JP2018059874A - Heat source scanning type thermographic system - Google Patents

Heat source scanning type thermographic system Download PDF

Info

Publication number
JP2018059874A
JP2018059874A JP2016199229A JP2016199229A JP2018059874A JP 2018059874 A JP2018059874 A JP 2018059874A JP 2016199229 A JP2016199229 A JP 2016199229A JP 2016199229 A JP2016199229 A JP 2016199229A JP 2018059874 A JP2018059874 A JP 2018059874A
Authority
JP
Japan
Prior art keywords
sample
light
heat source
light source
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016199229A
Other languages
Japanese (ja)
Inventor
務 星宮
Tsutomu Hoshimiya
務 星宮
春男 遠藤
Haruo Endo
春男 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU Gakuin
Original Assignee
TOHOKU Gakuin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU Gakuin filed Critical TOHOKU Gakuin
Priority to JP2016199229A priority Critical patent/JP2018059874A/en
Publication of JP2018059874A publication Critical patent/JP2018059874A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide means capable of simply detecting a defect existing inside a structure having a flat surface shape or a curved surface shape as a thermal image in a non-contact/nondestructive manner.SOLUTION: An active thermography system which flexibly handles structure samples each having different thermal diffusion by scanning the same while irradiating a solid sample 6 with a linearly converged light beam in a manner of electrical, mechanical or a combination thereof.SELECTED DRAWING: Figure 1

Description

本発明は非破壊検査に応用されるサーモグラフィー走査装置に関するものである。   The present invention relates to a thermographic scanning device applied to nondestructive inspection.

光を物質に照射して、熱に転換されたエネルギーをそこから放出される赤外放射としてとらえるサーモグラフィーは、内部が見えない固体試料内部の非破壊検査に応用されてきた。特に測定対象試料に光ビームを照射するアクティブ・サーモグラフィー装置においては、試料全面を照射する手法 [非特許文献1]、試料に点状ビームを収束して照射する手法[非特許文献2]、ならびに試料に線状ビームを収束して照射する手法[非特許文献3]の3つが知られている。   Thermography, which irradiates a substance with light and captures energy converted into heat as infrared radiation emitted therefrom, has been applied to nondestructive inspection inside a solid sample where the inside cannot be seen. In particular, in an active thermography apparatus that irradiates a measurement target sample with a light beam, a method of irradiating the entire surface of the sample [Non-Patent Document 1], a method of irradiating a sample with a point beam converged [Non-Patent Document 2], and Three methods [Non-Patent Document 3] are known in which a sample is focused and irradiated with a linear beam.

第3の線状に光ビームを収束する手法に関しては、本申請者によって提案された、電子的に空間的に別の場所に配置された複数の光源を切り替えて点灯する手法 [非特許文献4]の応用が有用と考えられる。 Regarding the method of converging the light beam into the third linear shape, a method proposed by the present applicant to switch on and turn on a plurality of light sources arranged electronically in different locations [Non-Patent Document 4] ] Is considered useful.

星宮務:“電子走査式光源装置および方法”, 特願2014-002421 (2014.1.9)Tsutomu Hoshimiya: “Electronic scanning light source device and method”, Japanese Patent Application 2014-002421 (2014.1.9)

L.D.Fsavro, T.Ahmed, H.J.Jin,P.K.Kuo and R. L. Thomas: Photoacoustic and photothermal phenomena II, 490 (1990).L.D.Fsavro, T.Ahmed, H.J.Jin, P.K.Kuo and R. L. Thomas: Photoacoustic and photothermal phenomena II, 490 (1990). C.Grass and D.Balageas: Proc., QIRT-92, 19 (1992).C. Grass and D. Balageas: Proc., QIRT-92, 19 (1992). T. Hoshimiya, J. Hoshimiya and M.Tsuda: “Line-focus Beam-scan Time-domain Active Thermography with External Control”, Proc., QIRT-2012, 186 (2012).T. Hoshimiya, J. Hoshimiya and M. Tsuda: “Line-focus Beam-scan Time-domain Active Thermography with External Control”, Proc., QIRT-2012, 186 (2012). J. Hoshimiya and T. Hoshimiya: “Whole-electronic line-focus light-scanner for active thermography”, Proc., QIRT-2014, 222 (2014).J. Hoshimiya and T. Hoshimiya: “Whole-electronic line-focus light-scanner for active thermography”, Proc., QIRT-2014, 222 (2014). ASTM D 4788-03(2013), “Standard Test Method for Detecting Delaminations in Bridge Decks Using Infrared Thermography”, ASTM International, West Conshohocken, PA, 2013.ASTM D 4788-03 (2013), “Standard Test Method for Detecting Delaminations in Bridge Decks Using Infrared Thermography”, ASTM International, West Conshohocken, PA, 2013. 島田義則:“レーザー超音波によるコンクリート内部欠陥のリモートセンシング技術”、検査技術、Vol. 14, p. 35 (2009).Yoshinori Shimada: “Remote Sensing Technology of Internal Defects in Concrete Using Laser Ultrasound”, Inspection Technology, Vol. 14, p. 35 (2009).

現在、日本中の橋やトンネルなどインフラ構造物の老朽化が問題となっており、コンクリート内部欠陥の非破壊検査などが緊急の課題となっている。これまでの技術では、日照のある場所では昼夜の照射光量の差による温度差を利用した非破壊検査[非特許文献5]などが行われてきたが、トンネル内部の検査では、打撃によるハンマリング法、接触型超音波法などしか実用化されてこなかったし、自動化装置の候補としてはレーザー超音波法[非特許文献6]があげられるが高額で大型の装置で、民間レベルで簡便に使用できる汎用の検査装置はまだ実現していなかった。   At present, aging of infrastructure structures such as bridges and tunnels throughout Japan has become a problem, and nondestructive inspection of concrete internal defects is an urgent issue. In conventional technology, non-destructive inspection using the temperature difference due to the difference in the amount of irradiation light between day and night [Non-Patent Document 5] has been performed in places with sunshine, but in the inspection inside the tunnel, hammering by hammering is performed. Method, contact ultrasonic method, etc. have been put into practical use, and laser ultrasonic method [Non-Patent Document 6] is a candidate for an automated device, but it is an expensive and large-sized device that can be used easily at the private level. A general-purpose inspection device that can be used has not yet been realized.

発明者は特許文献1の電子的走査技術を用いてアクティブ・サーモグラフィー検査装置の開発を試みてきた。発明では、円筒形の透明部材を用いたロッドレンズ、あるいはその中央部をくりぬいたパイプ構造の集光光学系と、発光位置とタイミングを電子的、あるいは機械的に変化させ得る光源の採用により、光の試料への照射によって発生する熱源の位置を走査する手法を用いた、簡便・かつ大型化可能な装置により、上に述べた課題を解決することを目的とする。
The inventor has attempted to develop an active thermography inspection apparatus using the electronic scanning technique disclosed in Patent Document 1. In the invention, by adopting a rod lens using a cylindrical transparent member, or a condensing optical system with a pipe structure hollowed out at the center thereof, and a light source that can change the light emission position and timing electronically or mechanically, An object of the present invention is to solve the above-described problems by a simple and large-sized apparatus using a method of scanning the position of a heat source generated by irradiation of a light sample.

上記の課題を解決するために、本発明は次の手段を提供する。本発明は、光源の点灯をパーソナルコンピューター(PC)で駆動できる、大出力ランプ、高輝度発光ダイオード(LED)、あるいはレーザーダイオード(LD)を光源とし、直流電源とパワートランジスタ駆動回路をPCにより制御するLEDアレイの逐次駆動により移動する線状熱源を実現して、工業製品や機械・建築構造物の内部非破壊検査が可能なサーモグラフィー検査を可能とする装置を提供する。 In order to solve the above problems, the present invention provides the following means. The present invention uses a high-power lamp, high-intensity light-emitting diode (LED), or laser diode (LD) as a light source that can be driven by a personal computer (PC), and controls the DC power supply and power transistor drive circuit by the PC. Provided is a device that realizes a linear heat source that moves by sequentially driving an LED array to enable thermographic inspection capable of non-destructive inspection of industrial products, machines, and building structures.

この手法によって、従来機械的スライドステージなどの重量のある高価な走査機器を必要としていた非破壊検査装置を、電子工学・情報工学的な制御によって、より軽量で安価な製品を実現して、従来の課題を解決するものである。
With this method, a conventional non-destructive inspection device that previously required a heavy and expensive scanning device such as a mechanical slide stage has been realized by making electronic and information engineering control a lighter and cheaper product. It solves the problem.

本発明は大型レーザーや高額な走査機構を用いずに、発光デバイスを多数個用いて、安全かつ低価格な非破壊検査機器を開発する効果がある。 The present invention has an effect of developing a safe and low-cost non-destructive inspection apparatus by using a large number of light emitting devices without using a large laser or an expensive scanning mechanism.

本検査装置は、そのシステム構成から、X線や超音波、磁気などを使った他の非破壊検査装置に比べ、安全で、装置として安価であることや特に技術的な知識やノウハウの蓄積の少ない人でもパソコンを取り扱うような手軽さで操作することが可能であることから汎用的に普及するものと期待される。
Due to its system configuration, this inspection device is safer and less expensive than other nondestructive inspection devices using X-rays, ultrasonic waves, magnetism, etc., and has accumulated technical knowledge and know-how. It is expected to spread widely because it is possible for even a small number of people to operate as easily as handling a personal computer.

図1は本発明の請求項の1の説明をなすもので、基本的な構成を示したものである。FIG. 1 explains the claim 1 of the present invention and shows a basic configuration. 図2は複数のチャンネルを有するアナログ出力端子を用いて複数の高輝度LEDアレイからの光を試料に照射した場合の熱画像、ならびに温度波形の一例を示したものである。FIG. 2 shows an example of a thermal image and a temperature waveform when a sample is irradiated with light from a plurality of high-intensity LED arrays using an analog output terminal having a plurality of channels.

図1の様に信号発生用パーソナルコンピューター1で発生した電気信号を複数の出力チャンネルを有する入出力装置2から出力する。各チャンネルから発生した電気信号はそれぞれのLED列対応した遅延時間を持つ時系列として、それぞれのLEDを駆動するパワートランジスタ列3に入力され、アレイ状に配列されたLED列4を駆動する。LEDから発光された光はロッドレンズ5により検査試料6の表面に結像される。試料の加熱によって発生した赤外線信号は、画像としてサーモカメラ7によりリアルタイムで画像化され、信号処理用パーソナルコンピューター8で処理される。  As shown in FIG. 1, an electrical signal generated by a signal generating personal computer 1 is output from an input / output device 2 having a plurality of output channels. The electric signals generated from the respective channels are input as time series having a delay time corresponding to each LED column to the power transistor column 3 for driving each LED, and drive the LED column 4 arranged in an array. The light emitted from the LED is imaged on the surface of the inspection sample 6 by the rod lens 5. The infrared signal generated by heating the sample is imaged in real time as an image by the thermo camera 7 and processed by the signal processing personal computer 8.

図2は、ロッドレンズを用いた結像系の説明図である。図2(a)に示す円柱型ロッドレンズの直径をD,材質の屈折率をnとすると、その焦点距離は公式   FIG. 2 is an explanatory diagram of an imaging system using a rod lens. When the diameter of the cylindrical rod lens shown in Fig. 2 (a) is D and the refractive index of the material is n, the focal length is the formula.

数式1Formula 1

Figure 2018059874
(1)
で与えられ、光源からレンズの中心までの距離をaとすると、レンズの中心から像までの距離bは、レンズの結像公式
Figure 2018059874
(1)
Given that the distance from the light source to the center of the lens is a, the distance b from the center of the lens to the image is the lens imaging formula

数式2Formula 2


Figure 2018059874
(2)
により与えられる。ここに焦点距離fは数式1で表されるものとする。
Figure 2018059874
(2)
Given by. Here, the focal length f is expressed by Equation 1.

従って、図1のようなロッドレンズを使うアクティブ・サーモグラフィー装置では、平面やトンネル内部の曲面のように、あらかじめ測定物の表面の形状がわかっている場合には、LED列を配置する場合のレンズの中心からLED発光面までの距離aを列ごとに適切に配置していけば、正しい結像を与えることができる。   Therefore, in the active thermography apparatus using the rod lens as shown in FIG. 1, when the shape of the surface of the object to be measured is known in advance, such as a flat surface or a curved surface inside the tunnel, a lens for arranging an LED array. If the distance a from the center of the LED to the LED light emitting surface is appropriately arranged for each column, correct imaging can be provided.

もし、高輝度LEDとレンズを一体化させたものをロッドレンズの中心を軸として、図2(a)に示す角度θを変化するように回転させれば、照射する線状光ビームの機械走査を行なうこともできる。   If a high-brightness LED and a lens integrated with each other are rotated about the center of the rod lens so as to change the angle θ shown in FIG. 2A, mechanical scanning of the irradiated linear light beam is performed. Can also be performed.

なお、図2(b)に示す同心円筒型ロッドレンズの場合には、内部の媒質の屈折率が等価的に低下するため、ロッドレンズの公式(1)よりは少し長い焦点距離を有するが、その場合も光の屈折の法則から導かれる適切な公式に基づいて計算することができる。   In the case of the concentric cylindrical rod lens shown in FIG. 2 (b), the refractive index of the internal medium is equivalently lowered, so that the focal length is slightly longer than the rod lens formula (1). In that case, it can be calculated based on an appropriate formula derived from the law of refraction of light.

図3は、本発明の請求項3に示す光源の電子的走査とスリットの機械走査とを組み合わせることを示す図面である。請求項1に示す電子的な走査ではどうしても単独の光源の大きさがあるため、鮮明に結像した像の位置は離散的なものとなり、その中間位置に熱源を発生することが難しい。この図では、比較的志向性の広い光源を集光系で緩やかに結像し、その幅広い線状の像の中から、12の回転機構つきスリットで選ばれた方向にのみ光ビームを結像させることができるので、上記の離散的結像をさらに連続的に走査することで性能の向上を図ることができるものである。スリットのみを回転させるため、請求項2に述べた光源と集光系全体を回転・走査するよりも遥かに簡便に動かすことができる。   FIG. 3 is a drawing showing a combination of electronic scanning of a light source and mechanical scanning of a slit according to claim 3 of the present invention. In the electronic scanning according to the first aspect, since the size of the single light source is inevitably large, the position of the clearly imaged image becomes discrete, and it is difficult to generate a heat source at an intermediate position. In this figure, a light source with a relatively wide orientation is gently imaged by a condensing system, and a light beam is imaged only in the direction selected by a slit with 12 rotation mechanisms from the wide linear image. Therefore, the performance can be improved by further continuously scanning the discrete imaging. Since only the slit is rotated, the light source and the entire light collecting system described in claim 2 can be moved much more easily than rotating and scanning.

図4は、図1の実験装置により、黒色塗料を塗布した試料に移動する線状熱源の生成を行なった熱画像をデータとして示したものである。上から5秒ごとに試料の同一地点の熱画像を示した。LEDの特性により、多少の熱源の強度のばらつきはあるが、線状熱源がほぼ一定速度0.9 mm/secで移動していることが示されている。
FIG. 4 shows, as data, a thermal image in which a linear heat source that moves to a sample coated with black paint is generated by the experimental apparatus of FIG. A thermal image of the same spot of the sample was shown every 5 seconds from the top. Although the intensity of the heat source varies somewhat depending on the characteristics of the LED, it is shown that the linear heat source moves at a substantially constant speed of 0.9 mm / sec.

放射線検査は危険かつ資格が必要であり、超音波検査は非接触測定ができないのに対し、本発明装置は簡便で低価格であり、PCの操作で簡単に画像としての判断が可能であるため、民生用検査機器として大きな期待がもたれる。
Radiation inspection is dangerous and requires qualification, and ultrasonic inspection cannot perform non-contact measurement. On the other hand, the device of the present invention is simple and inexpensive, and can be easily judged as an image by operating a PC. High expectations are placed on consumer testing equipment.

1 信号発生用パーソナルコンピューター
2 制御入出力装置
3 駆動用パワートランジスタ列
4 LED(もしくはLD)光源アレイ
5 ロッドレンズ(円柱状、もしくは同心円筒状)
6 検査試料
7 サーモカメラ
8 熱画像・温度波形処理用パーソナルコンピューター
DESCRIPTION OF SYMBOLS 1 Personal computer for signal generation 2 Control input / output device 3 Drive power transistor array 4 LED (or LD) light source array 5 Rod lens (columnar shape or concentric cylindrical shape)
6 Inspection sample 7 Thermo camera 8 Personal computer for thermal image / temperature waveform processing

9 試料面
10 集光レンズ
11 光源
12 回転機構つきスリット
9 Sample surface 10 Condensing lens 11 Light source 12 Slit with rotation mechanism

図1は本発明の請求項の1の説明をなすもので、基本的な構成を示したものである。FIG. 1 explains the claim 1 of the present invention and shows a basic configuration. 図2は複数のチャンネルを有するアナログ出力端子を用いて複数の高輝度LEDアレイからの光を試料に照射した場合の熱画像、ならびに温度波形の一例を示したものである。FIG. 2 shows an example of a thermal image and a temperature waveform when a sample is irradiated with light from a plurality of high-intensity LED arrays using an analog output terminal having a plurality of channels. 図3は本発明の請求項の3の説明をなすもので、基本的な構成を示したものFIG. 3 explains the third aspect of the present invention and shows a basic configuration. である。 It is. 図4は、図1の実験装置により、5列の高輝度LEDアレイからの光を黒色FIG. 4 shows black light from five rows of high-intensity LED arrays by the experimental apparatus of FIG. 塗料を塗布した試料に照射して、移動する線状熱源の生成を行なった熱画像をデータA thermal image generated by generating a moving linear heat source by irradiating a paint-coated sample. として示したものである。上から、時刻0から20秒まで5秒ごとに試料の同一地点It is shown as. From the top, the same point of the sample every 5 seconds from time 0 to 20 seconds の熱画像を示した。LEDの特性により、多少の熱源の強度のばらつきはあるが、線The thermal image of was shown. Depending on the characteristics of the LED, there is some variation in the intensity of the heat source, 状熱源がほぼ一定速度0.9 mm/secで移動していることが示されている。It is shown that the heat source is moving at a substantially constant speed of 0.9 mm / sec.

Claims (4)

アクティブ・サーモグラフィー装置であって、アレイ状に配置した大出力光源の発光を列ごとに切り替えて、光学集光系により試料に結像することにより、熱源となる光ビームの走査を行うことを特徴とするサーモグラフィー装置。 This is an active thermography device that scans the light beam as a heat source by switching the light emission of a high-output light source arranged in an array for each column and forming an image on a sample by an optical condensing system. Thermography device. 単一あるいは複数配置した大出力光源を、円柱あるいは円筒の形状を有する光学集光系と組み合わせ、試料照射光学系全体をロッドレンズの中心を軸として機械的に回転することにより光ビームを試料に対して走査する原理に基づくサーモグラフィー装置。 A single or multiple high-output light source is combined with an optical condensing system having a cylindrical or cylindrical shape, and the entire sample irradiation optical system is mechanically rotated around the center of the rod lens to make the light beam into the sample. Thermographic device based on the principle of scanning against. 請求項2に述べた機械走査機構と、請求項1に述べた電子走査機構とを組み合わせて熱源となる光ビームの走査を行うことを特徴とするサーモグラフィー装置。 A thermographic apparatus that scans a light beam serving as a heat source by combining the mechanical scanning mechanism according to claim 2 and the electronic scanning mechanism according to claim 1. 請求項1〜3の原理を応用した装置であって、光を照射する試料の表面形状(平面や曲面などの形状)に合わせて、結像する像の鮮鋭度を測定目的に合わせて最適になるように光源とレンズとの位置関係を調整する機能を含むサーモグラフィー装置。






















An apparatus applying the principle of claims 1 to 3, wherein the sharpness of the image to be imaged is optimized in accordance with the measurement purpose in accordance with the surface shape of the sample to be irradiated with light (shape such as a plane or a curved surface). A thermography device including a function of adjusting the positional relationship between the light source and the lens.






















JP2016199229A 2016-10-07 2016-10-07 Heat source scanning type thermographic system Pending JP2018059874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016199229A JP2018059874A (en) 2016-10-07 2016-10-07 Heat source scanning type thermographic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016199229A JP2018059874A (en) 2016-10-07 2016-10-07 Heat source scanning type thermographic system

Publications (1)

Publication Number Publication Date
JP2018059874A true JP2018059874A (en) 2018-04-12

Family

ID=61909014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016199229A Pending JP2018059874A (en) 2016-10-07 2016-10-07 Heat source scanning type thermographic system

Country Status (1)

Country Link
JP (1) JP2018059874A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490313A (en) * 2018-11-09 2019-03-19 中国科学院光电技术研究所 Automatic detection device and method for surface defects of large-caliber curved surface optical element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034151A (en) * 1989-04-24 1991-01-10 Siemens Ag Light and heat type inspection method and device for executing said method
JP2003149188A (en) * 2001-11-14 2003-05-21 Mitsubishi Heavy Ind Ltd Remote inspection method and remote inspection device for structure
JP2008539403A (en) * 2005-04-28 2008-11-13 アレヴァ エヌペ Photothermal inspection camera with offset adjustment device
JP2015049194A (en) * 2013-09-03 2015-03-16 株式会社ブイ・テクノロジー Nondestructive inspection device and inspection system for structure
JP2015132475A (en) * 2014-01-09 2015-07-23 学校法人東北学院 Electronic scanning-type light source scanning apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034151A (en) * 1989-04-24 1991-01-10 Siemens Ag Light and heat type inspection method and device for executing said method
JP2003149188A (en) * 2001-11-14 2003-05-21 Mitsubishi Heavy Ind Ltd Remote inspection method and remote inspection device for structure
JP2008539403A (en) * 2005-04-28 2008-11-13 アレヴァ エヌペ Photothermal inspection camera with offset adjustment device
JP2015049194A (en) * 2013-09-03 2015-03-16 株式会社ブイ・テクノロジー Nondestructive inspection device and inspection system for structure
JP2015132475A (en) * 2014-01-09 2015-07-23 学校法人東北学院 Electronic scanning-type light source scanning apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490313A (en) * 2018-11-09 2019-03-19 中国科学院光电技术研究所 Automatic detection device and method for surface defects of large-caliber curved surface optical element

Similar Documents

Publication Publication Date Title
TWI604185B (en) Optical metrology system for spectral imaging of a sample
JP2018163175A (en) Inspection beam shaping for improved detection sensitivity
ES2113849T3 (en) PHOTOTHERMAL INSPECTION PROCEDURE, INSTALLATION FOR ITS REALIZATION AND USE OF THE PROCEDURE.
JP2015505616A5 (en)
JP2015505617A5 (en)
CN106896138A (en) One kind scanning thermal excitation infrared imaging detecting system and method
Garrido et al. Thermographic methodologies used in infrastructure inspection: A review—data acquisition procedures
CN104390943A (en) Microscopic imaging system capable of simultaneously obtaining appearance image and element distribution image
JP2011185852A (en) Device for measurement of thermal diffusivity
JP2017055657A (en) Inspection device for solar battery module and inspection method for solar battery module
JP2006308513A (en) Inspection device and method
CN104502409A (en) Infrared nondestructive testing and imaging method based on array laser source and used for structure surface cracks
JP2016046330A (en) Laser annealing device and laser annealing method
KR20150004146A (en) Detecting apparatus using terahertz
WO2017092366A1 (en) Heat absorber surface irradiance test apparatus and method
CN106706709A (en) Line scanning excitation continuous large-area infrared thermal imaging detection method
JP3886875B2 (en) Tunnel lining internal defect inspection system
JP2018059874A (en) Heat source scanning type thermographic system
CA2966701C (en) Compact apparatus for laser induced breakdown spectroscopy and method therefor
CN113447527B (en) Dual-mode laser infrared thermal imaging detection system and method
JP2018044881A (en) Crack inspection apparatus and crack inspection method
CN111307782A (en) Rapid bacterium detection method based on laser-induced breakdown spectroscopy
CN109799191B (en) Optical non-contact detection device and method for sound disturbance of rough surface of solid material
Ziegler et al. Lock-in thermography using high-power laser sources
Schaumberger et al. Improving process reliability by means of detection of weld seam irregularities in copper via thermographic process monitoring

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210420