam f 1 in the direction ⁇ x and the scanner mirror 5b adjusts the laser beam thrown onto it in the direction ⁇ y (cf. FIG. 11).
  • a housing 23 for the laser FL is indicated in its outline and a pilot laser DL structurally combined with this housing 23 in the form of a diode laser, from which a pilot beam f 2 takes its exit, which enters the beam path via the second deflecting mirror 2b of the laser beam f 1 is injected.
  • the beams f 1 (laser beam) and f 2 (pilot beam) initially run parallel to one another.
  • the laser beam f 1 is deflected twice by 90 ° by the two successively connected first and second deflection mirrors 2a, 2b, and after the second deflection (after the second deflection mirror 2b), both beams f 1 and f 2 collide with one another.
  • the second deflection mirror 2b is designed to couple in the pilot beam f 2 as a dichroic mirror which reflects the laser beam f 1 with its reflection side, but at the same time allows the pilot beam f 2 arriving from the other side to pass through as a transparent window. Both beams f 1 , f 2 then pass through the expansion optics 3 and reach the dielectric mirror 4a.
  • the pilot laser DL is only switched on when the scan zone 9 (FIG. 1) is to be defined. The pilot beam f 2 thus arrives (when the laser FL is not yet working and the pilot laser DL is switched on) via the dielectric coupling mirror 4a and the scanner mirror arrangement 5 through the double optics 6 on the material sample and thereby generates a red dot, for example.
  • the pilot laser DL should preferably continue to be operated so that the actual measurement process can be followed when it starts after the laser FL is switched on.
  • a number of desk-type bearing elements for the above-described optics are indicated in a kind of phantom representation and are generally designated by 24.
  • the laser beam f 1 and the pilot beam f 2 and the beam of the IR light signals emitted by the material sample are highlighted by means of reinforced lines.
  • the beam paths of all three beam types are common between the coupling mirror 4a and the double optics 6; only IR radiation exists in front of the coupling mirror 4a up to the IR detector 8.
  • (+) the beam direction is in the direction of the material sample and (-) the direction of the IR light signals emitted by the material sample.
  • the following table provides a clear summary of the properties of the individual optics as well as the optical conditions for the three beam types f 1 , f 2 and - ⁇ f 3 and also shows in the right column the degrees of transmission of the optics and the reflectance of the mirrors for the laser radiation f 1 on. Multiplying the values in the right column gives a resulting combined (first) transmittance and reflection factor for the laser beam f 1 of 0.829 and 82.9%.
  • FIGs 3 and 4 are the same parts to Figure 1 with the provided with the same reference numerals.
  • the portable measuring head A with cooling slots 25 for removing the Heat loss provided he is on platform 26 a tripod 27 and arranged with a flexible cable C1 the electronic cabinet unit C connected.
  • Figure 5 shows the double optics 6 on the front Al of the measuring head A, the Coupling mirror 4a and the IR deflection mirror 4b and the scanner mirror arrangement 5.
  • Figure 6 shows the drive 5bl for one scanner mirror 5b and the other scanner mirror 5a to see, as well as the double optics 6.
  • Figure 7 shows in their Outlined the laser FL with its expansion optics 1, the two him downstream deflection mirror 2a, 2b, the coupling mirror 4a, the IR deflecting mirror 4b (which is circular in the drawing is) and the second optics 3, which are part of the expanding optics is.
  • FIG. 8 shows the snapshot of a scan zone, enlarged, namely, micro-pores found in creep stresses Pipelines.
  • FIG. 9 shows that an energy supply unit is attached to the measuring head A.
  • AO can be attached so that no power supply cable to the measuring head must be relocated.
  • This supply unit AO can contain rechargeable batteries.
  • Figure 10 shows that there is a separate, at the actual Measuring head attachable unit A2 is possible, relatively thin-walled Material samples B 'on the radiated from their back
  • IR radiation which via the IR optics 26, the two deflecting mirrors 27, 28 and a further IR optic 29 via an entry window 30 of the measuring head A onto the deflecting mirror 4b from the back.
  • This deflecting mirror 4b is a dichroic mirror for this application, where then the further beam path to the IR lens 7 and IR detector 8 is as explained with reference to Figure 2.
  • a method is implemented in which the material sample B 'is illuminated on a front side with the laser beam f 1 in accordance with an illumination path pattern.
  • the IR light signals - ⁇ f 4 emitted from the back of the material sample B' can now be scanned in accordance with a scanning path pattern.
  • This can e.g. B. happen so that the deflecting mirrors 27, 28 are designed as scanner mirrors, which are deflected according to the scanner mirrors 5a, 5b according to Figure 2 synchronously with them in the x or y direction by small amounts by motor.
  • the union takes place at the IR deflecting mirror 4b.
  • a space 31 is provided between the measuring head A and the additional unit for inserting the thin-walled material sample B '.
  • the IR light signal - ⁇ f 4 received by the additional unit A2 via the IR optics 26 is deflected by two 90 ° through a first housing-sealing light-conducting optics 29 from the additional unit into the intermediate space 31 and from there via a second housing-sealing optics 30 into the internal beam path of the IR light signals - ⁇ f 3 of the measuring head A.
  • This has the advantage that a single IR detector 8 is sufficient. In special cases, however, a separate IR detector can be assigned to the additional unit A2, so that a material sample B 'can be examined practically simultaneously from both sides.
  • the additional unit A2 can also be designed so that it can be swung in and out with respect to the axis of the laser beam f 1 , so that the measuring head A is suitable either for surface examinations or for radiographic examinations of thin-walled material samples.
  • Optical fibers for the laser light must be so-called monomode fibers. They act like a waveguide, which means that the rays pass through the core practically in a straight line. The coherence properties of the laser light are not or only slightly impaired. This requires a core diameter of a few ⁇ m, i.e. a few thousandths of a millimeter.
  • Such a fiber is required to enable diffraction-limited focusing and, consequently, high lateral resolution.
  • the disadvantages of single-mode fibers are a complex coupling mechanism and optics between the laser and the fiber entrance, as well as the high coupling losses that still arise. As measured in the laboratory under optimal conditions, they are 30 to 40%, in practical use, however, they are 50%. Compared to this, the attenuation losses in the fiber are relatively low (30 dB / km at 488 nm, 2 dB / km at 1064 nm).
  • the thermal microscope according to the present invention a collinear arrangement (match of laser and IR path between dichroic mirror 4a and double optics or scan lens 6) before, which with fiber optic technology is not can be realized since an IR optical fiber is not simultaneously Single mode fiber for the laser wavelength can be.
  • the others would be disadvantageous Transmission losses and the low mechanical resilience of IR fibers.
  • very good resulting transmission and reflection levels of at least 60% can be achieved with the thermal microscope according to the invention, both for the light path of the laser beam f 1 and the light path of the emitted IR light signals - ⁇ f 3 .
  • the first resulting degree of transmission and reflection for the laser beam f 1 can, even with good quality of the optics and coatings used, be in a range between 60 and 85% and is preferably at least 80%.
  • the corresponding values for the IR beam are somewhat lower, but are quite comparable with the favorable transmission and reflection levels that can be achieved for the laser beam f 1 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Lasers (AREA)

Abstract

Situated inside a portable measuring head (A) is the laser light source (FL), preferably a directly modulated, diode-pumped neodymium/YAG laser. Its laser beam (f1) is directed without optical waveguides using a scanner device (5) and a dual optical system (6) onto the scanning zone of the material sample (B) to be inspected. The irradiated measuring track is, for example, meander-shaped with beam deflection in the x and y direction. The dual optical system (6) transmits the IR light signals (- DELTA f3) emitted by the sample (B). These are focussed on an IR detector (8) via the scanner device (5) and a coupling mirror (4b) in the form of a dichroic mirror which reflects the laser beams (f1) in one direction and acts as a transparent window in relation to the IR light signals (- DELTA f3) in the other direction, and via an IR optical system (7). The IR detector (8) converts the IR light signals (- DELTA f3) into corresponding electrical signals. The measuring head (A) is connected via a flexible electrical connecting cable to an electronic image generating unit from which the electrical signals for controlling the laser (FL) and guiding the beam originate. <??>The invention also relates to a number of advantageous uses of the method and also to a device for carrying it out. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Verfahren zum Untersuchen der Eigenschaften von Materialien nach dem photothermischen Effekt, wie sie etwa aus EP-A-105078, US-A-3,803,413 oder auch WO-A-8200891 bekannt sind.The invention relates to a method for testing the properties of materials after the photothermal Effect such as are known from EP-A-105078, US-A-3,803,413 or WO-A-8200891.

Das Grundprinzip von photothermischen Untersuchungs- oder Meßverfahren basiert auf der Bestrahlung einer Prüfoberfläche mit Licht, insbesondere mit Laserlicht, und Auswertung der dadurch in den oberflächen-nächsten Schichten erzeugten Wärmesignale. Dabei wird die Tatsache genutzt, daß ein im Verhältnis zu seiner Umgebung erwärmter Körper immer bestrebt ist, dieses Mehr an Wärme abzugeben: Der Körper gibt Wärme in Form von Infrarot-Strahlung ab. Das Verfahren ist grundsätzlich auch dann anwendbar, wenn die Temperatur der Umgebung höher ist als die des Prüflings, weil es auf die Temperaturverteilung an der Prüfling-Oberfläche ankommt. Durch Messung der vom Prüfling emittierten Infrarot-(IR-) Lichtsignale können Tiefeninformationen und Informationen über die Materialbeschaffenheit der Oberfläche gewonnen werden, z.B. können ermittelt werden: Änderungen der Schichtdicken von Oberflächen, aber auch Risse, Einschlüsse und Delaminationen, dies alles naturgemäß zerstörungs- und berührungsfrei. Die Erfindung geht von den grundsätzlich bekannten Verfahrensschritten aus, mit einer intensiven Lichtquelle, insbesondere einem Laser, die Oberfläche der Materialprobe zu bestrahlen, wobei der Strahl bei einer Reihe von photothermischen Untersuchungsverfahren moduliert, d.h., insbesondere periodisch unterbrochen wird. Das Laserlicht wird an der Oberfläche teilweise in Wärme umgewandelt. Diese Wärme dringt in die Materialprobe ein. Ein Charakteristikum für das aus emittierten IR-Lichtsignalen gebildete Meßsignal ist, wie weit die Wärme eindringt. Dies hängt zum einen von der periodischen Bestrahlungsdauer ab, diese wird durch die Modulationsfrequenz bestimmt, zum anderen von den Materialeigenschaften Wärmeleitfähigkeit, spezifische Wärme und Dichte. Die letztgenannten drei Parameter werden zu einer physikalischen Größe, der thermischen Diffusionslänge µS, zusammengefaßt. Sie gibt direkt die Eindringtiefe der Wärmewellen an. Es gilt µS = (2a/ω), mit

ω =
Kreisfrequenz der Modulation des intensitätsmodulierten Laserstrahls
a =
Temperaturleitfähigkeit, wobei für a gilt:
a =
k/ ρ · c, mit
c =
spezifische Wärme
ρ =
Dichte
k =
Wärmeleitfähigkeit des Prüflings.
The basic principle of photothermal examination or measurement methods is based on the irradiation of a test surface with light, in particular with laser light, and evaluation of the heat signals generated thereby in the layers closest to the surface. The fact is used that a body that is warmed in relation to its surroundings always strives to give off this extra amount of heat: the body emits heat in the form of infrared radiation. In principle, the method can also be used if the temperature of the environment is higher than that of the test specimen because the temperature distribution on the test specimen surface is important. By measuring the infrared (IR) light signals emitted by the test object, depth information and information about the material properties of the surface can be obtained, for example it can be determined: changes in the layer thickness of surfaces, but also cracks, inclusions and delaminations, all of which are naturally destructive and non-contact. The invention is based on the fundamentally known method steps of irradiating the surface of the material sample with an intensive light source, in particular a laser, the beam being modulated, ie, in particular periodically interrupted, in a number of photothermal examination methods. The surface of the laser light is partially converted into heat. This heat penetrates into the material sample. A characteristic of the measurement signal formed from emitted IR light signals is how far the heat penetrates. This depends on the one hand on the periodic radiation duration, which is determined by the modulation frequency, and on the other hand on the material properties of thermal conductivity, specific heat and density. The latter three parameters are combined into a physical quantity, the thermal diffusion length μ S. It directly indicates the depth of penetration of the heat waves. It applies µ S = (2a / ω) , With
ω =
Angular frequency of the modulation of the intensity-modulated laser beam
a =
Thermal conductivity, where for a:
a =
k / ρ · c, with
c =
Specific heat
ρ =
density
k =
Thermal conductivity of the test object.

Durch die EP-A1-0 105 078 ist eine Einrichtung zur Durchführung des geschilderten Verfahrens zum Untersuchen der Eigenschaften von absorptionsfähigen Materialien nach dem photothermischen Effekt bekannt, bei welcher von einem stationären oder quasi-stationären Laser die Laserwellen zu einem an die Materialprobe optisch ankoppelbaren Prüfkopf mittels flexibler Lichtwellenleiterkabel transportierbar sind. Außerdem können von dem Prüfkopf die IR-Lichtsignale zu einem entfernt vom Prüfkopf angeordneten Infrarot-Detektor ebenfalls über flexible Lichtwellenleiterkabel transportiert werden. Der Meßkopf selbst enthält gehäuse-interne strahlführende Mittel, und zwar am Eingang der Laserstrahlen und am Ausgang der IR-Lichtsignale, hier je eine Fokussier-linse, ferner einen im Strahlenweg beider Linsen angeordneten Koppelspiegel, ausgebildet als dichroitischer Spiegel 1). Weiterhin ist in dem für die Laserstrahlen und die IR-Lichtsignale gemeinsamen Lichtweg eine Kristallstange, insbesondere aus Saphir bestehend, angeordnet und dieser Stange nachgeschaltet eine Fokussierlinse, welche die Laserstrahlung auf die Materialprobe fokussiert bzw. von dieser die IR-Lichtsignale empfängt. Die Lichtwellenleiter stellen bei der Materialuntersuchung ein empfindliches Element dar; außerdem dämpfen sie die in ihnen transportierte Laserstrahlung bzw. die IR-Lichtsignale.EP-A1-0 105 078 discloses a device for carrying out the described method for examining the properties of absorbent materials according to the photothermal effect, in which the laser waves from a stationary or quasi-stationary laser to a test head that can be optically coupled to the material sample can be transported using flexible fiber optic cables. In addition, the IR light signals can also be transported from the test head to an infrared detector arranged remotely from the test head via flexible optical waveguide cables. The measuring head itself contains housing-internal beam-guiding means, specifically at the input of the laser beams and at the output of the IR light signals, here a focusing lens each, and also a coupling mirror arranged in the beam path of both lenses, designed as a dichroic mirror 1) . Furthermore, a crystal rod, in particular made of sapphire, is arranged in the light path common to the laser beams and the IR light signals, and this rod is followed by a focusing lens which focuses the laser radiation on the material sample or receives the IR light signals from it. The optical fibers represent a sensitive element in the material examination; they also attenuate the laser radiation or IR light signals they carry.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Untersuchen der Eigenschaften von Materialien nach dem photothermischen Effekt zu schaffen, mit welchem ohne die Leitung der Laserwellen über Lichtwellenleiter von einem externen stationären oder quasi-stationären Laser zu dem Meßkopf und ohne eine Verbindung von einem externen Infrarotlicht-Detektor zu dem Meßkopf über Lichtwellenleiterkabel ausgekommen werden kann. Eine weitere Aufgabe der Erfindung besteht darin, die Führung des Laserstrahls von der Laserlichtquelle einerseits bis zur Materialprobe andererseits sowie die Führung der IR-Lichtsignale von der Materialprobe zum Infrarotlicht-Detektor so zu gestalten, daß sich möglichst kurze Strahlwege ergeben und die Möglichkeit eröffnet ist, eine zweite Laserlichtquelle einzukoppeln.The invention has for its object a method for Examining the properties of materials after the photothermal To create effect with which without the line the laser waves via optical fibers from an external stationary or quasi-stationary laser to the measuring head and without one Connection from an external infrared light detector to the measuring head can be managed via fiber optic cables. A another object of the invention is the management of Laser beam from the laser light source on the one hand to the material sample on the other hand, as well as the guidance of the IR light signals from the To design material sample to the infrared light detector so that beam paths are as short as possible and the possibility is opened to couple a second laser light source.

Die gestellte Aufgabe wird bei dem eingangs genannten Verfahren zum Untersuchen der Eigenschaften von Materialien nach dem photothermischen Effekt durch die Verfahrensmerkmale gemäß Anspruch 1 gelöst. The task is in the procedure mentioned above to investigate the properties of materials after the photothermal Effect achieved by the process features according to claim 1.

Vorteilhafte Weiterbildungen dieses Verfahrens nach der Erfindung sind in den Patentansprüchen 2 bis 17 sowie 39 angegeben.Advantageous developments of this method according to the invention are specified in claims 2 to 17 and 39.

Gegenstand der Erfindung sind auch mehrere vorteilhafte Verwendungen dieses Verfahrens gemäß den Patentansprüchen 18 bis 22. So kann das Verfahren nach der Erfindung verwendet werden im Rahmen der zerstörungsfreien Werkstoffprüfung zur Detektion von Materialinhomogenitäten, Materialfehlern, Delaminationen sowie Korrosions- und Erosionserscheinungen, zum Beispiel zur

  • Detektion von Zeitstandschädigungen, in Form von Cavities in metallischen Werkstoffen,
  • zur Kontrolle auf Fehler an
    • Elektrobauteilen, wie Chips, Halbleitern, Solarzellen,
    • Lötstellen,
    • Erzeugnissen der Papierindustrie auf Dicke, Faserverteilung, Haftung,
    • Erzeugnissen der Kunststoffindustrie auf Porositäten, Faser- verteilung und Orientierung und
  • zur Prozeßkontrolle.
The invention also relates to several advantageous uses of this method according to claims 18 to 22. Thus, the method according to the invention can be used in the context of non-destructive material testing for the detection of material inhomogeneities, material defects, delaminations as well as signs of corrosion and erosion, for example for
  • Detection of creep damage, in the form of cavities in metallic materials,
  • to check for errors
    • Electrical components such as chips, semiconductors, solar cells,
    • Solder joints,
    • Paper industry products on thickness, fiber distribution, adhesion,
    • Products of the plastics industry on porosity, fiber distribution and orientation and
  • for process control.

Das Verfahren kann auch verwendet werden zur Ermittlung von Materialstrukturen, Materialkenngrößen, wie zum Beispiel Dichte, Leitfähigkeit, Härtegrad, und zur Ermittlung von Materialzuständen.The method can also be used to determine Material structures, material parameters, such as density, Conductivity, degree of hardness, and to determine material conditions.

Eine weitere vorteilhafte Verwendung besteht in der Messung von Schichtdicken, Belegungen, Oberflächenqualitäten, zum Beispiel Rauhtiefen, und zur Messung der Haftung von Beschichtungen.Another advantageous use is in the measurement of Layer thicknesses, coverings, surface qualities, for example Surface roughness, and for measuring the adhesion of coatings.

Eine spezielle Verwendung des Verfahrens erstreckt sich auf die Spurensuche, z.B. auf Fingerabdrücke. Das Verfahren ist gemäß einer weiteren Verwendung auch geeignet zum Aufspüren und Aufdecken von Fälschungen, z.B. bei Banknoten, Gemälden, Metall-Legierungen, Münzen, Keramiken und antiken Möbeln.A special use of the method extends to Searching for clues, e.g. for fingerprints. The procedure is according to Another use also suitable for tracking and uncovering counterfeits, e.g. for banknotes, paintings, metal alloys, Coins, ceramics and antique furniture.

Gegenstand der Erfindung ist ferner eine vorteilhafte Einrichtung gemäß Patentanspruch 23 zur Durchführung des Verfahrens nach den Verfahrensansprüchen 1 bis 17 welchen die zum Gegenstand des Anspruchs 1 erläuterte Aufgabenstellung zugrundeliegt. The invention further relates to an advantageous device according to claim 23 to carry out the method according to method claims 1 to 17 which explained the subject of claim 1 Underlying task.

Vorteilhafte Weiterbildungen zum Gegenstand des Anspruchs 23 sind in den Ansprüchen 24 bis 37 angegeben, ferner eine bevorzugte Ausführungsform eines Wärmemikroskops im nebengeordneten Anspruch 38.Advantageous further developments on the subject matter of claim 23 are given in claims 24 to 37, further preferred Embodiment of a thermal microscope in the sibling Claim 38.

Die mit der Erfindung erzielbaren Vorteile sind vor allem darin zu sehen, daß nun Laserlichtquellen verhältnismäßig geringer Leistung und kleiner Bauform eingesetzt werden können, weil die Meßkopf-externe und/oder Meßkopf-interne Dämpfung der Laserstrahlen durch die Lichtwellenleiter und ihre Einkoppelmechanik sowie Einkoppeloptik entfällt. So kann z.B. ein diodengepumpter Neodym/YAG-Laser mit einer Wellenlänge von 1064 nm, welcher unsichtbares Licht im nahen Infrarotbereich abstrahlt, verwendet werden, welcher eine Leistung von nur 0,35 W hat, wobei ein kombinierter Transmissions- und Reflexionsgrad für den Laserstrahl von 82,9 % erreicht werden konnte. Im Inneren des Meßkopfes ergibt sich eine sehr präzise Strahlführung, was im Sinne einer Verbesserung der Genauigkeit und der Empfindlichkeit wirkt. Für die Einrichtung zur Durchführung des Verfahrens nach der Erfindung ergeben sich eine Mehrzahl von vorteilhaften Ausgestaltungsmöglichkeiten. So kann in das Gehäuse des Meßkopfes ein weiterer Laser in Form eines Pilotlasers integriert werden, der bevorzugt ein Diodenlaser, ebenfalls geringer Leistung, ist, der z.B. im sichtbaren Rotlichtbereich mit einer Wellenlänge von 670 nm und einer Leistung von 3 mW abstrahlt. Zur Einkopplung des Pilotstrahls ist eine Ausführung günstig, bei der der Laserstrahl, welcher zunächst achsparallel zum Pilotstrahl verläuft, über zwei hintereinander geschaltete Umlenkspiegel um je 90° umgelenkt wird, wobei nach der zweiten Umlenkung der Laserstrahl und der Pilotstrahl auf der gleichen Lichtbahn sind, d.h., der zweite Umlenkspiegel ist hierzu insbesondere als dichroitischer Spiegel auszubilden, welcher auf seiner reflektierenden Seite den Laserstrahl in seinen weiteren Strahlenweg schickt und der auf seiner anderen Seite den Pilotstrahl empfängt und diesen wie ein durchlässiges Fenster praktisch verlustfrei durchläßt. Der Pilotstrahl ist sehr vorteilhaft zum Einjustieren des Meßkopfes, indem durch ihn z.B. ein roter Lichtfleck auf die Materialprobe geworfen wird und nun nach diesem roten Lichtfleck die Scan-Zone gewählt werden kann. Weiterhin ist es günstig, nach dem zweiten Umlenkspiegel, also innerhalb des gemeinsamen Lichtweges für Pilot- und Laserstrahl, eine Optik anzuordnen, die zusammen mit der unmittelbar am Laserausgang angeordneten Optik eine Aufweitoptik bildet, welche vorteilhaft auf kurzem Strahlweg paralleles Laserlicht erzeugt. Die Aufweitoptik besteht also aus einer Laserausgangsseitigen ersten Optik, welche die Strahldivergenz erhöht, und der vorgenannten, dem zweiten Umlenkspiegel nachgeschalteten zweiten Optik, welche das Laserlicht parallelisiert. Optisch nachgeschaltet ist dieser Aufweitoptik dann der Koppelspiegel, von dem der Laserstrahl und der Pilotstrahl über die Scanner-Anordnung in die Achse der laserstrahl-endseitigen lichtleitenden Optik geworfen werden. Letztere ist eine Linse oder ein Linsensystem besonderer Eigenschaften, welche den Laserstrahl (und natürlich auch den Pilotstrahl) in Richtung auf die Materialprobe durchläßt oder transmittiert. In der entgegengesetzten Richtung läßt dieses Linsensystem die IR-Lichtsignale durch. Geeignet für diese Zwecke ist ein Zink-Selenid-Glas mit einer frontseitigen Beschichtung. Diese frontseitige Beschichtung hat die Aufgabe, die IR-Lichtdurchlässigkeit in einem bestimmten Spektralbereich zu verbessern, z.B. im Bereich 2 - 5 µm. Durch eine andere Auslegung (Linsenform, Material und Beschichtungsauswahl) ist es jedoch auch möglich, diese Verbesserung auf einen größeren Bereich auszudehnen, insbesondere den Bereich 8 - 12 µm ("zweites IR-Fenster"). The advantages that can be achieved with the invention are above all in it to see that now laser light sources are relatively lower Power and small size can be used because the External and / or internal measurement head attenuation of the laser beams through the optical fibers and their coupling mechanism and coupling optics are omitted. For example, a diode pumped Neodymium / YAG laser with a wavelength of 1064 nm, which is invisible Emits light in the near infrared range which has a power of only 0.35 W, with a combined Degree of transmission and reflection for the laser beam of 82.9% could be achieved. Inside the measuring head a very precise beam guidance, which is in the sense of a Improves accuracy and sensitivity. For the device for performing the method according to the invention there are a number of advantageous design options. So another in the housing of the measuring head Lasers can be integrated in the form of a pilot laser, which is preferred a diode laser, also of low power, which e.g. in the visible red light range with a wavelength of 670 nm and emits a power of 3 mW. For coupling the pilot beam is a cheap version in which the laser beam, which initially runs axially parallel to the pilot beam, over two Deflecting mirrors connected in series are deflected by 90 ° each is, after the second deflection of the laser beam and Pilot beam are on the same light path, i.e., the second Deflecting mirror is especially for this purpose as a dichroic mirror form which of the laser beam on its reflective side in his further ray path and that on his the other side receives the pilot beam and this like a permeable Windows lets through practically without loss. The pilot beam is very advantageous for adjusting the measuring head, by e.g. a red spot of light on the material sample is thrown and now after this red light spot the scan zone can be chosen. Furthermore, it is convenient after the second Deflecting mirror, i.e. within the common light path for Pilot and laser beam to arrange an optics that together with the optics arranged directly at the laser output are expanded optics forms which advantageously parallel on a short beam path Laser light generated. The expansion optics therefore consists of a Laser output side first optics, which show the beam divergence increased, and the aforementioned, the second deflecting mirror downstream second optics, which parallelizes the laser light. This expansion optic is then optically connected Coupling mirror, from which the laser beam and the pilot beam over the scanner arrangement in the axis of the laser beam end light-guiding optics are thrown. The latter is a lens or a lens system with special properties, which the Laser beam (and of course the pilot beam) in the direction transmits or transmits to the material sample. In the opposite direction, this lens system leaves the IR light signals through. A is suitable for this purpose Zinc selenide glass with a coating on the front. This front coating has the task of IR light transmission to improve in a certain spectral range e.g. in the range 2 - 5 µm. By a different interpretation (lens shape, However, it is also the choice of material and coating) possible to extend this improvement to a larger area especially the range 8 - 12 µm ("second IR window").

Der Meßkopf weist in der Strahlenachse des Koppelspiegels und des ersten Scanner-Anordnung - in Richtung der von der Materialprobe her ankommenden IR-Lichtsignale gesehen - einen nachgeschalteten IR-Umlenkspiegel auf, welcher die IR-Lichtsignale z.B. um 90° durch ein diesem Umlenkspiegel nachgeschaltetes Infrarotobjektiv auf den wenigstens einen Infrarot-Detektor weiterleitet, wobei das Infrarotobjektiv die IR-Lichtsignale auf die Empfangsflächen des genannten IR-Detektors fokussiert. Der genannte IR-Umlenkspiegel kann eine Normalausführung aufweisen, wenn er lediglich zur Reflexion der IR-Lichtsignale dient, die von der Materialprobe über die Scanner-Anordnung und den Koppelspiegel ihm zugeleitet werden. Soll über diesen IR-Umlenkspiegel jedoch auch IR-Strahlung eingekoppelt werden, die von einem Zusatzaggregat im Falle der Durchstrahlungsprüfung über dessen internes Spiegelsystem zugeführt wird, dann ist es zweckmäßig, diesen IR-Umlenkspiegel so auszuführen und anzuordnen, daß er in Bezug auf den zweiten Lichtweg als ein durchlässiges Fenster wirkt und im Bezug auf den ersten IR-Lichtweg als ein Spiegel.The measuring head points in the beam axis of the coupling mirror and of the first scanner arrangement - towards that of the material sample seen arriving IR light signals - a downstream IR deflecting mirror on which the IR light signals e.g. through 90 ° through a deflection mirror connected downstream Forwards the infrared lens to the at least one infrared detector, the infrared lens the IR light signals on the Focused receiving surfaces of the IR detector mentioned. The named IR deflecting mirror can have a normal design, if it only serves to reflect the IR light signals that from the material sample to the scanner arrangement and the coupling mirror be sent to him. Should be via this IR deflecting mirror however, IR radiation can also be injected by a Additional unit in the case of the radiographic test via its internal mirror system is fed, then it is appropriate execute and arrange this IR deflecting mirror so that it in Regarding the second light path as a translucent window acts and in relation to the first IR light path as a mirror.

Der Laserlichtquelle ist, wie erwähnt, zweckmäßigerweise eine Aufweitoptik für den Laserstrahl zugeordnet. Die Scanner-Anordnung weist bevorzugt zwei Scanner-Spiegel auf, welche von zugehörigen Antrieben so bewegt werden, daß der eine Scanner-Spiegel der Strahlablenkung in x-Richtung und der andere der Strahlablenkung in y-Richtung dient.As mentioned, the laser light source is expediently one Assigned expansion optics for the laser beam. The scanner arrangement preferably has two scanner mirrors, which of associated Drives are moved so that a scanner mirror the beam deflection in the x direction and the other the Beam deflection in the y direction is used.

Der Meßkopf kann noch - wie bereits angedeutet - durch ein Zusatzaggregat ergänzt werden, welches - bei Materialproben hinreichend geringer Wanddicke -hinter der Materialprobe positioniert wird und die von der Rückseite der Materialprobe emittierte IR-Strahlung bzw. entsprechende IR-Lichtsignale empfängt und über ein internes Umlenk-Spiegelsystem verfügt, welches die IR-Lichtsignale in den IR-Strahlengang des eigentlichen Meßkopfes sendet bzw. reflektiert. The measuring head can - as already indicated - by a Additional unit can be added, which - for material samples sufficient wall thickness behind the material sample is positioned and from the back of the material sample emitted IR radiation or corresponding IR light signals receives and has an internal deflection mirror system, which the IR light signals in the IR beam path of the actual Sensor sends or reflects.

Im folgenden werden anhand mehrerer in der Zeichnung dargestellter Ausführungsbeispiele zunächst eine Einrichtung zur Durchführung des Verfahrens nach der Erfindung, sodann das Verfahren selbst sowie weitere Vorteile und Einzelheiten erläutert. In der Zeichnung zeigen in zum Teil vereinfachter, schematischer Darstellung:

FIG 1
eine Einrichtung nach der Erfindung, aufgegliedert in die rechts dargestellte Materialprobe, den in der Mitte dargestellten Meßkopf und die im linken Teil gezeigten transportable elektronische Schrankeinheit, wobei eine Blockschaltbild-Darstellung gewählt ist;
FIG 2
in isometrischer Darstellung einer Computergraphik das Innere des Meßkopfes in detaillierterer Darstellung der strahlführenden Mittel;
FIG 3
die Außenansicht auf eine Einrichtung nach der Erfindung in fotografischer Perspektive, wobei in Abwandlung zu FIG 1 die elektronische Schrankeinheit nicht in Turmbauweise, sondern in Flachbauweise angeordnet ist;
FIG 4
den Gegenstand nach FIG 3 mit einer in Turmbauweise angeordneten Schrankeinheit;
FIG 5
eine Ansicht des portablen Meßkopfes von oben;
FIG 6
eine Darstellung des Meßkopfes bei Betrachtung in Richtung A' von FIG 3 bzw. FIG 4;
FIG 7
einen Schnitt nach der Schnittebene VII-VII aus FIG 5 und
FIG 8
ein Diagramm, welches auf dem Farbmonitor der elektronischen Schrankeinheit dargestellt wurde, wobei die Länge der Abszissenachse des Diagramms 300 µm und die Ordinatenachse 400 µm repräsentiert und wobei Mikroporen verschiedener Größe dargestellt sind, welche an zeitstandsbeanspruchten Rohrleitungen festgestellt wurden;
FIG 9
schematisch in Draufsicht den Meßkopf in einer Abwandlung mit angebauter Stromversorgungseinheit und
FIG 10
eine weitere Abwandlung des Meßkopfes in Draufsicht schematisch, wobei ein Zusatzaggregat zur Ausmessung von Materialproben relativ geringer Wanddicke an den eigentlichen Meßkopf angebaut ist;
FIG 11
perspektivisch-schematisch drei verschiedene Anstrahl- und Abtast-Bahnmuster, die mittels x-/y-Ablenkung verwirklicht werden können.
In the following, a device for carrying out the method according to the invention is first explained using several exemplary embodiments shown in the drawing, then the method itself and further advantages and details are explained. The drawing shows in a partially simplified, schematic representation:
FIG. 1
a device according to the invention, divided into the material sample shown on the right, the measuring head shown in the middle and the portable electronic cabinet unit shown in the left part, a block diagram representation being selected;
FIG 2
in an isometric representation of a computer graphic, the interior of the measuring head in a more detailed representation of the beam guiding means;
FIG 3
the external view of a device according to the invention in a photographic perspective, the electronic cabinet unit being arranged in a flat construction, not in a tower construction, in a modification of FIG. 1;
FIG 4
the object of Figure 3 with a tower unit arranged cabinet unit;
FIG 5
a view of the portable measuring head from above;
FIG 6
a representation of the measuring head when viewed in the direction A 'of FIG 3 or 4;
FIG 7
a section along the section plane VII-VII of Figure 5 and
FIG 8
a diagram, which was shown on the color monitor of the electronic cabinet unit, the length of the axis of abscissas of the diagram representing 300 microns and the ordinate axis of 400 microns and showing micropores of different sizes, which were found on pipeline stressed pipes;
FIG. 9
schematically in plan view of the measuring head in a modification with attached power supply unit and
FIG 10
a further modification of the measuring head in plan view schematically, wherein an additional unit for measuring material samples of relatively small wall thickness is attached to the actual measuring head;
FIG 11
perspective-schematic three different beam and scanning path patterns that can be realized by means of x / y deflection.

Figur 1 zeigt in drei Blöcken die wesentlichen Elemente des Verfahrens zum Untersuchen der Eigenschaften von absorptionsfähigen Materialien, in diesem Falle der Materialprobe B, nach dem photothermischen Effekt und der Einrichtung zu seiner Durchführung. Der Meßkopf A, durch schwarze Umrandung hervorgehoben, ist als integraler Lasermeßkopf ausgeführt. Er enthält einen direkt modulierten, diodengepumpten Neodym/YAG-Laser FL, der im Wellenlängenbereich 1064 nm, d.h. im unsichtbaren nahen IR-Bereich, abstrahlt, und eine Leistung von ca. 0,35 W aufweist. Diese Laserlichtquelle FL, im folgenden abgekürzt als Laser bezeichnet, ist durch ein Quadrat schematisch angedeutet. Über eine Aufweitoptik 1 gelangt der Laserstrahl f1 zu einem dielektrischen Spiegel 4a, welcher den Laserstrahl f1 um 90° in Richtung auf eine Scanner-Spiegelanordnung 5 umlenkt. Von dieser gelangt der Laserstrahl über eine laserstrahl-endseitige lichtleitende Optik 6, dargestellt als eine Konvex-Linse, welche zugleich das Austrittsfenster für die Laserstrahlung f1 des Meßkopfes A und das Eintrittsfenster für die IR-Lichtsignale bildet, fokussiert auf die Frontfläche bl der Materialprobe B, und zwar in einem Meßpunkt b2. Oberhalb der Materialprobe B sind in Figur 11 zwei Koordinatenachsen ± x und ± y dargestellt, welche das Ablenksystem zur Strahlablenkung oder Meßpunktabtastung gemäß einem Anstrahl-Bahnmuster bzw. einem entsprechenden Abtast-Bahnmuster für die emittierte IR-Strahlung symbolisieren sollen. Das Anstrahl- und das Abtastbahnmuster verlaufen vorzugsweise in horizontalen oder vertikalen Mäandern oder in spiraligen Bahnen, wie schematisch angedeutet. Auch andere Anstrahl- und Abtast-Bahnmuster sind möglich, z. B. konzentrische Kreise. Die beiden Koordinatenachsen ± x und ± y sind gestrichelt umrahmt von einer Linie 9, welche z.B. eine Scan-Zone sein kann. Aufgrund der auftreffenden Laserstrahlung, welche nach einem bestimmten Puls-Pausen-Verhältnis moduliert sein kann und im jeweiligen Meßpunkt eine Wärmemenge, die eine Energie von z.B. 2 . 10-5 Ws entspricht, erzeugt, emittiert die Materialprobe B zeitlich phasenverschoben IR-Lichtsignale - Δ f3. Das Minus-Vorzeichen soll die zu der auftreffenden Laserstrahlung f1 entgegengesetzte Richtung symbolisieren. Diese IR-Lichtsignale werden zur lichtleitenden Optik 6 emittiert und von dieser durchgelassen, denn es handelt sich um eine im folgenden als Doppeloptik bezeichnete Optik, welche in Richtung auf die Materialprobe B die Laserstrahlung f1 durchläßt und fokussiert und welche in der entgegengesetzten Richtung bevorzugt die emittierten IR-Lichtsignale durchläßt. Bevorzugt hat diese Doppeloptik 6 an ihrer Frontseite eine Beschichtung, welche als Fenster für einen Spektralbereich von 2 - 5 µm im Infrarotbereich wirkt, dagegen praktisch nicht das Laserlicht mit seiner Wellenlänge von 1,064 µm in der Strahlrichtung der IR-Lichtsignale transmittiert. Zum Beispiel besteht diese Doppeloptik 6 aus Zn-Selenid-Glas und/oder Ca-Fluorid und/oder Ba-Fluorid.FIG. 1 shows in three blocks the essential elements of the method for examining the properties of absorbent materials, in this case material sample B, after the photothermal effect and the device for carrying it out. The measuring head A, highlighted by a black border, is designed as an integral laser measuring head. It contains a directly modulated, diode-pumped neodymium / YAG laser FL, which emits in the 1064 nm wavelength range, ie in the invisible near IR range, and has an output of approx. 0.35 W. This laser light source FL, hereinafter abbreviated as laser, is indicated schematically by a square. A diverging optic 1, the laser beam passes f 1 to a dielectric mirror 4a which the laser beam f 1 by 90 ° in the direction of a scanning mirror arrangement 5 deflects. From this, the laser beam passes through a light-guiding optic 6 at the end of the laser beam, shown as a convex lens, which also forms the exit window for the laser radiation f 1 of the measuring head A and the entry window for the IR light signals, focused on the front surface bl of the material sample B, namely at a measuring point b2. Above the material sample B, two coordinate axes ± x and ± y are shown in FIG. 11, which are intended to symbolize the deflection system for beam deflection or measuring point scanning in accordance with an irradiation path pattern or a corresponding scanning path pattern for the emitted IR radiation. The beam and scan path patterns preferably run in horizontal or vertical meanders or in spiral paths, as indicated schematically. Other spot and scan path patterns are possible, e.g. B. concentric circles. The two coordinate axes ± x and ± y are dashed and framed by a line 9, which can be a scan zone, for example. Due to the incident laser radiation, which can be modulated according to a certain pulse-pause ratio, and in the respective measuring point a quantity of heat that has an energy of, for example, 2. 10 -5 Ws corresponds to, generated, the material sample B emits IR light signals out of phase - Δ f 3 . The minus sign is intended to symbolize the direction opposite to the incident laser radiation f 1 . These IR light signals are emitted to the light-guiding optics 6 and let them pass, because this is what is referred to as double optics in the following, which transmits and focuses the laser radiation f 1 in the direction of the material sample B and which preferably favors in the opposite direction emits IR light signals. This double optics 6 preferably has a coating on its front which acts as a window for a spectral range of 2-5 μm in the infrared range, but practically does not transmit the laser light with its wavelength of 1.064 μm in the beam direction of the IR light signals. For example, this double optic 6 consists of Zn selenide glass and / or Ca fluoride and / or Ba fluoride.

Die von der Doppeloptik 6 durchgelassene IR-Strahlung -Δ f3 wird zunächst auf die Scanner-Spiegelanordnung 5 und von dieser auf einen halbdurchlässigen Koppelspiegel 4a geworfen, dieser ist ausgeführt als dichroitischer Spiegel, der in Richtung des Laserstrahls f1 reflektiert, aber in der dazu entgegengesetzten Richtung als ein bezüglich der IR-Lichtsignale durchlässiges Fenster wirkt. Doppeloptik 6 und Koppelspiegel 4a wirken als Auskoppelelement für die emittierten IR-Lichtsignale. Vom Koppelspiegel 4a werden die IR-Lichtsignale auf einen ihm optisch nachgeschalteten IR-Umlenkspiegel 4b geworfen, der die IR-Lichtsignale z.B. um 90° umlenkt und auf das IR-Objektiv 7 leitet. Durch entsprechende Auslegung der Doppeloptik 6 bzw. durch Ausbildung eines optischen Systems bestehend aus Optiken für sichtbares Licht und für IR-Licht, ist es auch möglich, die IR-Dektektion in einem über den örtlichen Abstand einstellbaren zeitlichen Abstand zur Laseranregung "nachlaufen" zu lassen, um so eine definierte Tiefenzone der Probe zu detektieren oder diese - wenn ihre Wanddicke nicht zu groß ist - so anzustrahlen, daß sie von ihrer Rückseite IR-Lichtsignale aussendet bzw. emittiert. Wie erwähnt, werden bevorzugt für die Doppeloptik 6 Gläser verwendet, die in ihren Eigenschaften so ausgelegt werden, daß sowohl für die Laserstrahlen f1 als auch für die IR-Strahlung - Δ f3 die Wirkung einer Sammel-Linse erzielt wird. Durch die Veränderung der Apertur der Doppeloptik 6, z.B. durch Änderung des Aufbaus und der Anordnung der optischen Elemente, kann ein dem Meßzweck angepaßter Anteil der von der Materialprobe B emittierten IR-Lichtsignale vergrößert und auf den IR-Detektor gelenkt werden. Die Funktion der Doppeloptik 6 kann grundsätzlich durch holographisch/optische Elemente ersetzt werden.The IR radiation -Δ f 3 transmitted through the double optics 6 is first thrown onto the scanner mirror arrangement 5 and from there onto a semi-transparent coupling mirror 4a, which is designed as a dichroic mirror which reflects in the direction of the laser beam f 1 , but in the opposite direction acts as a window that is transparent to the IR light signals. Double optics 6 and coupling mirror 4a act as a decoupling element for the emitted IR light signals. The IR light signals are thrown from the coupling mirror 4a onto an IR deflecting mirror 4b which is optically connected to it and which deflects the IR light signals, for example by 90 °, and directs them to the IR objective 7. By appropriate design of the double optics 6 or by designing an optical system consisting of optics for visible light and for IR light, it is also possible to "run" the IR detection at a time interval that can be adjusted via the local distance from the laser excitation in order to detect a defined depth zone of the sample or to illuminate it - if its wall thickness is not too great - in such a way that it emits or emits IR light signals from its rear. As mentioned, 6 glasses are preferably used for the double optics, the properties of which are designed such that the effect of a collective lens is achieved both for the laser beams f 1 and for the IR radiation - Δ f 3 . By changing the aperture of the double optics 6, for example by changing the structure and arrangement of the optical elements, a proportion of the IR light signals emitted by the material sample B that is adapted to the measurement purpose can be enlarged and directed to the IR detector. The function of the double optics 6 can in principle be replaced by holographic / optical elements.

Die IR-Lichtsignale gelangen über den Koppelspiegel 4a und den Umlenkspiegel 4b, welch letzterer die genannten Signale um z.B. 90° umlenkt, auf das IR-Objektiv 7, welches die IR-Lichtsignale auf die Empfangsflächen 8a des IR-Detektors 8 fokussiert. Das IR-Objektiv 7 besteht, z.B. aus Calcium-Fluorid, oder Ge oder Si. Der IR-Detektor, welcher die ankommenden IR-Lichtsignale in entsprechende elektrische Signale umformt, besteht z.B. aus einer Indium-Antimonid-Verbindung und hat eine Detektionsfläche von ca. 50 - 100 µm im Durchmesser. Sein Signal/Rausch-Verhältnis ist bei einer Arbeitstemperatur von ca. 100 K am günstigsten. Diese Temperatur wird näherungsweise durch Kühlung mit Stickstoff erreicht. Ein entsprechendes Detektor-Kühlaggregat ist bei 10 angedeutet; die entsprechende Kühlgaszu- und -abfuhrleitung ist mit 11 bezeichnet. Der IR-Detektor wird insbesondere mit einer Joule-Thomson-Kühlung (mittels N2) gekühlt. Stattdessen kann z.B. auch ein Stirling-Kühler nach dem Prinzip des Stirling-Motors verwendet werden.The IR light signals pass through the coupling mirror 4a and the deflection mirror 4b, the latter deflecting the signals mentioned by, for example, 90 °, onto the IR lens 7, which focuses the IR light signals onto the receiving surfaces 8a of the IR detector 8. The IR lens 7 consists, for example, of calcium fluoride, or Ge or Si. The IR detector, which converts the incoming IR light signals into corresponding electrical signals, consists for example of an indium-antimonide compound and has a detection area of approx. 50 - 100 µm in diameter. Its signal / noise ratio is most favorable at a working temperature of approx. 100 K. This temperature is approximately achieved by cooling with nitrogen. A corresponding detector cooling unit is indicated at 10; the corresponding cooling gas supply and discharge line is designated 11. The IR detector is cooled in particular with a Joule-Thomson cooling (using N 2 ). Instead, for example, a Stirling cooler based on the Stirling engine principle can also be used.

Die im IR-Detektor erzeugten elektrischen Signale gelangen über eine Signalleitung 12 zu einem innerhalb des Meßkopfes A angeordneten Vorverstärker 13 kleiner Baugröße, und vom Ausgang des Vorverstärkers 13 werden die vorverstärkten elektrischen, den IR-Lichtsignalen analogen Signale über die Signalleitung 14 einer elektronischen Verstärkerstufe, insbesondere einem Lock-in-Verstärker 15 zugeleitet, welch letzterer innerhalb einer transportablen elektronischen Schrankeinheit C untergebracht ist.The electrical signals generated in the IR detector pass through a signal line 12 to one arranged inside the measuring head A. Preamplifier 13 small size, and from the output of Preamplifiers 13 are the pre-amplified electrical ones IR light signals analog signals via the signal line 14 an electronic amplifier stage, in particular a lock-in amplifier 15 forwarded, the latter within one portable electronic cabinet unit C is housed.

Bei Verwendung des diodengepumpten Festkörperlasers FL bzw. bei Verwendung einer für den vorgesehenen Zweck auch geeigneten Laserdiode kann die Modulation des Laserstrahls f1 über die elektrische Schaltung des Lasers erreicht werden; ein separater Modulator oder Chopper ist dann nicht erforderlich.When using the diode-pumped solid-state laser FL or when using a laser diode that is also suitable for the intended purpose, the modulation of the laser beam f 1 can be achieved via the electrical circuit of the laser; a separate modulator or chopper is then not required.

Die innerhalb der elektronischen Schrankeinheit C untergebrachte Verstärkerstufe 15 ist z.B. ein digitaler Lock-in-Verstärker (DLI). Im Unterschied zur Thermographie (bei der die zeitlich weitgehend konstante Temperatur erfaßt wird) werden bei dem photothermischen Meßverfahren die Amplitude und Phase der Temperaturmodulation ermittelt. Die Phasenverschiebung ergibt sich aus der zeitlichen Verzögerung, mit der die maximale Temperatur an der Oberfläche gegenüber dem Zeitpunkt der Anregung gemessen wird. Die Phasenverschiebung wird mit dem Lock-in-Verstärker bestimmt. In elektrischer Wirkverbindung in beiden Signalrichtungen steht dieser Verstärker 15 mit einem Modul 16 "Gerätesteuerung", und dieses Steuermodul 16 ist wiederum elektrisch und elektronisch verschaltet mit einer integralen elektrischen Signalverarbeitungs- und Speichereinheit 17 mit Bildschirm oder Monitor 18. Die Einheit 17 ist insbesondere ein Personal-Computer (PC). Mit anderen Worten: Die transportable elektronische Schrankeinheit C umfaßt Mittel 15, 17 zur elektronischen Signalverarbeitung, Speicherung und Darstellung der von wenigstens einem IR-Lichtdetektor 8 gelieferten elektrischen Signale und zweite Mittel 16 zur Steuerung des Meßkopfes A. Dazu gehören: Wenigstens eine elektronische Verstärkerstufe 15 und eine dazugehörige elektronische Rechnereinheit 17, ferner das zwischen den Verstärkern 13, 15 und der elektronischen Rechnereinheit 17 eingeschaltete Steuermodul 16. Auf dem Bildschirm 18 werden die aus den IR-Lichtsignale gewonnenen, gesammelten und aufbereiteten Daten dargestellt. Das Steuermodul 16 erzeugt dabei die Steuersignale zur Einstellung der Laserstrahl-Charakteristika für den Laser FL, wie Puls-Pausen-Verhältnis und Strahlleistung, Anstrahl-Bahnmuster und Abtast-Bahnmuster sowie Scan-Geschwindigkeit.The housed inside the electronic cabinet unit C. Amplifier stage 15 is e.g. a digital lock-in amplifier (DLI). In contrast to thermography (in which the temporal largely constant temperature is detected) photothermal measuring method the amplitude and phase of the Temperature modulation determined. The phase shift results derive from the time delay with which the maximum Surface temperature compared to the time of excitation is measured. The phase shift is done with the lock-in amplifier certainly. In electrical connection in both This amplifier 15 has signal directions with a module 16 "device control", and this control module 16 is again electrically and electronically interconnected with an integral electrical signal processing and storage unit 17 with Screen or monitor 18. The unit 17 is in particular a Personal computer (PC). In other words: the transportable electronic cabinet unit C includes means 15, 17 for electronic Signal processing, storage and display of electrical at least one IR light detector 8 supplied Signals and second means 16 for controlling the measuring head A. These include: At least one electronic amplifier stage 15 and an associated electronic computing unit 17, further that between the amplifiers 13, 15 and the electronic Computer unit 17 turned on control module 16. On the Screen 18 shows the IR light signals collected and processed data presented. The control module 16 generates the control signals for setting the Laser beam characteristics for the Laser FL, such as pulse-pause ratio and beam power, beam path pattern, and scan path pattern as well as scan speed.

Durch den Wegfall des separat aufzustellenden Gaslasers und den Verzicht auf Übertragung der Laserstrahlung über Lichtwellenleiter kann, wie bereits erwähnt, die Geräte-Mobilität hergestellt werden.By eliminating the separate gas laser and the No transmission of laser radiation via optical fibers As already mentioned, device mobility can be established.

Die elektronische Schrankeinheit C und der integrale Meßkopf A werden lediglich durch ein hochflexibles elektrisches Kabel C1 (vgl. Figur 3 und 4) relativ großer Reichweite miteinander verbunden. Damit ist vor Ort auch die zentrale Aufstellung der elektronischen Schrankeinheit C möglich, wobei Meßstellen im weiten Umkreis erreicht werden können.The electronic cabinet unit C and the integral measuring head A only by a highly flexible electrical cable C1 (cf. FIGS. 3 and 4) a relatively large range with one another connected. This also means that the electronic cabinet unit C possible, measuring points in wide range can be reached.

In Figur 1 sind mit 19 eine elektrische Signalleitung zwischen dem Verstärker 15 und dem Laser FL bezeichnet und mit 20 eine weitere elektrische Signalleitung zur Ansteuerung der Spiegel-Scanner-Anordnung 5 von entsprechenden Signalausgangs-Klemmen des Personal-Computers oder der Rechnereinheit 17 her. In Figur 1 ist ein Kabel zur Versorgung des Meßkopfes A mit elektrischer Energie nicht gesondert dargestellt. Ein solches Energieversorgungskabel ist aber in dem flexiblen Verbindungskabel C1 nach Figur 3 bzw. Figur 4 enthalten. In Figure 1 with 19 are an electrical signal line between the amplifier 15 and the laser FL and designated 20 one further electrical signal line for controlling the mirror scanner arrangement 5 of corresponding signal output terminals of the personal computer or the computing unit 17. In figure 1 is a cable for supplying the measuring head A with electrical Energy not shown separately. Such a power supply cable but is in the flexible connection cable C1 Figure 3 and Figure 4 included.

Bei dem im Vergleich zu Figur 1 detaillierteren Ausführungsbeispiel nach Figur 2 erkennt man zwei optisch hintereinander geschaltete Umlenkspiegel 2a, 2b und ein dem zweiten Umlenkspiegel 2b im Strahlengang nachgeschaltetes Aufweitobjektiv 3. Weiterhin ist deutlicher erkennbar die Spiegel-Scanner-Anordnung 5, welche aus zwei Scanner-Spiegeln 5a, 5b besteht, die optisch hintereinander geschaltet sind, wobei der Scanner-Spiegel 5a um die Drehachse 21 verstellbar gelagert ist und der Scanner-Spiegel 5b um die Drehachse 22 verdrehbar gelagert ist, so daß der Scanner-Spiegel 5a den auf ihn geworfenen Laserstrahl f1 in Richtung ± x und der Scanner-Spiegel 5b den auf ihn geworfenen Laserstrahl in Richtung ± y verstellt (vgl. Figur 11). In Figur 2 ist weiterhin ein Gehäuse 23 für den Laser FL in seinen Umrissen angedeutet und ein mit diesem Gehäuse 23 baulich vereinigter Pilotlaser DL in Form eines Diodenlasers, von welchem ein Pilotstrahl f2 seinen Ausgang nimmt, welcher über den zweiten Umlenkspiegel 2b in den Strahlengang des Laserstrahls f1 eingekoppelt wird. Wie man sieht, laufen die Strahlen f1 (Laserstrahl) und f2 (Pilotstrahl) zunächst achsparallel zueinander. Durch die beiden hintereinander geschalteten ersten und zweiten Umlenkspiegel 2a, 2b wird der Laserstrahl f1 zweimal um 90° umgelenkt, und nach der zweiten Umlenkung (nach dem zweiten Umlenkspiegel 2b) fallen beide Strahlen f1 und f2 aufeinander. Der zweite Umlenkspiegel 2b ist zur Einkopplung des Pilotstrahls f2 als dichroitischer Spiegel ausgeführt, welcher mit seiner Reflektionsseite den Laserstrahl f1 reflektiert, zugleich aber den von der anderen Seite ankommenden Pilotstrahl f2 als durchlässiges Fenster durchläßt. Beide Strahlen f1, f2 passieren dann die Aufweitoptik 3 und gelangen auf den dielektrischen Spiegel 4a. In praxi wird der Pilotlaser DL nur eingeschaltet, wenn die Scan-Zone 9 (Figur 1) festgelegt werden soll. Der Pilotstrahl f2 gelangt mithin (wenn der Laser FL noch nicht arbeitet und der Pilotlaser DL eingeschaltet ist) über den dielektrischen Koppelspiegel 4a und die Scanner-Spiegelanordnung 5 durch die Doppeloptik 6 auf die Materialprobe und erzeugt dabei einen z.B. roten Leuchtpunkt. Wenn die Scan-Zone festgelegt ist, sollte der Pilotlaser DL vorzugsweise weiterbetrieben werden, damit der eigentliche Meßvorgang verfolgt werden kann, wenn dieser nach Einschalten des Lasers FL beginnt. In Figur 2 sind in einer Art Phantomdarstellung noch einige pultartige Lagerelemente für die vorbeschriebenen Optiken angedeutet und generell mit 24 bezeichnet.In the exemplary embodiment according to FIG. 2, which is more detailed in comparison to FIG. 1, two optically connected deflection mirrors 2a, 2b and an expansion lens 3 downstream of the second deflection mirror 2b can be seen. Furthermore, the mirror scanner arrangement 5, which consists of two scanners, can be seen more clearly -Mirrors 5a, 5b, which are optically connected in series, the scanner mirror 5a is mounted adjustably about the axis of rotation 21 and the scanner mirror 5b is rotatably mounted about the axis of rotation 22, so that the scanner mirror 5a on it thrown laser beam f 1 in the direction ± x and the scanner mirror 5b adjusts the laser beam thrown onto it in the direction ± y (cf. FIG. 11). In Figure 2, a housing 23 for the laser FL is indicated in its outline and a pilot laser DL structurally combined with this housing 23 in the form of a diode laser, from which a pilot beam f 2 takes its exit, which enters the beam path via the second deflecting mirror 2b of the laser beam f 1 is injected. As can be seen, the beams f 1 (laser beam) and f 2 (pilot beam) initially run parallel to one another. The laser beam f 1 is deflected twice by 90 ° by the two successively connected first and second deflection mirrors 2a, 2b, and after the second deflection (after the second deflection mirror 2b), both beams f 1 and f 2 collide with one another. The second deflection mirror 2b is designed to couple in the pilot beam f 2 as a dichroic mirror which reflects the laser beam f 1 with its reflection side, but at the same time allows the pilot beam f 2 arriving from the other side to pass through as a transparent window. Both beams f 1 , f 2 then pass through the expansion optics 3 and reach the dielectric mirror 4a. In practice, the pilot laser DL is only switched on when the scan zone 9 (FIG. 1) is to be defined. The pilot beam f 2 thus arrives (when the laser FL is not yet working and the pilot laser DL is switched on) via the dielectric coupling mirror 4a and the scanner mirror arrangement 5 through the double optics 6 on the material sample and thereby generates a red dot, for example. When the scan zone is defined, the pilot laser DL should preferably continue to be operated so that the actual measurement process can be followed when it starts after the laser FL is switched on. In FIG. 2, a number of desk-type bearing elements for the above-described optics are indicated in a kind of phantom representation and are generally designated by 24.

In Figur 2 sind der Laserstrahl f1 und der Pilotstrahl f2 sowie der Strahl der von der Materialprobe (in Figur 2 nicht ersichtlich) emittierten IR-Lichtsignale durch verstärkte Linien hervorgehoben. Zwischen dem Koppelspiegel 4a und der Doppeloptik 6 sind die Strahlwege aller drei Strahlentypen gemeinsam; vor dem Koppelspiegel 4a bis zum IR-Detektor 8 existiert nur IR-Strahlung. Für die nachstehende Tabelle sei angenommen, daß (+) die Strahlrichtung in Richtung auf die Materialprobe ist und (-) die Richtung der von der Materialprobe emittierten IR-Lichtsignale. Die nachfolgende Tabelle stellt eine übersichtliche Zusammenfassung der Eigenschaften der einzelnen Optiken sowie der optischen Verhältnisse für die drei Strahlentypen f1, f2 und - Δf3 dar und gibt in der rechten Spalte außerdem die Transmissionsgrade der Optiken und die Reflexionsgrade der Spiegel für die Laserstrahlung f1 an. Durch Multiplikation der Werte der rechten Spalte erhält man einen resultierenden kombinierten (ersten) Transmissions- und Reflexionsgrad für den Laserstrahl f1 von 0,829 bzw. 82,9 %. Für den IR-Strahl - Δf3 ergibt sich ein ähnlich günstiger resultierender (zweiter) Wert, weil die Transmissions- und Reflexionsgrade der Optiken 6, 7 und der Spiegel 5b, 5a, 4a, 4b für den IR-Strahl vergleichbar sind mit den Transmissions- und Reflexionsgraden der entsprechenden Optiken und Spiegel für den Laserstrahl f1. Opt. Element strahlendurchlässig in reflektiert in Transmissions- bzw.Reflex. grad f.f1 Richtung (+) Richtung (-) Richtung (+) (-) Aufweitoptik 1 f1 - 0,99 Umlenkspiegel 2a - f1 0,998 Umlenkspiegel 2b f2 f1 0,998 Aufweitoptik 3 f1, f2 - 0,99 dichroitischer Spiegel 4a ("beam splitter") - -Δ f3 f1, f2 0,96 Scan-Spiegel 5a - - f1, f2 -Δ f3 0,96 Scan-Spiegel 5b - - f1, f2 -Δ f3 0,96 Doppeloptik 6 f1, f2 -Δ f3 - - 0,96 IR-Umlenkspiegel 4b - - - -Δ f3 IR-Objektiv 7 - -Δ f3 - - f1 = Frequenz des Lasers f2 = Frequzenz des Pilotlasers -Δ f3 = IR-Strahlung In FIG. 2, the laser beam f 1 and the pilot beam f 2 and the beam of the IR light signals emitted by the material sample (not shown in FIG. 2) are highlighted by means of reinforced lines. The beam paths of all three beam types are common between the coupling mirror 4a and the double optics 6; only IR radiation exists in front of the coupling mirror 4a up to the IR detector 8. For the table below it is assumed that (+) the beam direction is in the direction of the material sample and (-) the direction of the IR light signals emitted by the material sample. The following table provides a clear summary of the properties of the individual optics as well as the optical conditions for the three beam types f 1 , f 2 and - Δf 3 and also shows in the right column the degrees of transmission of the optics and the reflectance of the mirrors for the laser radiation f 1 on. Multiplying the values in the right column gives a resulting combined (first) transmittance and reflection factor for the laser beam f 1 of 0.829 and 82.9%. For the IR beam - Δf 3 there is a similarly favorable resulting (second) value because the transmission and reflection levels of the optics 6, 7 and the mirrors 5b, 5a, 4a, 4b for the IR beam are comparable to the transmissions and degrees of reflection of the corresponding optics and mirrors for the laser beam f 1 . Opt. Element translucent in reflected in Transmission or reflex. degree ff 1 Direction (+) Direction (-) Direction (+) (-) Expanding optics 1 f 1 - 0.99 Deflecting mirror 2a - f 1 0.998 Deflecting mirror 2b f 2 f 1 0.998 Expanding optics 3 f 1 , f 2 - 0.99 dichroic mirror 4a ("beam splitter") - -Δ f 3 f 1 , f 2 0.96 Scan mirror 5a - - f 1 , f 2 -Δ f 3 0.96 Scan mirror 5b - - f 1 , f 2 -Δ f 3 0.96 Double optics 6 f 1 , f 2 -Δ f 3 - - 0.96 IR deflecting mirror 4b - - - -Δ f 3 IR lens 7 - -Δ f 3 - - f 1 = frequency of the laser f 2 = frequency of the pilot laser -Δ f 3 = IR radiation

In Figur 3 und 4 sind gleiche Teile zu Figur 1 auch mit den gleichen Bezugszeichen versehen. In beiden Darstellungen ist der portable Meßkopf A mit Kühlschlitzen 25 zur Abführung der Verlustwärme versehen; er ist jeweils auf der Plattform 26 eines Stativs 27 angeordnet und über ein flexibles Kabel C1 mit der elektronischen Schrankeinheit C verbunden. In Figures 3 and 4 are the same parts to Figure 1 with the provided with the same reference numerals. In both representations is the portable measuring head A with cooling slots 25 for removing the Heat loss provided; he is on platform 26 a tripod 27 and arranged with a flexible cable C1 the electronic cabinet unit C connected.

Aus den Figuren 5 bis 7 erkennt man weitere Einzelheiten, insbesondere konstruktiver Art, des Meßkopfes A. Figur 5 zeigt die Doppeloptik 6 an der Stirnseite Al des Meßkopfes A, den Koppelspiegel 4a und den IR-Umlenkspiegel 4b sowie die Scanner-Spiegelanordnung 5. In Figur 6 sind der Antrieb 5bl für den einen Scanner-Spiegel 5b und der andere Scanner-Spiegel 5a zu sehen, ebenso die Doppeloptik 6. Figur 7 zeigt in ihren Umrissen den Laser FL mit seiner Aufweitoptik 1, die beiden ihm nachgeschalteten Umlenkspiegel 2a, 2b, den Koppelspiegel 4a, den IR-Umlenkspiegel 4b (der in der Zeichnung kreisförmig ausgeführt ist) und die zweite Optik 3, welche Teil der Aufweitoptik ist.From Figures 5 to 7 you can see further details, in particular of a constructive nature, the measuring head A. Figure 5 shows the double optics 6 on the front Al of the measuring head A, the Coupling mirror 4a and the IR deflection mirror 4b and the scanner mirror arrangement 5. In Figure 6, the drive 5bl for one scanner mirror 5b and the other scanner mirror 5a to see, as well as the double optics 6. Figure 7 shows in their Outlined the laser FL with its expansion optics 1, the two him downstream deflection mirror 2a, 2b, the coupling mirror 4a, the IR deflecting mirror 4b (which is circular in the drawing is) and the second optics 3, which are part of the expanding optics is.

Figur 8 zeigt die Momentaufnahme einer Scan-Zone, vergrößert, und zwar handelt es sich um festgestellte Mikroporen in zeitstandsbeanspruchten Rohrleitungen.FIG. 8 shows the snapshot of a scan zone, enlarged, namely, micro-pores found in creep stresses Pipelines.

Figur 9 zeigt, daß an den Meßkopf A eine Energieversorgungseinheit AO angebaut werden kann, so daß zum Meßkopf keine Stromversorgungskabel verlegt werden müssen. Diese Versorgungseinheit AO kann aufladbare Akkus enthalten.FIG. 9 shows that an energy supply unit is attached to the measuring head A. AO can be attached so that no power supply cable to the measuring head must be relocated. This supply unit AO can contain rechargeable batteries.

Figur 10 zeigt, daß es durch ein gesondertes, an den eigentlichen Meßkopf anbaubares Aggregat A2 möglich ist, relativ dünnwandige Materialproben B' auf die von ihrer Rückseite abgestrahlte IR-Strahlung zu untersuchen, welche über die IR-Optik 26, die beiden Umlenkspiegel 27, 28 und eine weitere IR-Optik 29 über ein Eintrittsfenster 30 des Meßkopfes A auf den Umlenkspiegel 4b von dessen Rückseite her gelangt. Dieser Umlenkspiegel 4b ist für diesen Anwendungsfall ein dichroitischer Spiegel, wobei dann der weitere Strahlenverlauf zum IR-Objektiv 7 und zum IR-Detektor 8 so ist, wie anhand von Figur 2 erläutert.Figure 10 shows that there is a separate, at the actual Measuring head attachable unit A2 is possible, relatively thin-walled Material samples B 'on the radiated from their back To investigate IR radiation, which via the IR optics 26, the two deflecting mirrors 27, 28 and a further IR optic 29 via an entry window 30 of the measuring head A onto the deflecting mirror 4b from the back. This deflecting mirror 4b is a dichroic mirror for this application, where then the further beam path to the IR lens 7 and IR detector 8 is as explained with reference to Figure 2.

Mit der Einrichtung nach Figur 10 wird ein Verfahren verwirklicht, bei dem die Materialprobe B' an einer Frontseite mit dem Laserstrahl f1 entsprechend einem Anstrahl-Bahnmuster angestrahlt wird. Bei entsprechend geringer Materialwanddicke der Materialprobe B' (z. B. Bruchteilen von Millimetern) können nun die von der Rückseite der Materialprobe B' emittierten IR-Lichtsignale - Δ f4 entsprechend einem Abtast-Bahnmuster abgetastet werden. Dies kann z. B. so geschehen, daß die Umlenkspiegel 27, 28 als Scanner-Spiegel ausgeführt sind, welche entsprechend den Scanner-Spiegeln 5a, 5b nach Figur 2 synchron mit diesen in x- bzw. y-Richtung um kleine Beträge motorisch ausgelenkt werden. Wie man es aus Figur 10 außerdem erkennt, ist es günstig, wenn die von der Rückseite der dünnwandigen Materialprobe B' emittierten IR-Lichtsignale - Δ f4 so umgelenkt werden, daß sie mit dem letzten Teil des Strahlenganges für die von der laserzugewandten Materialprobenseite emittierten IR-Lichtsignale - Δ f3, der auf den IR-Detektor 8 ausgerichtet ist, zusammen fallen. Im vorliegenden Falle findet die Vereinigung am IR-Umlenkspiegel 4b statt. Durch in Figur 10 nicht näher dargestellte Lichtschranken kann erreicht werden, daß entweder nur die IR-Lichtsignale - Δ f3 oder aber - Δ f4 über den IR-Umlenkspiegel zum IR-Detektor 8 gelangen. Man kann also die Materialprobe B' nach beiden Verfahrensvarianten untersuchen: Man wertet entweder die IR-Lichtsignale - Δ f3 aus, die von der laserzugewandten Seite der Materialprobe B' emittiert werden, oder die IR-Lichtsignale - Δ f4, welche von der laserabgewandten Seite der Materialprobe B' emittiert werden. Zwischen Meßkopf A und Zusatzaggregat ist zum Einfügen der dünnwandigen Materialprobe B' ein Zwischenraum 31 vorgesehen. Das vom Zusatzaggregat A2 über die IR-Optik 26 empfangene IR-Lichtsignal - Δ f4 wird nach seiner Umlenkung um zweimal 90° durch eine erste gehäuseabdichtende lichtleitende Optik 29 vom Zusatzaggregat in den Zwischenraum 31 und von diesem über eine zweite gehäuseabdichtende Optik 30 in den internen Strahlengang der IR-Lichtsignale - Δ f3 des Meßkopfes A geleitet. Dies hat den Vorteil, daß man mit einem einzigen IR-Detektor 8 auskommt. In Sonderfällen kann aber dem Zusatzaggregat A2 ein eigener IR-Detektor zugeordnet werden, so daß eine Materialprobe B' praktisch gleichzeitig von beiden Seiten her untersucht werden kann. Das Zusatzaggregat A2 kann auch ein- und ausschwenkbar im Bezug auf die Achse des Laserstrahls f1 ausgeführt werden, so daß der Meßkopf A wahlweise für Oberflächenuntersuchungen oder aber für Durchstrahlungsuntersuchungen dünnwandiger Materialproben geeignet ist.With the device according to FIG. 10, a method is implemented in which the material sample B 'is illuminated on a front side with the laser beam f 1 in accordance with an illumination path pattern. With a correspondingly small material wall thickness of the material sample B '(e.g. fractions of a millimeter), the IR light signals - Δ f 4 emitted from the back of the material sample B' can now be scanned in accordance with a scanning path pattern. This can e.g. B. happen so that the deflecting mirrors 27, 28 are designed as scanner mirrors, which are deflected according to the scanner mirrors 5a, 5b according to Figure 2 synchronously with them in the x or y direction by small amounts by motor. As can also be seen from FIG. 10, it is advantageous if the IR light signals - Δ f 4 emitted from the back of the thin-walled material sample B 'are deflected such that they emitted with the last part of the beam path for the material sample side facing the laser IR light signals - Δ f 3 , which is aligned with the IR detector 8, coincide. In the present case, the union takes place at the IR deflecting mirror 4b. By means of light barriers not shown in FIG. 10 it can be achieved that either only the IR light signals - Δ f 3 or - Δ f 4 reach the IR detector 8 via the IR deflecting mirror. One can therefore examine the material sample B 'according to both process variants: either the IR light signals - Δ f 3 , which are emitted from the laser-facing side of the material sample B', or the IR light signals - Δ f 4 , which are emitted side of the material sample B 'facing away from the laser. A space 31 is provided between the measuring head A and the additional unit for inserting the thin-walled material sample B '. The IR light signal - Δ f 4 received by the additional unit A2 via the IR optics 26 is deflected by two 90 ° through a first housing-sealing light-conducting optics 29 from the additional unit into the intermediate space 31 and from there via a second housing-sealing optics 30 into the internal beam path of the IR light signals - Δ f 3 of the measuring head A. This has the advantage that a single IR detector 8 is sufficient. In special cases, however, a separate IR detector can be assigned to the additional unit A2, so that a material sample B 'can be examined practically simultaneously from both sides. The additional unit A2 can also be designed so that it can be swung in and out with respect to the axis of the laser beam f 1 , so that the measuring head A is suitable either for surface examinations or for radiographic examinations of thin-walled material samples.

Zurückkommend auf das bevorzugte Ausführungsbeispiel des "Wärmemikroskops" nach Figuren 1 bis 7, wird im folgenden noch einmal erläutert, weshalb das Weglassen von Lichtleiterfasern im Strahlengang des Laserstrahls f1 innerhalb des portablen Meßkopfes und das bevorzugte Weglassen dieser Lichtleiterfasern im Strahlengang der von der Materialprobe emittierten IR-Lichtsignale - Δf3 bis hin zum IR-Lichtdetektor 8 besonders vorteilhaft ist. Lichtleiterfasern für das Laserlicht müssen sogenannte Monomode-Fasern sein. Sie wirken etwa wie ein Hohlleiter, d.h.: die Strahlen gehen praktisch geradlinig durch den Kern. Die Kohärenzeigenschaften des Laserlichts werden nicht oder wenig beeinträchtigt. Erforderlich ist dafür ein Kerndurchmesser von einigen µm, also einige tausendstel Millimeter. Eine solche Faser wird benötigt, um eine beugungsbegrenzte Fokussierung und demzufolge eine hohe laterale Auflösung zu ermöglichen. Die Nachteile von Monomode-Fasern sind eine aufwendige Einkoppelmechanik und -optik zwischen Laser und Fasereintritt sowie die hohen Einkoppelverluste, die dennoch entstehen. Sie liegen, wie es im Labor unter optimalen Bedingungen gemessen wurde, bei 30 bis 40 %, im praktischen Einsatz dagegen bei 50 %. Verglichen damit sind die Dämpfungsverluste in der Faser relativ gering (30 dB/km bei 488 nm, 2 dB/km bei 1064 nm).Returning to the preferred exemplary embodiment of the "thermal microscope" according to FIGS. 1 to 7, the following explains again why the omission of optical fibers in the beam path of the laser beam f 1 within the portable measuring head and the preferred omission of these optical fibers in the beam path emitted by the material sample IR light signals - Δf 3 up to the IR light detector 8 is particularly advantageous. Optical fibers for the laser light must be so-called monomode fibers. They act like a waveguide, which means that the rays pass through the core practically in a straight line. The coherence properties of the laser light are not or only slightly impaired. This requires a core diameter of a few µm, i.e. a few thousandths of a millimeter. Such a fiber is required to enable diffraction-limited focusing and, consequently, high lateral resolution. The disadvantages of single-mode fibers are a complex coupling mechanism and optics between the laser and the fiber entrance, as well as the high coupling losses that still arise. As measured in the laboratory under optimal conditions, they are 30 to 40%, in practical use, however, they are 50%. Compared to this, the attenuation losses in the fiber are relatively low (30 dB / km at 488 nm, 2 dB / km at 1064 nm).

Bei dem Wärmemikroskop gemäß der vorliegenden Erfindung liegt eine kollineare Anordnung (Übereinstimmung von Laser- und IR-Pfad zwischen dichroitischem Spiegel 4a und Doppeloptik bzw. Scan-Objektiv 6) vor, welche mit Lichtleiterfaser-Technik nicht realisierbar ist, da eine IR-Lichtleiterfaser nicht gleichzeitig Monomode-Faser für die Laserwellenlänge sein kann. Man könnte allenfalls daran denken, zwischen dichroitischem Spiegel 4a und IR-Detektor 8 eine IR-Lichtleiterfaser zu installieren. Dadurch könnte der IR-Detektor außerhalb des portablen Meßkopfes plaziert werden. Nachteilig dabei wären jedoch die weiteren Übertragungsverluste und die geringe mechanische Belastbarkeit von IR-Fasern. Außerdem wäre eine Verbindungsleitung zwischen den elektronischen Bausteinen einschließlich IR-Detektor und dem portablen Meßkopf dann wohl kaum steckbar zu machen, sondern müßte fest installiert sein.The thermal microscope according to the present invention a collinear arrangement (match of laser and IR path between dichroic mirror 4a and double optics or scan lens 6) before, which with fiber optic technology is not can be realized since an IR optical fiber is not simultaneously Single mode fiber for the laser wavelength can be. You could at best remember between dichroic mirror 4a and IR detector 8 to install an IR optical fiber. Thereby the IR detector could be outside of the portable measuring head be placed. However, the others would be disadvantageous Transmission losses and the low mechanical resilience of IR fibers. There would also be a connecting line between the electronic components including IR detector and to make the portable measuring head hardly pluggable, but should be installed permanently.

Zusammengefaßt läßt sich die bevorzugte Ausführungsform der Einrichtung nach der Erfindung, die man als "Wärmemikroskop" bezeichnen kann, durch die folgenden Merkmale charakterisieren:

  • a) das Wärmemikroskop weist einen Laser FL zur Aussendung eines modenreinen Laserstrahls f1 auf, ferner
  • b) eine mechanische oder optische Scanneranordnung 5; 5a, 5b zur Ablenkung des Laserstrahl f1.
  • c) Eine Optik 6 ist vorgesehen,
  • c1) zur Fokussierung des Laserstrahls f1 auf einer Materialprobe B in einem Meßpunkt b2 mit einem Fokusdurchmesser, der kleiner/gleich 10µ beträgt und
  • c2) zur Zurückleitung der von der Materialprobe B emittierten Infrarot-Lichtsignale - Δ f3.
  • d) Ein Auskoppelelement 4a zur Auskopplung der Infrarot-Lichtsignale - Δ f3 ist ferner beim Wärmemikroskop vorgesehen ebenso wie
  • e) ein Infrarot-Detektor 8, der neben dem Laser FL angeordnet ist. Außerdem weist das Wärmemikroskop auf:
  • f) einen Umlenkspiegel 4b zur Umlenkung der vom Auskoppelelement 4a ausgekoppelten Infrarot-Lichtsignale - Δ f3 auf den Infrarot-Detektor 8,
  • g) ein Gehäuse, in dem der Laser FL, die Scanner-Anordnung 5; 5a, 5b, die Optik 6, das Auskoppelelement 4a, der Umlenkspiegel 4b und der Infrarot-Detektor 8 gemeinsam untergebracht sind, und schließlich
  • h) eine Signalauswerte-Einheit 13, 15, 17, 18 zur Auswertung und Darstellung der Signale des Infrarot-Detektors 8.
  • In summary, the preferred embodiment of the device according to the invention, which can be referred to as a "thermal microscope", can be characterized by the following features:
  • a) the thermal microscope has a laser FL for emitting a single-mode laser beam f 1 , furthermore
  • b) a mechanical or optical scanner arrangement 5; 5a, 5b for deflecting the laser beam f 1 .
  • c) an optical system 6 is provided,
  • c1) for focusing the laser beam f 1 on a material sample B in a measuring point b2 with a focus diameter which is less than / equal to 10μ and
  • c2) for returning the infrared light signals emitted by the material sample B - Δ f 3 .
  • d) A decoupling element 4a for decoupling the infrared light signals - Δ f 3 is also provided in the thermal microscope as well
  • e) an infrared detector 8 which is arranged next to the laser FL. The thermal microscope also features:
  • f) a deflecting mirror 4b for deflecting the infrared light signals - Δ f 3 decoupled from the decoupling element 4a - onto the infrared detector 8,
  • g) a housing in which the laser FL, the scanner assembly 5; 5a, 5b, the optics 6, the decoupling element 4a, the deflecting mirror 4b and the infrared detector 8 are housed together, and finally
  • h) a signal evaluation unit 13, 15, 17, 18 for evaluating and displaying the signals of the infrared detector 8.
  • Wie es in den Verfahrensansprüchen 1 und 39 sowie im Begleittext zur Tabelle auf Seite 17 und aus der rechten Spalte dieser Tabelle hervorgeht, lassen sich mit dem Wärmemikroskop nach der Erfindung sehr gute resultierende Transmissions- und Reflexionsgrade von mindestens 60 % erreichen, und zwar sowohl für den Lichtweg des Laserstrahls f1 als auch den Lichtweg der emittierten IR-Lichtsignale -Δ f3. Der erste resultierende Transmissions- und Reflexionsgrad für den Laserstrahl f1 kann sogar bei guter Qualität der verwendeten Optiken und Beschichtungen in einem Bereich zwischen 60 und 85 % liegen und beträgt vorzugsweise mindestens 80 %. Die entsprechenden Werte für den IR-Strahl liegen etwas niedriger, sind aber durchaus vergleichbar mit den günstigen Transmissions- und Reflexionsgraden, die man für den Laserstrahl f1 erzielen kann.As can be seen in process claims 1 and 39 as well as in the accompanying text to the table on page 17 and from the right column of this table, very good resulting transmission and reflection levels of at least 60% can be achieved with the thermal microscope according to the invention, both for the light path of the laser beam f 1 and the light path of the emitted IR light signals -Δ f 3 . The first resulting degree of transmission and reflection for the laser beam f 1 can, even with good quality of the optics and coatings used, be in a range between 60 and 85% and is preferably at least 80%. The corresponding values for the IR beam are somewhat lower, but are quite comparable with the favorable transmission and reflection levels that can be achieved for the laser beam f 1 .

    Claims (39)

    1. Method for testing the properties of materials according to the photothermal effect, having the following method features:
      a) emission of a laser beam (f1) in the direction of the surface region (9) to be tested of the material sample (B), with the laser beam (f1) being focused to the desired measuring point diameter in the target light spot by means of a photoconductive optical element (6) on the laser-beam-end side, so that there a portion of the amount of light energy is absorbed by the irradiated volume elements of the material sample, and infrared (IR) light signals (-Δf3) are emitted by the surface of the latter and the volume elements adjacent thereto;
      b) simultaneous generation of an irradiation path pattern of the laser radiation (f1) and of a radiation path pattern of the emitted IR light signals (-Δf3) by a scanner arrangement (5), which is arranged inside a portable measuring head (A) and has at least one mirror, which is rotatable about an axis and through which the laser radiation (f1) and the IR light signals ( -Δf3 ) are conducted;
      c) conduction of the IR light signals (-Δf3), which have been emitted and conducted through the scanner arrangement (5), to an optical decoupling element (6, 4a), by which the emitted IR light signals (-Δf3) are conducted further and portions of the laser beam (f1) that are reflected on the surface of the sample are substantially suppressed;
      d) further conduction of the decoupled IR light signals (-Δf3) and focusing thereof onto the receiving surfaces (8a) of at least one IR light detector (8), which converts the received IR light signals into corresponding electrical signals for the purpose of the further signal conditioning; and
      e) integration of a laser light source (FL) into the housing of the portable measuring head and conduction of the laser beam (f1) from the laser light source (FL) up to the photoconductive optical element (6), on the laser-beam-end side, inside the portable measuring head (A) with a first resulting transmittance and reflectance of at least 60%, and conduction of the IR light signals (-Δf3), which are emitted by the material sample (B), to an IR light detector (8) inside the portable measuring head (A) with a second resulting transmittance and reflectance of at least 60%.
    2. Method according to claim 1, characterised in that a diode-pumped solid-state laser is used as a laser light source (FL).
    3. Method according to claim 1, characterised in that a diode laser is used as a laser light source (FL).
    4. Method according to one of the claims 1 to 3, characterised in that a face of the material sample (B') is irradiated with the laser beam (f1) according to the irradiation path pattern, and in that the IR light signals (-Δf4) which - in the case of a correspondingly small material wall thickness - are emitted by the rear side of the material sample (B') are scanned according to the scanning path pattern.
    5. Method according to one of the claims 1 to 3, characterised in that the material sample (B) is irradiated on the same side by the laser beam (f1) and scanned with regard to the IR light signals (-Δf3) emitted by it, and in that the emitted IR light signals, on part of their way, are conducted along the same beam path and through at least one photoconductive optical element on the laser-beam-end side, as used for conducting the incoming laser radiation (f1) in accordance with the irradiation path pattern, to the optical decoupling element.
    6. Method according to one of the claims 1 to 3 and 5, characterised in that the optical decoupling element (4a, 6) comprises a so-called doublet (6) which lets through and focuses the laser radiation (f1) in the direction of the material sample (B), and in the opposite direction preferentially lets through the emitted IR light signals (-Δf3).
    7. Method according to one of the claims 1 to 6, characterised in that in order to generate the irradiation path pattern of the laser radiation (f1), the latter is conducted via two scanner mirrors (5a, 5b) which are optically connected in series, one (5a) of which mirrors is rotated about a first axis (21) for beam deflection in the X direction, and the other (5b) is rotated about a second axis (22) for beam deflection in the Y direction.
    8. Method according to one of the claims 1 to 3 and 5 to 7, characterised in that the optical decoupling element (6, 4a) comprises a dichroic coupling mirror (4a), and the laser radiation (f1) in a beam direction pointing towards the material sample (B) is reflected by the active mirror surface of the coupling mirror (4a) into the beam path which is aligned with the scanner mirrors (5a, 5b), while on the other hand, the IR light signals (-Δf3) arriving in the opposite direction to the laser beam (f1) are let through by the coupling mirror (4a), which acts as a window in this direction.
    9. Method according to one of the claims 1 to 8, characterised in that the laser beam (f1) exiting from the laser light source (FL) passes through a first optical element (1), which expands the laser beam and is part of an expanding optical element (1, 3), and is subsequently deflected twice, by 90° in each case, by way of two deflecting mirrors (2a, 2b), which are optically connected in series, so that it is aligned with the active surface of the coupling mirror (4a), and from there makes its way via the two scanner mirrors (5a, 5b) to the photoconductive optical element (6) on the laser-beam-end side, by which it is focused onto the measuring points on the material sample (B).
    10. Method according to claim 9, characterised in that the laser beam (f1) is guided from the second (2b) of the deflecting mirrors (2a, 2b) to the coupling mirror (4a) by way of a second optical element (3), which is part of the expanding optical element (1, 3).
    11. Method according to claim 9 or 10, characterised in that the pilot beam (f2) of a pilot laser (DL) is coupled into the beam path of the laser beam (f1), so that before the start of the testing or irradiation of the material sample (B) with the laser beam (f1), there is a visible target pilot light spot on the material sample for the adjustment of the scanning zone (9).
    12. Method according to claim 11, characterised by the use of a pilot laser (DL), preferably a diode laser, which emits in the visible red range.
    13. Method according to claim 11 or 12, characterised in that the pilot beam (f2) is irradiated into the beam path between the second deflecting mirror (2b) and the coupling mirror (4a), and in that for this purpose, the second deflecting mirror (2b) lets through, in the manner of a window, the pilot beam (f2) arriving on its rear side, while it reflects onto the coupling mirror (4a) the laser beam (f1) arriving on its front side.
    14. Method according to one of the claims 1 to 13, characterised in that the laser beam (f1) is modulated in order to achieve a desired mark-to-space ratio.
    15. Method according to one of the claims 1 to 14, characterised in that the laser beam (f1) is guided over the scanning zone (9) along an orthogonal irradiation path pattern.
    16. Method according to one of the claims 1 to 14, characterised in that the laser beam (f1) is guided over the scanning zone (9) along an irradiation path pattern which is formed by spiral or concentric circular paths.
    17. Method according to claim 4, characterised in that the IR light signals (-Δf4) emitted by the rear side of the thin-walled material sample (B') are deflected in such a way that they coincide with the last portion of the beam path for the IR light signals (-Δf3) emitted by the side of the material sample that faces the laser, which beam path is aligned with the IR detector (8).
    18. Use of the method according to one of the claims 1 to 17 within the scope of non-destructive material testing for detecting material non-homogeneities, flaws in the material, delaminations as well as corrosion marks and erosion marks, for example for:
      detecting creep damages in the form of cavities in metallic materials
      checking for flaws in
      electrical components such as chips, semiconductors, solar cells
      soldered joints
      products of the paper industry with regard to thickness, fibre distribution, adhesion,
      products of the plastics industry with regard to porosities, fibre distribution and orientation, and
      for process control.
    19. Use of the method according to one of the claims 1 to 17 for establishing material structures, material characteristics such as density, thermal conductivity, specific heat, degree of hardness, for example, and for establishing material conditions.
    20. Use of the method according to one of the claims 1 to 17 for measuring layer thicknesses, coatings, surface qualities, for example peak-to-valley heights, and for measuring the adhesion of coatings.
    21. Use of the method according to one of the claims 1 to 17 for searching for traces, for example for fingerprints.
    22. Use of the method according to one of the claims 1 to 17 for tracing and uncovering forgeries, for example in bank notes, paintings, metal alloys, coins, ceramics and antique furniture.
    23. Device for carrying out the method according to one of the claims 1 to 16, having a portable measuring head which has a compact housing, with the housing having an end wall, comprising:
      a) a laser light source, accommodated in the housing of the portable measuring head, the laser beam (f1) of which laser light source is conducted without optical fibres by way of beam-guiding means (1, 2a, 2b, 3, 4a, 5a, 5b), which are inside the housing, up to a photoconductive optical element (6) on the laser-beam-end side;
      b) the above-mentioned photoconductive optical element (6) on the laser-beam-end side, accommodated on or in the end wall (A1) of the housing and constructed as a so-called doublet, which lets through and focuses the laser radiation (f1) in the direction of the material sample (B), and in the opposite direction preferentially lets through the IR light signals (-Δf3) emitted by the material sample, with the optical element (6) being part of an optical decoupling element (6, 4a);
      c) at least one IR light detector, accommodated in the housing of the measuring head and having its receiving surfaces aligned with the focus point of an infrared objective connected optically upstream for converting the IR light signals into corresponding electrical signals for the purpose of further signal conditioning, with the beam-guiding means inside the housing comprising a scanner mirror arrangement (5), which is connected upstream of the optical element, which is on the laser-beam-end side, in the beam path of the laser beam (f1) and is arranged for deflecting the laser beam (f1) in accordance with an irradiation path pattern and for scanning the IR light signals (-Δf3), which are emitted by the material sample (B) in the region of its scanning zone (9), according to a scanning path pattern; and with the means for conducting the laser beam (f1) being provided with a first resulting transmittance and reflectance of at least 60% and the means for conducting the IR light signals (-Δf3) being provided with a second resulting transmittance and reflectance of at least 60%.
    24. Device according to claim 23, characterised in that the beam-guiding means inside the housing additionally comprise:
      a1) a coupling mirror (4a), constructed as a dichroic mirror, which is connected upstream of the scanner mirror arrangement (5) in the beam path of the laser beam (f1) and reflects in the direction of the laser beam (f1) and in the direction opposite thereto acts as a window which is transparent with regard to the IR light signals;
      a2) an infrared objective (7) which, in a direction opposite to the direction of the laser beam (f1), i.e. on the side of the coupling mirror (4a) that faces away from the reflecting surface, is connected upstream of said coupling mirror and focuses the IR light signals arriving from the coupling mirror (4a) onto the receiving surfaces (8a) of at least one IR light detector (8).
    25. Device according to claim 23 or 24, characterised by at least one transportable electronic cabinet unit (C), comprising first means (15, 17) for electrical signal processing of the electrical signals delivered by the at least one IR light detector (8) and second means for controlling the measuring head, with the first means comprising: at least one electronic amplifier stage (15) and one electronic computer unit (17), and with the second means comprising: a control module (16) connected between amplifier stage (15) and electronic computer unit (17), with the electronic computer unit (17) having at least one screen (18) on which can be displayed the data which has been obtained from the IR light signals, collected and conditioned, and with the control module (16) generating control signals for adjusting the laser-beam characteristics of the laser light source (FL), such as mark-to-space ratio and radiant power, irradiation path pattern and scanning path pattern as well as scanning rate; at least one flexible, electrical interconnecting cable for signal transport between the measuring head (A) and the electronic cabinet unit (C), and means for supplying the portable measuring head (A) with electrical energy from an energy supply source.
    26. Device according to claim 25, characterised in that accommodated in the portable measuring head (A) is a pre-amplifier which is electrically connected downstream of the IR light detector and the output signal line (14) of which is led to the amplifier stage (15) of the electronic cabinet unit (C).
    27. Device according to claim 25 or 26, characterised in that the amplifier stage (15) is a lock-in amplifier.
    28. Device according to one of the claims 23 to 27, characterised in that accommodated inside the portable measuring head (A) is a pilot laser (DL), the pilot beam (f2) of which can be coupled into the beam path of the laser beam (f1), and which is used for adjustment of the scanning zone (9).
    29. Device according to claim 28, characterised in that the pilot laser (DL) radiates in the visible red range.
    30. Device according to claim 28 or 29, characterised in that the pilot beam (f2) of the pilot laser (DL) is aligned with the beam path for the laser beam (f1) of the laser light source (FL) that is situated between a second deflecting mirror (2b) and the coupling mirror (4a), with the second deflecting mirror (2b) forming a transmission window for the pilot beam (f2), which arrives on its rear side, and casting the latter onto the coupling mirror (4a).
    31. Device according to one of the claims 23 to 30, characterised in that a cooling unit (10) is provided in order to maintain a low-temperature working range for the IR light detector.
    32. Device according to one of the claims 28 to 30, characterised in that in the beam path of the laser (f1) onto a first optical element (1), which is part of an expanding optical element, there are arranged one behind the other at the output of the laser light source (FL) two first and second deflecting mirrors (2a, 2b), which are optically connected in series and direct the laser beam (f1) into an offset path which is aligned with the coupling mirror (4a), with the pilot beam (f2) of the pilot laser (DL) being aligned so as to radiate into this offset path.
    33. Device according to claim 32, characterised in that between the second deflecting mirror (2b) and the coupling mirror (4a), a second optical element (3), which is part of the expanding optical element system (1, 3), is inserted into the beam path.
    34. Device according to one of the claims 23 to 33, characterised in that in the beam path of the IR light signal (-Δf3), there is connected downstream of the coupling mirror (4a) an IR deflecting mirror (4b), which receives the IR light signals let through by the coupling mirror (4a) and casts them in the direction of the IR light detector (8) or onto an infrared objective (7) connected upstream thereof.
    35. Device according to one of the claims 23 to 34, characterised by a supplementary unit (A2) for the measuring head (A) for photothermal measuring of relatively thin-walled material samples (B') by receiving the IR light signals (-Δf4) emitted by the rear side of the material sample (B'), comprising an infrared optical element (26) for receiving the IR light signals, a deflecting mirror arrangement (27, 28) for deflecting the IR light signals into a beam axis which is in alignment with the receiving surface (8a) of the IR light detector (8).
    36. Device according to claim 35, characterised in that the IR deflecting mirror (4b) arranged upstream of the infrared objective (7) is reflective with regard to the IR light signals (-Δf3) emitted by the side of the material sample that faces the laser and transparent with regard to the IR light signals (-Δf4) emitted by the side of the material sample that faces away from the laser.
    37. Device according to claim 35 or 36, characterised in that there is provided between measuring head (A) and supplementary unit (A2) a gap for inserting the thin-walled material sample (B'), and in that the IR light signal (-Δf4) received by the supplementary unit (A2) can be conducted through a first photoconductive optical element (29), which seals off the housing, from the supplementary unit (A2) into the gap, and from here via a second photoconductive optical element (30), which seals off the housing, into the internal beam path of the IR light signals (-Δf3) of the measuring head (A).
    38. Heat microscope
      a) having a laser (FL) for emitting a pure-mode laser beam (f1),
      b) having an optical element (6)
      b1) for focusing the laser beam (f1) onto a material sample (B) at a measuring point (b2) having a focus diameter which is less than or equal to 10 µ, and
      b2) for returning the infrared light signals (-Δf3) emitted by the material sample (B),
      c) having a scanner arrangement (5; 5a, 5b) having at least one mirror which is rotatable about an axis, for deflecting the laser beam (f1) and the emitted IR light signal (-Δf3),
      d) having a decoupling element (4a) for decoupling the infrared light signals (-Δf3),
      e) having an infrared detector (8), which is arranged next to the laser (FL),
      f) having a deflecting mirror (4b) for deflecting onto the infrared detector (8) the infrared light signals (-Δf3) which have been decoupled by the decoupling element (4a),
      g) having a housing in which the laser (FL), the scanner arrangement (5; 5a, 5b), the optical element (6), the decoupling element (4a), the deflecting mirror (4b) and the infrared detector (8) are jointly accommodated, and
      h) having a signal evaluating unit (13, 15, 17, 18) for evaluating and displaying the signals of the infrared detector (8).
    39. Method according to claim 1, characterised in that the first resulting transmittance and reflectance for the laser beam (f1) lies in the range between 60% and 85%, and preferably amounts to at least 80%.
    EP90107682A 1989-04-24 1990-04-23 Photothermal inspection method, arrangement for its working out, and utilisation of the method Expired - Lifetime EP0394932B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE3913474 1989-04-24
    DE3913474A DE3913474A1 (en) 1989-04-24 1989-04-24 PHOTOTHERMAL EXAMINATION METHOD, DEVICE FOR IMPLEMENTING IT AND USE OF THE METHOD

    Publications (3)

    Publication Number Publication Date
    EP0394932A2 EP0394932A2 (en) 1990-10-31
    EP0394932A3 EP0394932A3 (en) 1992-03-25
    EP0394932B1 true EP0394932B1 (en) 1998-03-04

    Family

    ID=6379348

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP90107682A Expired - Lifetime EP0394932B1 (en) 1989-04-24 1990-04-23 Photothermal inspection method, arrangement for its working out, and utilisation of the method

    Country Status (6)

    Country Link
    US (1) US5118945A (en)
    EP (1) EP0394932B1 (en)
    JP (1) JPH034151A (en)
    AT (1) ATE163762T1 (en)
    DE (2) DE3913474A1 (en)
    ES (1) ES2113849T3 (en)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN109142424A (en) * 2018-07-24 2019-01-04 安徽康能电气有限公司 A kind of transmission line of electricity external force damage prevention monitoring device based on infrared thermal imaging technique
    CN110261436A (en) * 2019-06-13 2019-09-20 暨南大学 Rail deformation detection method and system based on infrared thermal imaging and computer vision
    DE102021127596A1 (en) 2021-10-22 2023-04-27 Linseis Messgeräte Gesellschaft mit beschränkter Haftung thermal conductivity meter

    Families Citing this family (44)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4003407A1 (en) * 1990-02-05 1991-08-08 Siemens Ag Testing surfaces of moving objects - by photo-thermal heat wave analysis using fixed measurement arrangement with measurement spot inside thermal radiation spot
    DE4114671A1 (en) * 1991-05-06 1992-11-12 Hoechst Ag METHOD AND MEASURING ARRANGEMENT FOR CONTACTLESS ON-LINE MEASUREMENT
    DE4114672A1 (en) * 1991-05-06 1992-11-12 Hoechst Ag METHOD AND MEASURING ARRANGEMENT FOR CONTACTLESS ON-LINE MEASUREMENT
    DE4131866C2 (en) * 1991-09-25 1995-07-27 Orga Kartensysteme Gmbh Device for laser recording on identity cards
    DE4203272C2 (en) * 1992-02-05 1995-05-18 Busse Gerd Prof Dr Rer Nat Hab Process for the phase-sensitive display of an effect-modulated object
    DE4239479A1 (en) * 1992-11-21 1994-05-26 Hannover Laser Zentrum Methods for recognizing and sorting different plastics
    CA2111945C (en) * 1992-12-21 1997-12-09 Katsuji Kimura Analog multiplier using an octotail cell or a quadritail cell
    US5376793A (en) * 1993-09-15 1994-12-27 Stress Photonics, Inc. Forced-diffusion thermal imaging apparatus and method
    DE4343076C2 (en) * 1993-12-16 1997-04-03 Phototherm Dr Petry Gmbh Device for photothermal testing of a surface of an object in particular being moved
    DE19542534C1 (en) * 1995-11-15 1997-02-27 Phototherm Dr Petry Gmbh Induced heat radiation generating and detecting apparatus radiation
    US5567939A (en) * 1995-12-19 1996-10-22 Hong; Yu-I Infrared scanner and stand assembly
    DE19623121C2 (en) * 1996-06-10 2000-05-11 Wagner International Ag Altsta Method and device for photothermal testing of workpiece surfaces
    US5702184A (en) * 1996-07-09 1997-12-30 Chang; Su-Fen Device for thermally testing a temperature control element
    US5719395A (en) * 1996-09-12 1998-02-17 Stress Photonics Inc. Coating tolerant thermography
    US5714758A (en) * 1996-10-10 1998-02-03 Surface Optics Corp. Portable infrared surface inspection system
    DE19747784A1 (en) * 1997-10-29 1999-05-06 Rothe Lutz Dr Ing Habil Object identifying using thermal signature analysis and infrared sensor system
    FI109730B (en) * 1998-06-18 2002-09-30 Janesko Oy Arrangement for measurement of pH or other chemical property detectable by dye indicators
    US6360935B1 (en) * 1999-01-26 2002-03-26 Board Of Regents Of The University Of Texas System Apparatus and method for assessing solderability
    US6605807B2 (en) 2000-06-05 2003-08-12 The Boeing Company Infrared crack detection apparatus and method
    US7401976B1 (en) * 2000-08-25 2008-07-22 Art Advanced Research Technologies Inc. Detection of defects by thermographic analysis
    US6756591B1 (en) * 2003-03-14 2004-06-29 Centre National De La Recherche Method and device for photothermal imaging tiny particles immersed in a given medium
    US7063097B2 (en) 2003-03-28 2006-06-20 Advanced Technology Materials, Inc. In-situ gas blending and dilution system for delivery of dilute gas at a predetermined concentration
    WO2004088415A2 (en) * 2003-03-28 2004-10-14 Advanced Technology Materials Inc. Photometrically modulated delivery of reagents
    US7052174B2 (en) * 2004-09-16 2006-05-30 The United States Of America As Represented By The Secretary Of The Army Device for determining changes in dimension due to temperature fluctuation
    EP1691189A3 (en) * 2005-02-14 2010-12-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell
    DE102007059502B3 (en) * 2007-12-07 2009-03-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for testing a rotor blade of a wind turbine and testing device
    US7712955B2 (en) * 2007-12-17 2010-05-11 Chinhua Wang Non-contact method and apparatus for hardness case depth monitoring
    DE102010014744B4 (en) * 2010-04-13 2013-07-11 Siemens Aktiengesellschaft Apparatus and method for projecting information onto an object in thermographic surveys
    US8488237B2 (en) * 2011-01-12 2013-07-16 Raytheon Company Wide spectral coverage Ross corrected Cassegrain-like telescope
    WO2013007804A1 (en) * 2011-07-13 2013-01-17 Universität Leipzig Twin-focus photothermal correlation spectroscopy method and device for the characterization of dynamical processes in liquids and biomaterials with the help of absorbing markers
    EP3640701B1 (en) 2011-10-25 2022-06-15 Daylight Solutions Inc. Infrared imaging microscope using tunable laser radiation
    DE102012101467B4 (en) * 2012-02-23 2013-10-31 BAM Bundesanstalt für Materialforschung und -prüfung Apparatus for thermographic testing for defects, in particular for cracks in surfaces and cavities
    DE102012103975B3 (en) * 2012-05-07 2013-08-01 Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses vertreten durch den Präsidenten der BAM, Bundesanstalt für Materialforschung und -prüfung Device for active thermography examination, for non-destructive material testing of components, has dichroic filter between infrared (IR) camera and test element to block and pass electromagnetic radiation in two wavelength ranges
    JP6525161B2 (en) 2013-04-12 2019-06-05 デイライト ソリューションズ、インコーポレイテッド Refractive objective lens assembly for infrared light
    JP2014240801A (en) * 2013-06-12 2014-12-25 株式会社日立ハイテクノロジーズ Infrared inspection apparatus
    FR3020678B1 (en) * 2014-04-30 2021-06-25 Areva Np PHOTOTHERMAL EXAMINATION PROCESS AND CORRESPONDING EXAMINATION SET
    CN103983200A (en) * 2014-05-04 2014-08-13 京东方科技集团股份有限公司 Method and device for measuring film thickness and coating machine
    ES2672981T3 (en) * 2014-07-18 2018-06-19 Optisense Gmbh & Co. Kg Photothermal measuring instrument for the measurement of layer thicknesses as well as a procedure for photothermal measurement
    US10132743B2 (en) 2016-01-25 2018-11-20 General Electric Company Fixed optics photo-thermal spectroscopy reader and method of use
    FR3053469B1 (en) * 2016-06-30 2018-08-17 Areva Np METHOD FOR INSPECTING A METAL SURFACE AND DEVICE THEREFOR
    JP2018059874A (en) * 2016-10-07 2018-04-12 学校法人東北学院 Heat source scanning type thermographic system
    CN109030463B (en) * 2018-09-21 2024-01-30 中国工程物理研究院流体物理研究所 Laser-induced breakdown spectroscopy system for single multi-point simultaneous measurement and measurement method
    LU101529B1 (en) * 2019-12-12 2021-06-15 Aim Systems Gmbh Device and method for determining a material property of a test body in a test body area close to the surface
    US20230046023A1 (en) * 2020-02-07 2023-02-16 Agency For Science, Technology And Research Active infrared thermography system and computer-implemented method for generating thermal image

    Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3803413A (en) * 1972-05-01 1974-04-09 Vanzetti Infrared Computer Sys Infrared non-contact system for inspection of infrared emitting components in a device

    Family Cites Families (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3808439A (en) * 1972-04-24 1974-04-30 Us Army Laser illumination thermal imaging device for nondestructive testing
    DE3067251D1 (en) * 1979-07-03 1984-05-03 Allied Corp Structural element, tetrahedral truss constructed therefrom and method of construction
    DE3034944C2 (en) * 1980-09-01 1985-01-17 Gerhard Dr. 8029 Sauerlach Busse Method and device for the photothermal structure investigation of solid bodies
    DE3204146C2 (en) * 1982-02-06 1986-06-19 Bundesrepublik Deutschland, vertreten durch den Bundesminister für Wirtschaft in Bonn, dieser vertreten durch den Präsidenten der Bundesanstalt für Materialprüfung (BAM), 1000 Berlin Infrared thermography reflection method
    IL65176A0 (en) * 1982-03-05 1982-05-31 C I Ltd Material testing method and apparatus
    US4522510A (en) * 1982-07-26 1985-06-11 Therma-Wave, Inc. Thin film thickness measurement with thermal waves
    US4481418A (en) * 1982-09-30 1984-11-06 Vanzetti Systems, Inc. Fiber optic scanning system for laser/thermal inspection
    US4752140A (en) * 1983-12-02 1988-06-21 Canadian Patents And Development Limited/Societe Canadienne Des Brevets Et D'exploitation Limitee Pulsed dilatometric method and device for the detection of delaminations
    GB8422873D0 (en) * 1984-09-11 1984-10-17 Secr Defence Static stress measurement in object
    US4707605A (en) * 1986-05-07 1987-11-17 Barnes Engineering Company Method and apparatus for thermal examination of a target by selective sampling
    DE3631652C2 (en) * 1986-09-17 1994-05-19 Siemens Ag Measuring arrangement for non-contact thickness determination
    US4874948A (en) * 1986-12-29 1989-10-17 Canadian Patents And Development Limited Method and apparatus for evaluating the degree of cure in polymeric composites
    US4792683A (en) * 1987-01-16 1988-12-20 Hughes Aircraft Company Thermal technique for simultaneous testing of circuit board solder joints
    DE3813258A1 (en) * 1988-04-20 1989-11-02 Siemens Ag Method for the non-contact testing and non-destructive testing of absorptive materials, and device for carrying it out

    Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3803413A (en) * 1972-05-01 1974-04-09 Vanzetti Infrared Computer Sys Infrared non-contact system for inspection of infrared emitting components in a device

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN109142424A (en) * 2018-07-24 2019-01-04 安徽康能电气有限公司 A kind of transmission line of electricity external force damage prevention monitoring device based on infrared thermal imaging technique
    CN110261436A (en) * 2019-06-13 2019-09-20 暨南大学 Rail deformation detection method and system based on infrared thermal imaging and computer vision
    CN110261436B (en) * 2019-06-13 2022-03-22 暨南大学 Rail fault detection method and system based on infrared thermal imaging and computer vision
    DE102021127596A1 (en) 2021-10-22 2023-04-27 Linseis Messgeräte Gesellschaft mit beschränkter Haftung thermal conductivity meter

    Also Published As

    Publication number Publication date
    ATE163762T1 (en) 1998-03-15
    DE59010808D1 (en) 1998-04-09
    EP0394932A2 (en) 1990-10-31
    EP0394932A3 (en) 1992-03-25
    JPH034151A (en) 1991-01-10
    ES2113849T3 (en) 1998-05-16
    US5118945A (en) 1992-06-02
    DE3913474A1 (en) 1990-10-25

    Similar Documents

    Publication Publication Date Title
    EP0394932B1 (en) Photothermal inspection method, arrangement for its working out, and utilisation of the method
    DE4343076C2 (en) Device for photothermal testing of a surface of an object in particular being moved
    EP3172610B1 (en) Method and device for microscopic examination of a sample
    EP3583390B1 (en) Method and device for detecting a focal position of a laser beam
    EP1610117A2 (en) Light scanning device
    DE10105391A1 (en) Scanning microscope and module for a scanning microscope
    DE3424108A1 (en) SPECTROMETRY SAMPLE ARRANGEMENT, METHOD FOR MEASURING LUMINESCENCE AND SCATTERING AND USE OF THE SAMPLE ARRANGEMENT
    DE3610165A1 (en) OPTICAL SCAN MICROSCOPE
    EP1615064B1 (en) Reflective phase filter for a scanning microscope
    DE112015006624T5 (en) Far infrared spectroscopy device
    DE10217098A1 (en) Incident lighting arrangement for a microscope
    DE4015893C2 (en) Method and device for examining the internal structure of an absorbent test specimen
    DE3813258A1 (en) Method for the non-contact testing and non-destructive testing of absorptive materials, and device for carrying it out
    DE102008048266B4 (en) A method for the rapid determination of the separate components of volume and surface absorption of optical materials, an apparatus therefor and their use
    DE19909595B4 (en) Method and apparatus for measuring the spatial power density distribution of high divergence and high power radiation
    DE69937237T2 (en) METHOD AND DEVICE FOR ULTRASONIC LASER TESTS
    CN112595493A (en) Common target surface measuring device and method for laser damage threshold and nonlinear absorption
    EP0925496B1 (en) Arrangement for assessing reflection behaviour
    EP3614130A1 (en) Device for determining optical properties of samples
    DE102014110341A1 (en) Method and apparatus for microscopically examining a sample
    DE19548158A1 (en) Very small optical measuring head for laser Doppler vibrometer
    WO2010066751A2 (en) Device and method for measuring the motion, shape, and/or deformation of objects
    DE102015205699B4 (en) Spectrometer with single mode waveguide
    DE19950225A1 (en) Arrangement for the optical scanning of an object
    Power et al. Longitudinal light profile microscopy: A new method for seeing below the surfaces of thin-film materials

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

    17P Request for examination filed

    Effective date: 19901205

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

    17Q First examination report despatched

    Effective date: 19950116

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: PETRY, HARALD, DR.

    Owner name: SIEMENS AKTIENGESELLSCHAFT

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

    REF Corresponds to:

    Ref document number: 163762

    Country of ref document: AT

    Date of ref document: 19980315

    Kind code of ref document: T

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 19980310

    Year of fee payment: 9

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980317

    REF Corresponds to:

    Ref document number: 59010808

    Country of ref document: DE

    Date of ref document: 19980409

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 19980413

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 19980416

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 19980420

    Year of fee payment: 9

    Ref country code: FR

    Payment date: 19980420

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 19980422

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 19980423

    Year of fee payment: 9

    ET Fr: translation filed
    ITF It: translation for a ep patent filed

    Owner name: STUDIO JAUMANN P. & C. S.N.C.

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2113849

    Country of ref document: ES

    Kind code of ref document: T3

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 19980709

    Year of fee payment: 9

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990423

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990423

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990424

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990424

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990430

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990430

    BERE Be: lapsed

    Owner name: SIEMENS A.G.

    Effective date: 19990430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991101

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 19991110

    Year of fee payment: 10

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 19990423

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991231

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 19991101

    EUG Se: european patent has lapsed

    Ref document number: 90107682.8

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010201

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20010503

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050423