EP0394754B1 - Process and device for the selective heat treatment of the weld seam region of a longitudinally welded pipe - Google Patents

Process and device for the selective heat treatment of the weld seam region of a longitudinally welded pipe Download PDF

Info

Publication number
EP0394754B1
EP0394754B1 EP90106913A EP90106913A EP0394754B1 EP 0394754 B1 EP0394754 B1 EP 0394754B1 EP 90106913 A EP90106913 A EP 90106913A EP 90106913 A EP90106913 A EP 90106913A EP 0394754 B1 EP0394754 B1 EP 0394754B1
Authority
EP
European Patent Office
Prior art keywords
weld
temperature
heat treatment
pipe
weld seam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90106913A
Other languages
German (de)
French (fr)
Other versions
EP0394754A3 (en
EP0394754A2 (en
Inventor
Friedhelm Schmitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0394754A2 publication Critical patent/EP0394754A2/en
Publication of EP0394754A3 publication Critical patent/EP0394754A3/en
Application granted granted Critical
Publication of EP0394754B1 publication Critical patent/EP0394754B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Definitions

  • the present invention relates to a method for the selective heat treatment of the weld region of a longitudinally welded metal tube and a device suitable therefor.
  • the method is particularly applicable to pipes with a diameter of less than 100 mm and a wall thickness of less than 2.5 mm. It is particularly suitable for pipes of even smaller dimensions, such as those used in heat exchangers and steam condensers, with pipe diameters of, for example, 10 to 50 mm and wall thicknesses of between about 0.3 and 1 mm.
  • the invention is of particular importance for pipes made of stainless steel with proportions of chromium and optional components such as nickel and / or molybdenum and at the same time a low carbon content.
  • the heat treatment is intended to improve the corrosion properties, particularly with regard to pitting corrosion.
  • the object of the present invention is to provide a method which enables the weld seam to be heated up quickly over a short distance and keeps the amount of heating means low.
  • a method for selective solution annealing of the weld seam in particular including its heat affected zone, of a longitudinally welded metal tube, the tube in particular having a diameter of less than 100 mm and a wall thickness of less than 2.5 mm, and wherein a heat treatment device and the The pipe is moved relative to one another with the following features:
  • the weld seam is heated, preferably by means of at least one arc generated with at least one non-melting electrode, under protective gas to such an extent that its outer region is melted; the weld is then selectively held by further heating means, for example further arcs, infrared emitters or induction coils, for a predefinable period under protective gas at least at a temperature required for the solution annealing of the tube material, but at least in the interior area below the melting temperature and then cooled under protective gas.
  • a preferred area of application of the invention is heat exchanger tubes made of stainless, in particular molybdenum-containing steels, in which solution annealing of the weld seam region can be carried out above 1200 ° C. or even above 1300 ° C.
  • the rest of the pipe naturally heats up during heat treatment, but at a significantly lower temperature than that of the weld area. Such heating of the entire pipe is quite desirable and necessary.
  • the pipe does not become so warm outside the weld seam area that it could be deformed inadmissibly by the transport mechanism, so that a high quality of the pipes is guaranteed, which reduces the rejects and facilitates the quality checks that may be necessary later.
  • This plays an important role in particular for particularly thin-walled pipes with a wall thickness of approximately 0.3 to 0.5 mm.
  • a device for selective solution annealing of the weld seam of a longitudinally welded tube consists of at least a first, approximately point-acting heating medium of high energy density for melting the outer area of the weld seam, e.g. B. at least one non-melting, arc-generating electrode; further heating means, preferably infrared radiators or induction coils, which can bring about selective heating of the weld area; Means for maintaining a protective gas atmosphere in the area of the first electrode and in the vicinity of the metal tube below the other heating means and the area of a subsequent cooling section; Devices for moving the metal pipes along the line given by the heating means.
  • the proposed combination of an electrode with other heating means enables a very compact construction of the heat treatment path and combines the advantages of rapid heating by an arc with the favorable properties of other heating means, in particular infrared heaters and induction coils with regard to maintaining an existing temperature.
  • FIG. 1 the basic structure of a longitudinally welded metal tube is shown in cross-section in FIG. 1, and in FIG. 2, a basic illustration of the device is shown with a diagram of the temperature curves arranged underneath in spatial association with the heat treatment device shown.
  • the cross section shown in FIG. 1 through a longitudinally welded tube 1 illustrates the areas of the tube which are essential for the invention.
  • the individual zones are not shown to scale in order to better illustrate basic things. In reality, the weld seam and the heat affected zone are smaller.
  • the weld seam 2 is generally located on the top of the tube 1 during manufacture. It is surrounded by a heat-affected zone 3, in which the welding process has left changes and inhomogeneities.
  • the rest of the tube consists of unchanged base material, but it may make sense to include an area 4 outside the heat affected zone 3 during a heat treatment for safety reasons, since the exact extent of the heat affected zone 3 is not always known.
  • Weld seam 2, heat affected zone 3 and safety area 4 are referred to in the description as the weld seam area.
  • the weld seam 2 itself has an outer area 2.1, the corrosion properties of which do not play a role in pipes which are only corrosively stressed on the inside, and one Interior area 2.2 whose properties can be decisive for the corrosion resistance of the entire pipe.
  • Fig. 2 shows schematically a heat treatment line, which can be part of a complete production device for longitudinally welded metal pipes or can be arranged separately.
  • the tube 1 passes through this distance by being carried and moved by transport rollers 11 or similar means.
  • the weld seam 2 or the entire weld seam region are heated by an arc 7 at the beginning of the heat treatment.
  • other means with high energy density such as. B. laser beams can be used.
  • a conventional current source 5.1 which is connected on the one hand via a supply line 5.2 to the tube 1 and on the other hand to a non-melting electrode 5, feeds the arc 7.
  • the surrounding area of the arc 7 can be kept under protective gas I by means of a conventional device 6.
  • further heating means 8 in the present exemplary embodiment infrared radiators, which keep the temperature of the weld seam area above the minimum temperature Tmin necessary for solution annealing.
  • the distance between the arc 7 and the first infrared radiator 8 is selected such that the outer region 2.1 of the weld seam 2.2 melted by the arc 7 can solidify again on the way by dissipating heat to the inner region 2.2, so that the entire weld region increases approximately same temperature is above Tmin.
  • a protective gas atmosphere (indicated by arrows) around the entire tube 1 can be maintained by a quartz glass tube 9.
  • a cooling section 10 which is likewise under protective gas, is connected to the heat treatment section. Under the heat treatment device and with spatial association with it, a diagram is shown in FIG. 2 to illustrate the temperature profiles.
  • the temperature is plotted on the abscissa, two temperatures being given by way of example to illustrate the material-dependent region in question.
  • the distance is plotted on the ordinate according to the length of the heat treatment device, whereby (assuming a constant throughput speed of the tube this is equivalent to the time.
  • the diagram therefore shows the temporal or spatial course of the temperatures during the heat treatment.
  • the dashed line Tmin indicates the temperature which is at least necessary for solution annealing of the tube material
  • line Ts indicates the melting temperature of the tube material
  • line Ta illustrates the temperature in the outer region 2.1 of the weld seam 2
  • line Ti illustrates the temperature profile in the inner region 2.2 of the weld seam during It can be seen from the diagram that in the area of the arc 7 the outside area is heated to a temperature above the melting point Ts, but the inside area remains significantly below this temperature between the arc 7 and the first infrared trahler 8, the temperatures of outside 2.1 and inside 2.2 adjust.
  • the outer region 2.1 is also brought to higher temperatures than the inner region 2.2 during the further heat treatment, it being necessary to ensure in any case that the temperature Ti must be between Tmin and Ts, while it is permissible for the outer region 2.1 that this in between, as indicated by the dotted lines Ta ', exceeds the melting point Ts.
  • the temperature of the weld seam area is reduced under protective gas until protective gas is no longer necessary to avoid reactions with the surrounding atmosphere.
  • the present invention is particularly suitable for the heat treatment directly downstream of a pipe production plant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

The present invention relates to a process for selective solution-annealing of the weld zone (2, 3) of a longitudinally welded metal pipe (1). The process is especially suitable for pipes (1) having a diameter of less than 100 mm and a wall thickness of less than 2.5 mm, preferably less than 0.7 mm. In the course of the heat treatment, the weld (2) is first heated under a protective gas (1) to such an extent that its outer region (2.1) is fused. This can preferably be effected by an electric arc (7). Subsequently, the weld (2) is selectively held by further heating means (8), for example further arcs, infrared emitters or induction coils, for a presettable period under a protective gas (I) at least at a temperature (Tmin) required for the solution-annealing of the pipe material, but below the melting temperature (Ts) at least in the inner region (2.2) of the weld (2), and then cooled (10) under a protective gas (I). The single or multiple incipient fusion of the outer region (2.1) of the weld (2) does not reduce the quality of the heat treatment in the inner region (2.2), so that the desired corrosion resistance in the latter does not suffer. However, the partial fusion facilitates rapid introduction of heat for heating up the weld. <IMAGE>

Description

Die vorliegende Erfindung betrifft ein Verfahren zur selektiven Wärmebehandlung des Schweißnahtbereiches eines längsnahtgeschweißten Metallrohres und eine hierfür geeignete Vorrichtung. Anwendbar ist das Verfahren vor allem auf Rohre mit einem Durchmesser von weniger als 100 mm und einer Wanddicke von weniger als 2,5 mm. Besonders geeignet ist es für Rohre von noch geringeren Dimensionen, wie sie beispielsweise bei Wärmetauschern und Wasserdampf-Kondensatoren Anwendung finden mit Rohrdurchmessern von beispielsweise 10 bis 50 mm und Wanddicken zwischen etwa 0,3 und 1 mm. Besondere Bedeutung hat die Erfindung für Rohre aus nichtrostendem Stahl mit Anteilen an Chrom und Wahlkomponenten wie Nickel und/oder Molybdän bei gleichzeitig geringem Kohlenstoffgehalt. Durch die Wärmebehandlung sollen die Korrosionseigenschaften, insbesondere bezüglich Lochfraßkorrosion, verbessert werden.The present invention relates to a method for the selective heat treatment of the weld region of a longitudinally welded metal tube and a device suitable therefor. The method is particularly applicable to pipes with a diameter of less than 100 mm and a wall thickness of less than 2.5 mm. It is particularly suitable for pipes of even smaller dimensions, such as those used in heat exchangers and steam condensers, with pipe diameters of, for example, 10 to 50 mm and wall thicknesses of between about 0.3 and 1 mm. The invention is of particular importance for pipes made of stainless steel with proportions of chromium and optional components such as nickel and / or molybdenum and at the same time a low carbon content. The heat treatment is intended to improve the corrosion properties, particularly with regard to pitting corrosion.

Ein prinzipiell geeignetes Verfahren zu einer selektiven Wärmebehandlung des Schweißnahtbereiches von solchen Rohren und eine zugehörige Vorrichtung sind aus der EP-A 0 234 200 bekannt. Dort wird auch auf die Vorteile verwiesen, die eine selektive Lösungsglühung der Schweißnaht in bezug auf den Ausgleich von Chrom- und/oder Molybdän-Seigerungen hat.A method which is suitable in principle for a selective heat treatment of the weld area of such pipes and an associated device are known from EP-A 0 234 200. There, reference is also made to the advantages that selective solution annealing of the weld seam has in relation to the compensation of chromium and / or molybdenum segregations.

Aus der US-PS 2 673 276 ist der prinzipielle Aufbau einer Vorrichtung zum Herstellen von längsnahtgeschweißten Rohren mit integrierter Wärmebehandlungsvorrichtung bekannt.From US-PS 2 673 276 the basic structure of a device for producing longitudinally welded pipes with an integrated heat treatment device is known.

Fertigungsanlagen für längsnahtgeschweißte Rohre, sogenannte Fertigungsstraßen sind wegen der vielen notwendigen Bearbeitungsschritte relativ langgestreckt und erfordern daher ohnehin schon große Hallen. Wird an die Herstellungsvorrichtung noch eine Wärmebehandlungsvorrichtung angekoppelt, so verlängert sich die gesamte Anlage entsprechend. Bei einer Lösungsglühung des Schweißnahtbereiches muß eine sehr hohe Temperatur über einen längeren Zeitraum, beispielsweise 1250° C über 25 Sekunden im Schweißnahtbereich aufrechterhalten werden. Je nach der Fertigungsgeschwindigkeit der Rohre kann dies eine relativ lange Wärmebehandlungsstrecke erfordern, der sich dann noch eine Abkühlstrecke anschließt. Hierbei stellt auch die Aufheizung der Schweißnaht auf die zur Lösungsglühung erforderliche Temperatur ein Problem dar, weil das Aufheizen eine höhere Wärmeübertragung auf den Schweißnahtbereich erfordert als das spätere Aufrechterhalten der Temperatur.Production systems for longitudinally welded pipes, so-called production lines, are relatively elongated due to the many necessary processing steps and therefore require large halls anyway. If a heat treatment device is coupled to the manufacturing device, the entire system is extended accordingly. At a Solution annealing of the weld area must be maintained at a very high temperature in the weld area over a longer period of time, for example 1250 ° C. for 25 seconds. Depending on the production speed of the pipes, this may require a relatively long heat treatment section, which is then followed by a cooling section. In this case, the heating of the weld seam to the temperature required for solution annealing is also a problem, because the heating requires a higher heat transfer to the weld seam area than the later maintenance of the temperature.

Aufgabe der vorliegenden Erfindung ist die Schaffung eines Verfahrens, welches eine schnelle Aufheizung der Schweißnaht auf kurzer Strecke ermöglicht und den Aufwand an Heizmitteln gering hält.The object of the present invention is to provide a method which enables the weld seam to be heated up quickly over a short distance and keeps the amount of heating means low.

Gelöst wird diese Aufgabe durch ein Verfahren zum selektiven Lösungsglühen der Schweißnaht, insbesondere einschließlich deren Wärmeeinflußzone, eines längsnahtgeschweißten Metallrohres, wobei das Rohr insbesondere einen Durchmesser von weniger als 100 mm und eine Wanddicke von weniger als 2,5 mm hat und wobei eine Wärmebehandlungsvorrichtung und das Rohr relativ zueinander bewegt werden mit folgenden Merkmalen: Die Schweißnaht wird, vorzugsweise mittels wenigstens eines mit wenigstens einer nicht abschmelzenden Elektrode erzeugten Lichtbogens, unter Schutzgas so hoch erhitzt, daß ihr Außenbereich aufgeschmolzen wird; anschließend wird die Schweißnaht selektiv durch weitere Heizmittel, beispielsweise weitere Lichtbogen, Infrarotstrahler oder Induktionsspulen, für einen vorgebbaren Zeitraum unter Schutzgas mindestens auf einer für das Lösungsglühen des Rohrmaterials erforderlichen Temperatur aber zumindest im Innenbereich unterhalb der Schmelztemperatur gehalten und danach unter Schutzgas abgekühlt. Bevorzugte Ausführungsformen des beanspruchten Verfahrens sind in den Ansprüchen 2-6 offenbart. Dabei geht die Erfindung von der Erkenntnis aus, daß es für die meisten Anwendungen der hier betrachteten Rohre nur auf die Korrosionsfestigkeit der Schweißnaht für Angriffe von der Innenseite her ankommt, d. h. die Qualität der Schweißnaht muß vor allen Dingen im Innenbereich durch die Wärmebehandlung verbessert werden, wobei ein geringer Qualitätsverlust in einem relativ kleinen Außenbereich nicht entscheidend ist. Deshalb ist es durchaus zulässig, bei der Aufheizung des Schweißnahtbereiches den äußeren Bereich der Schweißnaht aufzuschmelzen, wodurch eine schnelle Wärmeeinbringung auf kleinem Raum möglich wird. Der Phasenübergang vom festen zum Schmelzflüssigen Zustand bewirkt eine hohe Wärmeaufnahme des Außenbereiches der Schweißnaht, wobei diese Wärmemenge teilweise beim Erstarren des Außenbereiches an den inneren Bereich der Schweißnaht durch Wärmeleitung weitergegeben wird, so daß sich dieser Innenbereich ebenfalls sehr schnell aufheizt, jedoch nicht bis zum dort unerwünschten Schmelzen. Anschließend ist es nur noch nötig, die Temperatur der Schweißnaht im gewünschten, für eine Lösungsglühlung notwendigen Temperaturbereich zu halten, was durch weitere Heizmittel, insbesondere durch Induktionsspulen oder die Schweißnaht linienförmig oder punktförmig beleuchtende Infrarotstrahler möglich ist. Zu beachten ist natürlich, daß sowohl beim Aufheizen z. B. durch einen Lichtbogen, wie auch beim späteren Aufrechterhalten der Wärmebehandlungstemperatur eine Schutzgasatmosphäre vorhanden sein muß, welche mit den im Stand der Technik hinreichend bekannten Mitteln aufrechterhalten werden kann. Es sei darauf hingewiesen, daß auch bei der späteren Wärmebehandlung das periodische Anschmelzen der Außenseite der Schweißnaht zur höheren Wärmeeinbringung im Prinzip zulässig ist, sofern nur sichergestellt wird, daß ein genügend dicker Innenbereich der Schweißnaht nicht aufgeschmolzen wird, wodurch sich sonst die gerade unerwünschten Seigerungen wieder bilden könnten.This object is achieved by a method for selective solution annealing of the weld seam, in particular including its heat affected zone, of a longitudinally welded metal tube, the tube in particular having a diameter of less than 100 mm and a wall thickness of less than 2.5 mm, and wherein a heat treatment device and the The pipe is moved relative to one another with the following features: The weld seam is heated, preferably by means of at least one arc generated with at least one non-melting electrode, under protective gas to such an extent that its outer region is melted; the weld is then selectively held by further heating means, for example further arcs, infrared emitters or induction coils, for a predefinable period under protective gas at least at a temperature required for the solution annealing of the tube material, but at least in the interior area below the melting temperature and then cooled under protective gas. Preferred embodiments of the claimed method are disclosed in claims 2-6. The invention is based on the knowledge that, for most applications of the pipes considered here, only the corrosion resistance of the weld seam is important for attacks from the inside, ie the quality of the weld seam must above all Things inside can be improved by heat treatment, whereby a small loss of quality in a relatively small outside area is not decisive. It is therefore entirely permissible to melt the outer area of the weld seam when the weld seam area is heated, which enables rapid heat input in a small space. The phase transition from the solid to the molten state results in a high heat absorption of the outer area of the weld seam, this amount of heat being partly passed on to the inner area of the weld seam by heat conduction when the outer area solidifies, so that this inner area also heats up very quickly, but not up to there unwanted melting. Subsequently, it is only necessary to keep the temperature of the weld seam in the desired temperature range necessary for solution annealing, which is possible by means of further heating means, in particular by induction coils or by illuminating the weld seam in a linear or punctiform manner. Of course, it should be noted that both when heating z. B. by an arc, as in the later maintenance of the heat treatment temperature, a protective gas atmosphere must be present, which can be maintained with the means well known in the art. It should be pointed out that periodic melting of the outside of the weld seam for higher heat input is in principle also permissible in the subsequent heat treatment, provided it is only ensured that a sufficiently thick inner area of the weld seam is not melted, which would otherwise result in the undesired segregation could form.

Im allgemeinen wird es jedoch günstig sein, den Außenbereich der Schweißnaht nur zu Beginn der Wärmebehandlung einmal aufzuschmelzen und anschließend die Wärmebehandlung in einem Temperaturbereich durchzuführen, in dem die gesamte Schweißnaht schon wieder verfestigt ist. Wie anhand der Zeichnung näher erläutert wird, gibt es natürlich bei einer Wärmebehandlung von außen immer eine mehr oder weniger große Temperaturdifferenz zwischen dem Außenbereich und dem Innenbereich der Schweißnaht, was jedoch für den Erfolg der Wärmebehandlung keine Rolle spielt, wenn nur der Innenbereich der Schweißnaht sich genügend lange oberhalb der Mindesttemperatur, die für eine Lösungsglühung notwendig ist, befindet.In general, however, it will be advantageous to melt the outer region of the weld seam only once at the beginning of the heat treatment and then to carry out the heat treatment in a temperature range in which the entire weld seam has already solidified again. As will be explained in more detail with reference to the drawing, there is of course always a more or less large heat treatment from outside Temperature difference between the outside and the inside of the weld seam, which, however, is irrelevant to the success of the heat treatment if only the inside of the weld seam is above the minimum temperature required for solution annealing for a sufficient length of time.

Ein bevorzugtes Anwendungsgebiet der Erfindung sind Wärmetauscherrohre aus nichtrostenden, insbesondere molybdänhaltigen Stählen, bei denen eine Lösungsglühung des Schweißnahtbereiches oberhalb von 1200° C oder sogar oberhalb 1300° C durchgeführt werden kann. Je höher die gewählte Temperatur der Wärmebehandlung ist, desto geringer kann die Haltezeit sein, die beispielsweise zwischen 5 und 30 Sekunden, vorzugsweise zwischen 15 und 30 Sekunden, liegen sollte. Bei der Wärmebehandlung heizt sich natürlich auch der übrige Bereich des Rohres auf, jedoch auf einer bedeutend niedrigere Temperatur als die des Schweißnahtbereiches. Eine solche Aufheizung des gesamten Rohres ist durchaus erwünscht und notwendig. Das Rohr wird jedoch außerhalb des Schweißnahtbereiches nicht so warm, daß es durch die Transportmechanik unzulässig verformt werden könnte, so daß eine hohe Qualität der Rohre gewährleistet ist, was den Ausschuß verringert und die später ggf. notwendigen Qualitätsprüfungen erleichtert. Dies spielt insbesondere für besonders dünnwandige Rohre von etwa 0,3 bis 0,5 mm Wanddicke eine wichtige Rolle.A preferred area of application of the invention is heat exchanger tubes made of stainless, in particular molybdenum-containing steels, in which solution annealing of the weld seam region can be carried out above 1200 ° C. or even above 1300 ° C. The higher the selected temperature of the heat treatment, the shorter the holding time, which should be between 5 and 30 seconds, preferably between 15 and 30 seconds, for example. The rest of the pipe naturally heats up during heat treatment, but at a significantly lower temperature than that of the weld area. Such heating of the entire pipe is quite desirable and necessary. However, the pipe does not become so warm outside the weld seam area that it could be deformed inadmissibly by the transport mechanism, so that a high quality of the pipes is guaranteed, which reduces the rejects and facilitates the quality checks that may be necessary later. This plays an important role in particular for particularly thin-walled pipes with a wall thickness of approximately 0.3 to 0.5 mm.

Wie anhand der Zeichnung näher erläutert wird, besteht eine Vorrichtung zum selektiven Lösungsglühen der Schweißnaht eines längsnahtgeschweißten Rohres aus wenigstens einem ersten, etwa punktuell wirkenden Heizmittel hoher Energiedichte zum Aufschmelzen des Außenbereiches der Schweißnaht, z. B. wenigstens einer nicht abschmelzenden, einen Lichtbogen erzeugenden Elektrode; weiteren Heizmitteln, vorzugsweise Infrarotstrahlern oder Induktionsspulen, welche eine selektive Aufheizung des Schweißnahtbereiches bewirken können; Mitteln zur Aufrechterhaltung einer Schutzgasatmosphäre im Bereich der ersten Elektrode und in der Umgebung des Metallrohres unterhalb der weiteren Heizmittel und dem Bereich einer anschließenden Abkühlstrecke; Vorrichtungen zum Bewegen der Metallrohre entlang der durch die Heizmittel vorgegebenen Linie. Die vorgeschlagene Kombination einer Elektrode mit anderen Heizmitteln, insbesondere Infrarotstrahlern, ermöglicht einen sehr kompakten Aufbau der Wärmebehandlungsstrecke und verbindet die Vorteile des schnellen Aufheizens durch einen Lichtbogen mit den günstigen Eigenschaften anderer Heizmittel, insb. von Infrarotstrahlern und Induktionsspulen bezüglich des Aufrechterhaltens einer bestehenden Temperatur.As will be explained in more detail with reference to the drawing, a device for selective solution annealing of the weld seam of a longitudinally welded tube consists of at least a first, approximately point-acting heating medium of high energy density for melting the outer area of the weld seam, e.g. B. at least one non-melting, arc-generating electrode; further heating means, preferably infrared radiators or induction coils, which can bring about selective heating of the weld area; Means for maintaining a protective gas atmosphere in the area of the first electrode and in the vicinity of the metal tube below the other heating means and the area of a subsequent cooling section; Devices for moving the metal pipes along the line given by the heating means. The proposed combination of an electrode with other heating means, in particular infrared heaters, enables a very compact construction of the heat treatment path and combines the advantages of rapid heating by an arc with the favorable properties of other heating means, in particular infrared heaters and induction coils with regard to maintaining an existing temperature.

In der Zeichnung ist in Fig. 1 der prinzipielle Aufbau eines längsnahtgeschweißten Metallrohres im Querschnitt dargestellt und in Fig. 2 eine Prinzipdarstellung der Vorrichtung mit einem darunter angeordneten Diagramm der Temperaturverläufe in räumlicher Zuordnung zu der gezeigten Wärmebehandlungsvorrichtung dargestellt.In the drawing, the basic structure of a longitudinally welded metal tube is shown in cross-section in FIG. 1, and in FIG. 2, a basic illustration of the device is shown with a diagram of the temperature curves arranged underneath in spatial association with the heat treatment device shown.

Der in Fig. 1 dargestellte Querschnitt durch ein längsnahtgeschweißtes Rohr 1 veranschaulicht die für die Erfindung wesentlichen Bereiche des Rohres. Dabei sind die einzelnen Zonen nicht maßstabsgerecht dargestellt, um prinzipielle Dinge besser veranschaulichen zu können. In Wirklichkeit sind die Schweißnaht und die Wärmeeinflußzone kleiner. Die Schweißnaht 2 liegt im allgemeinen bei der Herstellung an der Oberseite des Rohres 1. Sie ist umgeben von einer Wärmeeinflußzone 3, in welcher der Schweißvorgang Veränderungen und Inhomogenitäten hinterlassen hat. Der Rest des Rohres besteht aus unverändertem Grundwerkstoff, wobei es jedoch sinnvoll sein kann, aus Sicherheitsgründen einen Bereich 4 außerhalb der Wärmeeinflußzone 3 bei einer Wärmebehandlung einzubeziehen, da die genaue Ausdehnung der Wärmeeinflußzone 3 nicht immer bekannt ist. Schweißnaht 2, Wärmeeinflußzone 3 und Sicherheitsbereich 4 sind in der Beschreibung als Schweißnahtbereich bezeichnet. Die Schweißnaht 2 selbst hat einen Außenbereich 2.1, dessen Korrosionseigenschaften bei nur innen korrosiv beanspruchten Rohren keine Rolle spielen, und einen Innenbereich 2.2 dessen Eigenschaften entscheidend für die Korrosionsbeständigkeit des ganzen Rohres sein können. Fig. 2 zeigt schematisch eine Wärmebehandlungsstrecke, die Teil einer vollständigen Produktionsvorrichtung für längsnahtgeschweißte Metallrohre oder auch separat angeordnet sein kann. Das Rohr 1 durchläuft diese Strecke, indem es von Transportrollen 11 oder ähnlichen Mitteln getragen und bewegt wird. Die Schweißnaht 2 bzw. der gesamte Schweißnahtbereich werden zu Beginn der Wärmebehandlung durch einen Lichtbogen 7 aufgeheizt. Für dieses erste Aufheizen können auch andere Mittel mit hoher Energiedichte, wie z. B. Laserstrahlen eingesetzt werden. Eine übliche Stromquelle 5.1, die einerseits über eine Zuleitung 5.2 mit dem Rohr 1 und andererseits mit einer nichtabschmelzenden Elektrode 5 verbunden ist, speist den Lichtbogen 7. Unter Umständen kann es sinnvoll sein, den Lichtbogen in an sich bekannter Weise durch Magnetfelder zu bewegen, um eine gleichmäßige Wärmeübertragung auf den Schweißnahtbereich zu erzielen. Mittels einer üblichen Vorrichtung 6 kann der Umgebungsbereich des Lichtbogens 7 unter Schutzgas I gehalten werden. Im weiteren Verlauf der Wärmebehandlungsstrecke befinden sich weitere Heizmittel 8, im vorliegenden Ausführungsbeispiel Infrarotstrahler, welche die Temperatur des Schweißnahtbereiches oberhalb der für eine Lösungsglühung notwendigen Mindesttemperatur Tmin halten. Der Abstand zwischen Lichtbogen 7 und dem ersten Infrarotstrahler 8 ist so gewählt, daß sich der durch den Lichtbogen 7 aufgeschmolzene äußere Bereich 2.1 der Schweißnaht 2.2 auf dem Weg durch Wärmeabgabe an den inneren Bereich 2.2 wieder verfestigen kann, so daß der gesamte Schweißnahtbereich sich etwa auf gleicher Temperatur oberhalb Tmin befindet. Bei Verwendung von Infrarotstrahlern 8 kann durch ein Quarzglasrohr 9 eine (durch Pfeile angedeutete) Schutzgasatmosphäre um das gesamte Rohr 1 aufrechterhalten werden. An die Wärmebehandlungsstrecke schließt sich noch eine ebenfalls unter Schutzgas befindliche Abkühlstrecke 10 an. Unter der Wärmebehandlungsvorrichtung und mit räumlicher Zuordnung zu dieser ist in der Fig. 2 ein Diagramm zur Veranschaulichung der Temperaturverläufe angegeben.The cross section shown in FIG. 1 through a longitudinally welded tube 1 illustrates the areas of the tube which are essential for the invention. The individual zones are not shown to scale in order to better illustrate basic things. In reality, the weld seam and the heat affected zone are smaller. The weld seam 2 is generally located on the top of the tube 1 during manufacture. It is surrounded by a heat-affected zone 3, in which the welding process has left changes and inhomogeneities. The rest of the tube consists of unchanged base material, but it may make sense to include an area 4 outside the heat affected zone 3 during a heat treatment for safety reasons, since the exact extent of the heat affected zone 3 is not always known. Weld seam 2, heat affected zone 3 and safety area 4 are referred to in the description as the weld seam area. The weld seam 2 itself has an outer area 2.1, the corrosion properties of which do not play a role in pipes which are only corrosively stressed on the inside, and one Interior area 2.2 whose properties can be decisive for the corrosion resistance of the entire pipe. Fig. 2 shows schematically a heat treatment line, which can be part of a complete production device for longitudinally welded metal pipes or can be arranged separately. The tube 1 passes through this distance by being carried and moved by transport rollers 11 or similar means. The weld seam 2 or the entire weld seam region are heated by an arc 7 at the beginning of the heat treatment. For this first heating, other means with high energy density, such as. B. laser beams can be used. A conventional current source 5.1, which is connected on the one hand via a supply line 5.2 to the tube 1 and on the other hand to a non-melting electrode 5, feeds the arc 7. Under certain circumstances, it may be useful to move the arc in a manner known per se through magnetic fields in order to to achieve even heat transfer to the weld area. The surrounding area of the arc 7 can be kept under protective gas I by means of a conventional device 6. In the further course of the heat treatment section there are further heating means 8, in the present exemplary embodiment infrared radiators, which keep the temperature of the weld seam area above the minimum temperature Tmin necessary for solution annealing. The distance between the arc 7 and the first infrared radiator 8 is selected such that the outer region 2.1 of the weld seam 2.2 melted by the arc 7 can solidify again on the way by dissipating heat to the inner region 2.2, so that the entire weld region increases approximately same temperature is above Tmin. When using infrared radiators 8, a protective gas atmosphere (indicated by arrows) around the entire tube 1 can be maintained by a quartz glass tube 9. A cooling section 10, which is likewise under protective gas, is connected to the heat treatment section. Under the heat treatment device and with spatial association with it, a diagram is shown in FIG. 2 to illustrate the temperature profiles.

Auf der Abszisse ist die Temperatur aufgetragen, wobei beispielhaft zur Veranschaulichung des in Betracht kommenden materialabhängigen Bereiches zwei Temperaturen angegeben sind. Auf der Ordinate ist die Strecke entsprechend der Länge der Wärmebehandlungsvorrichtung aufgetragen, wobei (unter der Voraussetzung einer konstanten Durchlaufgeschwindigkeit des Rohres dies gleichbedeutend mit der Zeit ist. Das Diagramm stellt daher den zeitlichen bzw. räumlichen Verlauf der Temperaturen bei der Wärmebehandlung dar. Die gestrichelte Linie Tmin deutet die Temperatur an, die mindestens zum Lösungsglühen des Rohrmaterials nötig ist, während die Linie Ts die Schmelztemperatur des Rohrmaterials andeutet. Die Linie Ta veranschaulicht die Temperatur im Außenbereich 2.1 der Schweißnaht 2 und die Linie Ti veranschaulicht den Temperaturverlauf im Innenbereich 2.2 der Schweißnaht während der Wärmebehandlung. Erkennbar ist aus dem Diagramm, daß im Bereich des Lichtbogens 7 der Außenbereich auf eine Temperatur oberhalb des Schmelzpunktes Ts aufgeheizt wird, der Innenbereich jedoch deutlich unter dieser Temperatur bleibt. Zwischen Lichtbogen 7 und dem ersten Infrarotstrahler 8 gleichen sich die Temperaturen von Außenbereich 2.1 und Innenbereich 2.2 an. Je nach der Strahlungscharakteristik der Infrarotstrahler 8 wird auch bei der weiteren Wärmebehandlung der Außenbereich 2.1 auf höhere Temperaturen als der Innenbereich 2.2 gebracht, wobei jedenfalls sichergestellt sein muß, daß die Temperatur Ti zwischen Tmin und Ts liegen muß, während es für den Außenbereich 2.1 zulässig ist, daß dieser zwischendurch, wie durch die punktierten Linien Ta' angedeutet, den Schmelzpunkt Ts überschreitet. In der Abkühlstrecke 10 wird schließlich noch unter Schutzgas die Temperatur des Schweißnahtbereiches soweit reduziert bis kein Schutzgas zur Vermeidung von Reaktionen mit der Umgebungsatomosphäre mehr nötig ist.The temperature is plotted on the abscissa, two temperatures being given by way of example to illustrate the material-dependent region in question. The distance is plotted on the ordinate according to the length of the heat treatment device, whereby (assuming a constant throughput speed of the tube this is equivalent to the time. The diagram therefore shows the temporal or spatial course of the temperatures during the heat treatment. The dashed line Tmin indicates the temperature which is at least necessary for solution annealing of the tube material, while line Ts indicates the melting temperature of the tube material, line Ta illustrates the temperature in the outer region 2.1 of the weld seam 2 and line Ti illustrates the temperature profile in the inner region 2.2 of the weld seam during It can be seen from the diagram that in the area of the arc 7 the outside area is heated to a temperature above the melting point Ts, but the inside area remains significantly below this temperature between the arc 7 and the first infrared trahler 8, the temperatures of outside 2.1 and inside 2.2 adjust. Depending on the radiation characteristics of the infrared radiator 8, the outer region 2.1 is also brought to higher temperatures than the inner region 2.2 during the further heat treatment, it being necessary to ensure in any case that the temperature Ti must be between Tmin and Ts, while it is permissible for the outer region 2.1 that this in between, as indicated by the dotted lines Ta ', exceeds the melting point Ts. Finally, in the cooling section 10, the temperature of the weld seam area is reduced under protective gas until protective gas is no longer necessary to avoid reactions with the surrounding atmosphere.

Die vorliegende Erfindung eignet sich besonders für die einer Rohrproduktionsanlage direkt nachgeordnete Wärmebehandlung.The present invention is particularly suitable for the heat treatment directly downstream of a pipe production plant.

Claims (6)

  1. Method for selective solution annealing of the weld (2), in particular including its heat affected zone (3), of a longitudinally welded metal pipe (1), with the pipe (1) having, in particular, a diameter of less than 100 mm and a wall thickness less than 2.5 mm and with a heat treatment device (5, 8) and the pipe (1) being moved relative to one another, characterized by the following features:
    a) the weld (2) is heated to such a high temperature, preferably by means of an arc (7) generated by at least one non-consumable electrode (5) under shielding gas (I) that its outer zone (2.1) melts;
    b) the weld (2) is then soaked selectively by further heating means (8), for example further arcs, infrared radiators or induction coils, for a selectable period under shielding gas (I) at no less than the temperature (Tmin) necessary for the solution annealing of the pipe material, but below the melting temperature (Ts) in the inner zone (2.2) of the weld (2) at least and then cooled (10) under shielding gas (I).
  2. Method in accordance with claim 1 characterized in that the weld (2) is not fused all the way through to the inner side (2.2) of the metal pipe (1) and the effect of the further heating means (8) comes into force at the point when the outer zone (2.1) of the weld (2) becomes doughy or solid again and the entire weld zone (2, 3) is brought to a temperature below the fusion temperature (Ts) through thermal conduction.
  3. Method in accordance with claim 1 or 2 characterized in that the metal pipe (1) consists of stainless steel, preferably an alloy containing molybdenum.
  4. Method in accordance with claim 1, 2 or 3 characterized in that the selectable period is longer than 5 seconds and preferably 15 to 30 seconds.
  5. Method in accordance with one of the preceding claims characterized in that the further heating means (8) heat up the weld (2) in spatial intervals in an approximately spot manner to a temperature considerably above the minimum temperature (Tmin) necessary for solution annealing of the pipe material, with temperature equalization within the weld (2.1, 2.2) occurring through thermal conduction, whilst the pipe (1) and the heat treatment points are being moved relatively to one another.
  6. Method in accordance with one of the preceding claims, characterized in that at least one arc (7) and the further heating means (8) are static and the metal pipe is moved under and past them.
EP90106913A 1989-04-27 1990-04-11 Process and device for the selective heat treatment of the weld seam region of a longitudinally welded pipe Expired - Lifetime EP0394754B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3913973 1989-04-27
DE3913973A DE3913973A1 (en) 1989-04-27 1989-04-27 METHOD AND DEVICE FOR THE SELECTIVE HEAT TREATMENT OF THE WELDING AREA OF A LONELY WELDED TUBE

Publications (3)

Publication Number Publication Date
EP0394754A2 EP0394754A2 (en) 1990-10-31
EP0394754A3 EP0394754A3 (en) 1992-10-14
EP0394754B1 true EP0394754B1 (en) 1994-08-17

Family

ID=6379624

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90106913A Expired - Lifetime EP0394754B1 (en) 1989-04-27 1990-04-11 Process and device for the selective heat treatment of the weld seam region of a longitudinally welded pipe

Country Status (4)

Country Link
EP (1) EP0394754B1 (en)
AT (1) ATE110116T1 (en)
DE (2) DE3913973A1 (en)
ES (1) ES2057241T3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008060205A1 (en) * 2008-12-04 2010-06-10 Rolls-Royce Deutschland Ltd & Co Kg Method for producing a welded rotor for a gas turbine engine
US20110198820A1 (en) * 2010-02-16 2011-08-18 Benteler Automobiltechnik Gmbh Stabilizer and a method for producing a stabilizer
DE102010044799A1 (en) * 2010-09-09 2012-04-26 Benteler Automobiltechnik Gmbh Multipart stabilizer, has two stabilizer components material-conclusively coupled with each other by thermal joining and circulating joining seam, and stabilizer profile manufactured as tubing profile and/or profile made of full material
CN116689963B (en) * 2023-06-25 2023-12-01 浙江摩多巴克斯科技股份有限公司 Laser welding process for high-strength steel pipe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2673276A (en) * 1951-02-01 1954-03-23 Babcock & Wilcox Co Post heating of electrically welded tubes in line of production
DE1558004C2 (en) * 1967-06-14 1974-07-11 Mannesmannroehren-Werke As, 4000 Duesseldorf Process for the heat treatment of weld seams
AT297449B (en) * 1970-07-14 1972-03-27 Simmering Graz Pauker Ag Process for the production of weld seams in a protective gas atmosphere with a preferably non-melting electrode
BE793529A (en) * 1971-12-30 1973-06-29 Rotterdamsche Droogdok Mij N V METHOD FOR RECYSTALLIZING A BASE MATERIAL LOCATED UNDER A WELDED LAYER
DE3766507D1 (en) * 1986-01-21 1991-01-17 Siemens Ag METHOD AND DEVICES FOR THE HEAT TREATMENT OF ROD WELDED TUBES.
DE3744044A1 (en) * 1987-12-24 1989-07-06 Schoeller Gmbh & Co Kg METHOD FOR THE HEAT TREATMENT OF THE WELDING SEAM ON LONG-WELDED METAL TUBES AND DEVICE FOR CARRYING OUT THE METHOD

Also Published As

Publication number Publication date
EP0394754A3 (en) 1992-10-14
ATE110116T1 (en) 1994-09-15
DE3913973A1 (en) 1990-10-31
EP0394754A2 (en) 1990-10-31
DE59006808D1 (en) 1994-09-22
ES2057241T3 (en) 1994-10-16

Similar Documents

Publication Publication Date Title
EP2076615B1 (en) Method for the crack-free welding, repair welding or surface welding of materials prone to form hot cracks
DE2834282C3 (en) Method for connecting austenitic manganese steel cast frogs to carbon steel rails
DE1515197A1 (en) Process for welding with radiant energy
DE2553418A1 (en) PROCESS FOR HIGH CURRENT SHIELDED GAS ARC WELDING
EP2097544B1 (en) Method and apparatus for the heat treatment of welds
DE3427639A1 (en) METHOD AND DEVICE FOR BENDING LONG-TERM WORKPIECES, IN PARTICULAR PIPES
EP0234200A1 (en) Process and device for the heat treatment of longitudinally welded pipes
EP2489459B1 (en) Method for welding components by means of a laser beam
EP0394754B1 (en) Process and device for the selective heat treatment of the weld seam region of a longitudinally welded pipe
DE2942856C2 (en)
DE3914862A1 (en) METHOD FOR WELDING PARTS PARTICULARLY WITH DIFFERENT EXPANSIONS
WO2023016719A1 (en) Welding method and welding device for welding components
DE4017634A1 (en) Continuously welding tube from coiled strip - by passing through shaping rollers induction heaters to pre-heat butting edges and finally welding with burner
DE3319155A1 (en) METHOD AND DEVICE FOR CONNECTING GLAZING WINDOWS
DE102013010560A1 (en) Method for joining workpieces made of zinc-containing copper alloys
DE2228268A1 (en) METHOD AND DEVICE FOR MANUFACTURING BIMETAL STRIPS
DE102020105505A1 (en) Process for laser welding two coated workpieces
DE19635843C2 (en) Pipe welding system for the production of a welded round tube from a flat strip of material
EP0322758A1 (en) Process and device for the heat-treatment of the welding joints of longitudinally welded metal tubes
DE102019131423A1 (en) Additive manufacturing process
DE3247134A1 (en) Process and device for coating the inner surface of rotationally symmetrical hollow bodies with a wear-resistant coating
DE102018126914A1 (en) Method for producing at least one defined connection layer between two components made of different metals
DE102014113538B4 (en) METHOD FOR RESISTANCE SPOT WELDING A STEEL WORKPIECE AND AN ALUMINUM OR ALUMINUM ALLOY WORKPIECE TO EACH OTHER
EP0083091A2 (en) Process and apparatus for coating articles with molten metal
DE102017100497B4 (en) Process for beam-based joining of metallic base materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19901205

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19931026

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 110116

Country of ref document: AT

Date of ref document: 19940915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59006808

Country of ref document: DE

Date of ref document: 19940922

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2057241

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941014

ET Fr: translation filed
EAL Se: european patent in force in sweden

Ref document number: 90106913.8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950718

Year of fee payment: 6

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960322

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960327

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960409

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960410

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960422

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960430

Ref country code: CH

Effective date: 19960430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960430

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960620

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970411

Ref country code: AT

Effective date: 19970411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970412

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971101

EUG Se: european patent has lapsed

Ref document number: 90106913.8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050411