EP0393665A2 - Sizing composition for carbon and glass fibres - Google Patents

Sizing composition for carbon and glass fibres Download PDF

Info

Publication number
EP0393665A2
EP0393665A2 EP90107430A EP90107430A EP0393665A2 EP 0393665 A2 EP0393665 A2 EP 0393665A2 EP 90107430 A EP90107430 A EP 90107430A EP 90107430 A EP90107430 A EP 90107430A EP 0393665 A2 EP0393665 A2 EP 0393665A2
Authority
EP
European Patent Office
Prior art keywords
epoxy resin
emulsifier
remainder
parts
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90107430A
Other languages
German (de)
French (fr)
Other versions
EP0393665A3 (en
Inventor
Joerg Dr. Kroker
Silvio Vargiu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0393665A2 publication Critical patent/EP0393665A2/en
Publication of EP0393665A3 publication Critical patent/EP0393665A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/14Chemical after-treatment of artificial filaments or the like during manufacture of carbon with organic compounds, e.g. macromolecular compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31616Next to polyester [e.g., alkyd]
    • Y10T428/3162Cross-linked polyester [e.g., glycerol maleate-styrene, etc.]

Definitions

  • the invention relates to a size for carbon fibers and glass fibers based on an aqueous dispersion of an epoxy resin and an emulsifier.
  • the invention relates to a sizing agent which has the processing properties - fiber strand cohesion, bundling, spreadability, resistance to fluff and lint formation, fiber smoothness and softness, abrasion resistance and easy and non-destructive unwindability of the carbon or glass fiber fiber strands usually stored on bobbins - as well as the physical properties of the composite material containing the treated fibers improved.
  • CFRP carbon fiber reinforced plastics
  • the matrices of which are reactive resins such as epoxy resins, bismaleimide resins, unsaturated polyester resins or cyanate resins, are preferably used for the purposes mentioned.
  • Carbon fibers consist of several hundred to one hundred thousand individual filaments with a diameter of 5 to 20 ⁇ m, a tensile strength of 1000 to 7000 MPa and an elastic modulus of 200 to 700 GPa.
  • Carbon fibers are usually produced by exposing a suitable polymer fiber made of polyacrylonitrile, pitch or rayon to changing controlled conditions of temperature and atmosphere.
  • carbon fibers can be produced by stabilizing PAN threads or fabrics in an oxidative atmosphere at 200 to 300 ° C and subsequent carbonization in an inert atmosphere above 600 ° C.
  • Such methods are state of the art and are described, for example, in H. H coordinatorler, "Reinforced plastics in the aerospace industry", Verlag W. Kohlhammer, Stuttgart, 1986.
  • the carbon fibers are subjected to an oxidative surface treatment and then provided with a suitable sizing agent.
  • Glass fibers are cooled by spraying with water after exiting the spinning plate and then provided with the sizing agent by passing them on a rotating roller before the individual filaments are combined into so-called rovings, wound up into a spinning cake and then dried in an oven.
  • the size should ensure uniformly good wetting of the fibers by the matrix material during the composite material manufacturing process.
  • the size in its entirety must be chemically compatible with the respective matrix material in order to enable high-quality and durable composite materials. Even if the composite is exposed to constantly changing conditions of temperature and moisture, no delamination processes that are the result of incompatibilities and water absorption should occur.
  • epoxy resins as the basis of many sizing agents, in particular for carbon fibers, is probably due on the one hand to the fact that epoxy resins are generally used as matrices for the production of CFRP, so sizing / matrix incompatibilities are hardly to be feared, on the other hand to the Relatively high and therefore unspecific chemical reactivity of the oxirane ring towards a variety of functional groups, which means that other than epoxy resins can also be used as a matrix in CFRP.
  • sizing agents for carbon fibers can be divided into two classes, the solution and the emulsion type.
  • the polymer usually a resin
  • emulsion type is a water-dispersed resin supported by dispersing aids, hereinafter referred to as "emulsifiers”.
  • emulsifiers water-dispersed resin supported by dispersing aids
  • the emulsion-type size is applied to the carbon fibers in such a way that the fiber bundle is continuously passed through the aqueous dispersion, diluted to 1 to 10% by weight solids, and the fiber is dried immediately afterwards and wound onto spools for transport and storage or directly further processing is supplied; the polymer content on the fiber treated in this way is then about 0.5 to 7% by weight.
  • highly diluted aqueous dispersions of highly viscous, non-self-emulsifying epoxy resins tend to have low emulsion stability - large particle diameters, chemically incompatible and / or low molecular weight emulsifiers are the cause.
  • the need for emulsifier increases, i.e. proportional to the increase in surface area of dispersed particles.
  • the finest possible dispersion is a basic requirement so that the particles can easily penetrate into the interior of the bundle.
  • a block copolymer of polyethylene oxide and polypropylene oxide of the schematic formula is said to be the emulsifier be used.
  • epoxy resin sizes based on such emulsifiers have considerable disadvantages: on the one hand, the film-forming properties of these dispersions are only moderate, on the other hand, laminates made of epoxy resin as a matrix and carbon fibers treated with these size dispersions show increased water absorption, which causes delamination and thus low mechanical strength this composite leads under hot and humid conditions.
  • this emulsifier has 80% by weight terminating hydrophilic aliphatic groups, namely polyethylene oxide, and 20% by weight hydrophobic aliphatic groups, namely polypropylene oxide; the dried size proves to be extremely hygroscopic. Added to this is the unsatisfactory chemical compatibility of these aliphatic emulsifiers with the hydrophobic, predominantly aromatic nature of the epoxy resins.
  • Such dispersions do not have sufficient storage stability and have too little film-forming properties when diluted strongly; moreover, they are unable to sufficiently and evenly emulsify very fine epoxy resin particles.
  • the object of the present invention is to provide a sizing agent for the treatment of carbon fibers and glass fibers, which is free from organic solvents and therefore harmless with regard to toxicity and flammability, which improves the handling and processing properties of the fiber strands and also preserves them in the long term, which is very good has chemical compatibility with epoxy resin matrices over a wide range of temperature and moisture influences and thus ultimately leads to improved mechanical properties of the composite materials, produced from an epoxy resin as a matrix and sized carbon or glass fibers.
  • This object is achieved according to the invention by means of a size comprising an epoxy resin and 5 to 50% by weight, based on the epoxy resin, of a polyester of the general formula A1-B-A2-B-A3-H, where the symbols have the following meaning: A1 is the remainder of a mono alcohol, B is the rest of a dicarboxylic acid, A2 is the remainder of a diol, A3 is the remainder of a polyether diol, and the polyester has a molecular weight between 5,000 and 50,000.
  • the polyesters preferably have a molecular weight between 10,000 and 25,000.
  • the weight ratio (A1 + B + A2 + Z + Y): X is between 80:20 and 40:60.
  • polyesters are good emulsifiers which have a molecular weight between 5000 and 50,000 and consist of a hydrophobic molecular part M and a hydrophilic polyethylene oxide molecular part XH, the weight ratio M: X being between 80:20 and 40:60, preferably between 70:30 and 50:50.
  • a polyester with a M: X ratio of greater than 80:20 no longer has a sufficient emulsifying effect for the epoxy resin; with an M: X ratio of less than 40:60, the size proves to be too hygroscopic.
  • one equivalent of the monoalcohol A1-H is preferably first reacted with about one equivalent of the dicarboxylic acid H-B-H or its anhydride by a conventional condensation reaction to give the half-ester A1-B-H.
  • this half-ester is condensed with about one equivalent of the diol H-A2-H or preferably the corresponding diepoxide until the acid number has dropped below 1 mg KOH / g.
  • another equivalent of dicarboxylic acid H-B-H or the corresponding anhydride and about 1 equivalent of the polyether diol H-A3-H are added and condensed until the acid number has dropped below 1 mg KOH / g.
  • Preferred mono alcohol A 1 H are octylphenoxypolyethoxyethanol with a molecular weight of about 640, and nonylphenoxypolyethoxyethanol with a molecular weight of about 615.
  • Preferred dicarboxylic acids H-B-H are tetrahydrophthalic acid, adipic acid, fumaric acid and maleic acid, but it is also suitable, for example, itaconic acid, succinic acid, ortho- and metaphthalic acid, terephthalic acid and, if appropriate, their anhydrides.
  • the diols H-A2-H are preferably used in the form of the corresponding diepoxides.
  • Preferred diepoxides are the diglycidyl ether of bisphenol A and F with an epoxy equivalent weight of about 100 to 1000.
  • diols H-A3-H are preferred: a polyethylene oxide-polypropylene oxide-polyethylene oxide block copolymer with a molecular weight of about 14,000, and a corresponding block copolymer with the molecular weight of about 9,000; also polyethylene oxide with a molecular weight of about 4000.
  • the main constituent of the carbon fiber or glass fiber size according to the invention is an epoxy resin.
  • the usual glycidyl ethers of mono- or polyfunctional, preferably aromatic alcohols with epoxy equivalent weights of 100 to 1500 g / eq are suitable.
  • Diglycidyl ethers of bisphenol A and F are preferred.
  • 100 parts by weight of epoxy resin are preferably combined with 5 to 40, in particular 8 to 30 parts by weight of the emulsifier, heated and homogenized with stirring until a clear melt is formed. Then, with vigorous stirring, add as much in portions Water is added until a homogeneous oil-in-water emulsion forms, which can then be diluted as desired.
  • the finished dispersion preferably has a solids concentration of 1 to 10% by weight.
  • This size is characterized by the following properties: very fine-particle dispersion with high storage stability, good film-forming properties and excellent emulsion stability, including the highly diluted dispersion.
  • the size according to the invention to the carbon fibers, these are drawn through the size dispersion and then dried in a drying shaft with air at 150 ° C.
  • the fiber should then contain 0.3 to 10% by weight, preferably 0.5 to 2% by weight, of the size.
  • the application of the size to glass fibers has already been defined at the beginning.
  • Examples I to IX describe the preparation of polyesters, emulsifiers according to the invention being produced according to Example I-V.
  • Examples X to XXIII describe the preparation of epoxy resin dispersions.
  • Emulsifiers according to Examples I to V according to the invention were used in X to XIV and XVI to XXI.
  • Examples XV and XX to XXV are not according to the invention; emulsifiers according to Examples VI to IX or the known, not inventive emulsifiers Pluronic L 31 and Pluronic F 108 from BASF Corp. used.
  • Example II The procedure is as in Example I, but instead of the octylphenoxypolyethoxyethanol used there, 1239 parts of nonylphenoxypolyethoxyethanol with a molecular weight of approximately 615 g / mol (Ethylan BCP from Lankro Chemicals Ltd.) are now used.
  • Example II The procedure is as in Example I, but instead of the polyethylene oxide-polypropylene oxide block copolymer used there, 16,600 parts of an analogously structured compound having a molecular weight determined by vapor pressure osmometry of 9700 g / mol (Pluronic F68 from BASF Corp.) are used.
  • Example II The procedure is as in Example I, but instead of the polyethylene oxide-polypropylene oxide block copolymer used there, 2200 parts of an analogously structured compound having a molecular weight determined by vapor pressure osmometry of 1070 g / mol (Pluronic L31 from BASF Corp.) are now used.
  • Example II The procedure is as in Example I, but instead of the polyethylene oxide-polypropylene oxide block copolymer used there, 12000 parts of a polyethylene oxide with a molecular weight determined by vapor pressure osmometry of 6200 g / mol (Pluriol E6000 from BASF AG) are now used.
  • Example II The procedure is as in Example I, but instead of the polyethylene oxide-polypropylene oxide block copolymer used there, 800 parts of a polyethylene oxide with a molecular weight determined by vapor pressure osmometry of 410 g / mol (Pluriol E400 from BASF AG) are now used.
  • Example II The procedure is as in Example I, but instead of the polyethylene oxide-polypropylene oxide block copolymer used there, 400 parts of a polyethylene oxide with a molecular weight determined by vapor pressure osmometry of 210 g / mol (Pluriol E200 from BASF AG) are now used.
  • Example X The procedure is as in Example X, but the melted resin preparation to be dispersed is composed of 100 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 190 g / eq (Epikote 828 from Shell), 170 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 475 g / eq (Shell's Epikote 1001) and 265 parts of a diglycidyl ether of bisphenol A with an epoxy equivalent weight of 860 g / eq (Shell's Epikote 1004) and 95 parts of the emulsifier prepared according to Example I.
  • a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 190 g / eq Epikote 828 from Shell
  • Example X The procedure is as in Example X, the resin melt preparation to be dispersed being composed of 72 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 190 g / eq (Epikote 828 from Shell), 72 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 475 g / eq (Shell's Epikote 1001), 388 parts of a bisphenol A diglycidyl ether with an epoxy equivalent dish of 870 g / eq (Shell's Epikote 1004) and 182 parts of the emulsifier described in Example I.
  • the initial temperature of the resin melt preparation at the start of the dispersion is 75 ° C.
  • Example X The procedure is as in Example X, but instead of the emulsifier used there are now 95 parts of a polyethylene oxide-polypropylene oxide block copolymer of the approximate formula with a molecular weight determined by vapor pressure osmometry of 1070 g / mol (Pluronic L31 from BASF Corp.).
  • the addition of further water leads to the irreversible breakdown of the dispersion (emulsion splitting) in order to set the desired final concentration.
  • the polymer is deposited in the form of a slime.
  • Example X The procedure is as in Example X, but now 95 parts of the emulsifier still produced in Example III are used instead of the emulsifier used there.
  • the dispersion obtained is slightly yellowish.
  • Properties of the resin melt preparation before dispersing * Epoxy equivalent weight (potentiometric): 390 g / eq * Brookfield viscosity at 60 ° C: 25,000 mPas * Glass transition temperature (DSC): -3 ° C
  • Properties of the aqueous dispersion obtained * Solids content: * Particle size distribution (laser light scattering): 90% ⁇ 2.4 ⁇ m 50% ⁇ 1.2 ⁇ m 10% ⁇ 0.6 ⁇ m * Gravimetric stability of the dispersion diluted with deionized water to 3% FG after 24 h: 98.8% * Tyndall effect: very strong * Appearance of a 15 ⁇ m thick film after drying: clear, high-gloss * Minimum temperature of the dispersion required for film formation: 7-8 °
  • Example X The procedure is as in Example X, the resin melt preparation to be dispersed being composed of 72 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 190 g / eq (Epikote 828 from Shell), 72 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 475 g / eq (Shell's Epikote 1001), 388 parts of a bisphenol A diglycidyl ether with an epoxy equivalent weight of 870 g / eq (Shell's Epikote 1004) and 200 parts of the emulsifier described in Example IV.
  • the initial temperature of the resin melt preparation at the start of the dispersion is 85 ° C.
  • Example XII The procedure is as in Example XII, but 160 parts of the emulsifier prepared according to Example VI are now used instead of the emulsifier used there. After the amount of water required for the phase inversion of the water-in-oil into an oil-in-water emulsion has been dispersed into the resin melt preparation, the addition of further water leads to the breakdown of the dispersion in order to set the desired final concentration. About 30% of the dispersed polymer settles out in the form of a slime within 24 hours.
  • Example XIV The procedure is as in Example XIV, but instead of the emulsifier used there, 182 parts ( ⁇ 25.5%) of the emulsifier prepared according to Example VII are now used.
  • Properties of the resin melt preparation before dispersing * Epoxy equivalent weight: 750 g / eq * Brookfield viscosity at 60 ° C: 650000 mPas * Glass transition temperature (DSC): -1 ° C
  • Example XIV The procedure is as in Example XIV, but instead of the emulsifier used there, 58 parts ( ⁇ 10%) of a polyethylene oxide-propylene oxide block copolymer with a molecular weight determined by vapor pressure osmometry of 10060 g / mol (Pluronic F108 from BASF Corp.) are used.
  • the dispersion concentrate obtained in the vicinity of the phase inversion point cannot be diluted by further addition of water. Two phases are formed.
  • Properties of the resin melt preparation before dispersing * Epoxy equivalent weight: 690 g / eq * Brookfield viscosity at 60 ° C: 890000 mPas * Glass transition temperature (DSC): + 10 ° C
  • Example X The procedure is as in Example X, but now 95 parts of the emulsifier prepared according to Example VIII are used instead of the emulsifier used there.
  • the dispersion concentrate obtained in the vicinity of the phase inversion point cannot be diluted by further addition of water. There is phase separation.
  • Properties of the resin melt preparation before dispersing * Epoxy equivalent weight (potentiometric): 397 g / eq * Brookfield viscosity at 60 ° C: 45400 mPas * Glass transition temperature (DSC): -5 ° C
  • Example X The procedure is as in Example X, but now 95 parts of the emulsifier prepared according to Example IX are used instead of the emulsifier used there.
  • the dispersion concentrate obtained in the vicinity of the phase inversion point cannot be diluted by further addition of water.

Abstract

The invention concerns a sizing composition for carbon and glass fibres comprising an epoxy resin and a polyester which possesses a hydrophilic and a hydrophobic moiety.

Description

Die Erfindung betrifft eine Schlichte für Kohlenstoff-Fasern und Glas­fasern auf Basis einer wäßrigen Dispersion eines Epoxidharzes und eines Emulgators.The invention relates to a size for carbon fibers and glass fibers based on an aqueous dispersion of an epoxy resin and an emulsifier.

Insbesondere betrifft die Erfindung ein Schlichtemittel, welches die Verarbeitungseigenschaften - Faserstrangzusammenhalt, Bündelung, Spreiz­barkeit, Fussel- und Flusenbildungsresistenz, Faserglätte und -weichheit, Abriebfestigkeit sowie leichte und zerstörungsfreie Abwickelbarkeit der gewöhnlich auf Spulen gelagerten Kohlenstoff- oder Glasfaser-Faser­stränge - als auch die physikalischen Eigenschaften des die damit behandelten Fasern enthaltenden Verbundwerkstoffes verbessert.In particular, the invention relates to a sizing agent which has the processing properties - fiber strand cohesion, bundling, spreadability, resistance to fluff and lint formation, fiber smoothness and softness, abrasion resistance and easy and non-destructive unwindability of the carbon or glass fiber fiber strands usually stored on bobbins - as well as the physical properties of the composite material containing the treated fibers improved.

Die Tatsache, daß Kohlenstoff-Fasern herausragende mechanische Eigen­schaften, wie hohe Zugfestigkeit und hoher Elastizitätsmodul einerseits, und Leichtgewichtigkeit, hohe Wärmefestigkeit und chemische Widerstands­fähigkeit andererseits, in sich vereinigen, hat dazu geführt, daß diese Materialien vermehrt als Verstärkungselemente in Verbundwerkstoffen für die verschiedensten Anwendungen in Luft- und Raumfahrt, im Verkehrswesen oder bei Sportartikeln Verwendung finden. Insbesondere Carbon-Faser ver­stärkte Kunststoffe (CFK), deren Matrices Reaktionsharze wie Epoxidharze, Bismaleinimidharze, ungesättigte Polyesterharze oder Cyanatharze sind, werden für die genannten Zwecke bevorzugt eingesetzt.The fact that carbon fibers combine outstanding mechanical properties such as high tensile strength and high modulus of elasticity on the one hand, and lightness, high heat resistance and chemical resistance on the other hand, has led to these materials increasingly being used as reinforcing elements in composite materials for a wide variety of applications in Aerospace, transportation, or sporting goods. In particular, carbon fiber reinforced plastics (CFRP), the matrices of which are reactive resins such as epoxy resins, bismaleimide resins, unsaturated polyester resins or cyanate resins, are preferably used for the purposes mentioned.

Kohlenstoff-Fasern bestehen aus mehreren hundert bis hunderttausend Einzelfilamenten mit einem Durchmesser von 5 bis 20 µm, einer Zugfestig­keit von 1000 bis 7000 MPa und einem Elastizitätsmodul von 200 bis 700 GPa.Carbon fibers consist of several hundred to one hundred thousand individual filaments with a diameter of 5 to 20 µm, a tensile strength of 1000 to 7000 MPa and an elastic modulus of 200 to 700 GPa.

Üblicherweise werden Kohlenstoff-Fasern hergestellt, indem eine geeignete Polymerfaser aus Polyacrylnitril, Pech oder Rayon wechselnden kontrollier­ten Bedingungen von Temperatur und Atmosphäre ausgesetzt wird. Beispiels­weise können Kohlenstoff-Fasern durch Stabilisierung von PAN-Fäden oder -Geweben in oxidativer Atmosphäre bei 200 bis 300°C und anschließender Carbonisierung in inerter Atmosphäre oberhalb 600°C hergestellt werden. Derartige Verfahren sind Stand der Technik und beispielsweise beschrieben in H. Heißler, "Verstärkte Kunststoffe in der Luft- und Raumfahrt", Verlag W. Kohlhammer, Stuttgart, 1986.Carbon fibers are usually produced by exposing a suitable polymer fiber made of polyacrylonitrile, pitch or rayon to changing controlled conditions of temperature and atmosphere. For example, carbon fibers can be produced by stabilizing PAN threads or fabrics in an oxidative atmosphere at 200 to 300 ° C and subsequent carbonization in an inert atmosphere above 600 ° C. Such methods are state of the art and are described, for example, in H. Heißler, "Reinforced plastics in the aerospace industry", Verlag W. Kohlhammer, Stuttgart, 1986.

Optimale Eigenschaften werden nur dann erhalten, wenn integrale Adhäsion zwischen Matrixmaterial und Verstärkungsfaser über einen weiten Bereich verschiedender Bedingungen von Temperatur und Feuchtigkeit gewährleistet ist.Optimal properties are only obtained if integral adhesion between matrix material and reinforcing fiber is guaranteed over a wide range of different conditions of temperature and humidity.

Um dies zu erreichen, werden die Kohlenstoff-Fasern einer oxidativen Oberflächenbehandlung unterworfen und anschließend mit einem geeigneten Schlichtemittel versehen. Glasfasern hingegen werden nach dem Austritt aus der Spinnplatte durch Besprühen mit Wasser abgekühlt und danach durch Vorbeiführen an einer rotierenden Walze mit dem Schlichtemittel versehen, bevor die einzelnen Filamente zu sog. Rovings zusammengefaßt, zum Spinn­kuchen aufgewickelt und dann in einem Ofen getrocknet werden.To achieve this, the carbon fibers are subjected to an oxidative surface treatment and then provided with a suitable sizing agent. Glass fibers, on the other hand, are cooled by spraying with water after exiting the spinning plate and then provided with the sizing agent by passing them on a rotating roller before the individual filaments are combined into so-called rovings, wound up into a spinning cake and then dried in an oven.

Die Aufgabe der Schlichte ist vielgestaltig; einerseits soll sie die das Faserbündel konstituierenden sehr brüchigen Filamente - und damit das Faserbündel an sich - vor mechanischer Beschädigung bei der Handhabung und während des jeweiligen Verarbeitungsprozesses schützen und gute Handhab­barkeit und Verarbeitungseigenschaften auch nach längerer Lagerung der endlosen Faserstränge unter wechselnden Einflüssen von Temperatur und Feuchtigkeit auf eng gewickelten Spulen konservieren, andererseits soll die Schlichte für eine gleichmäßig gute Benetzung der Fasern durch das Matrixmaterial während des Verbundwerkstoffabrikationsprozesses sorgen. Ferner muß die Schlichte in ihrer Ganzheit mit dem jeweiligen Matrix­material chemisch kompatibel sein, um qualitativ hochwertige und dauer­belastbare Verbundwerkstoffe zu ermöglichen. Auch wenn der Verbund ständig wechselnden Bedingungen von Temperatur und Feuchtigkeit ausgesetzt wird, sollen keine Delaminationsprozesse, die die Folge von Unverträglichkeiten und Wasseraufnahme sind, auftreten.The task of the size is varied; On the one hand, it is intended to protect the very brittle filaments constituting the fiber bundle - and thus the fiber bundle itself - from mechanical damage during handling and during the respective processing process, and good manageability and processing properties even after long storage of the endless fiber strands under changing influences of temperature and moisture Preserve tightly wound bobbins, on the other hand, the size should ensure uniformly good wetting of the fibers by the matrix material during the composite material manufacturing process. Furthermore, the size in its entirety must be chemically compatible with the respective matrix material in order to enable high-quality and durable composite materials. Even if the composite is exposed to constantly changing conditions of temperature and moisture, no delamination processes that are the result of incompatibilities and water absorption should occur.

Um einzelnen oder allen der genannten Anforderungen gerecht werden zu können, wurden eine Fülle der verschiedensten Schlichtemittel für Kohlenstoff-Fasern und Glasfasern vorgeschlagen.In order to be able to meet individual or all of the requirements mentioned, an abundance of different sizing agents for carbon fibers and glass fibers has been proposed.

Die sich abzeichnende bevorzugte Verwendung von Epoxidharzen als Basis vieler Schlichtemittel insbesondere für Kohlenstoff-Fasern ist wohl einer­seits darauf zurückzuführen, daß im allgemeinen Epoxidharze als Matrices für die Herstellung von CFK eingesetzt werden, somit Schlichte/Matrix-­Inkompatibilitäten kaum zu befürchten sind, andererseits auf die relativ hohe und damit unspezifische chemische Reaktivität des Oxiran-Ringes gegenüber einer Vielfalt von funktionellen Gruppen, wodurch auch andere als Epoxidharze als Matrix in CFK verwendet werden können.The emerging preferred use of epoxy resins as the basis of many sizing agents, in particular for carbon fibers, is probably due on the one hand to the fact that epoxy resins are generally used as matrices for the production of CFRP, so sizing / matrix incompatibilities are hardly to be feared, on the other hand to the Relatively high and therefore unspecific chemical reactivity of the oxirane ring towards a variety of functional groups, which means that other than epoxy resins can also be used as a matrix in CFRP.

Generell lassen sich Schlichtemittel für Kohlenstoff-Fasern in 2 Klassen gliedern, den Lösungs- und den Emulstionstyp. Bei dem Lösungstyp ist das Polymere, meist ein Harz, in einem niedrig siedenden organischen Lösungs­mittel gelöst und wird aus verdünnter Lösung auf die Fasern appliziert. Bei der zweiten Klasse, dem Emulsionstyp, handelt es sich um durch Disper­gierhilfsmittel, im folgenden als "Emulgatoren" bezeichnet, unterstützte, in Wasser dispergierte Harze. Sicherheitstechnische Aspekte der Toxizität und Entflammbarkeit sind der Grund, warum dem Emulsionstyp eindeutig der Vorzug zu geben ist.Generally, sizing agents for carbon fibers can be divided into two classes, the solution and the emulsion type. In the case of the solution type, the polymer, usually a resin, is dissolved in a low-boiling organic solvent and is applied to the fibers from a dilute solution. The second class, the emulsion type, is a water-dispersed resin supported by dispersing aids, hereinafter referred to as "emulsifiers". Safety-related aspects of toxicity and flammability are the reason why the emulsion type is clearly to be preferred.

Das Aufbringen der Schlichte vom Emulsionstyp auf die Kohlenstoff-Fasern geschieht derart, daß das Faserbündel durch die auf 1 bis 10 Gew.% Fest­stoffgehalt verdünnte, wäßrige Dispersion kontinuierlich hindurchgeführt und die Faser unmittelbar danach getrocknet und auf Spulen für Transport und Lagerung aufgewickelt oder direkt der weiteren Verarbeitung zugeführt wird; der Polymergehalt auf der so behandelten Faser beträgt dann etwa 0,5 bis 7 Gew.%.The emulsion-type size is applied to the carbon fibers in such a way that the fiber bundle is continuously passed through the aqueous dispersion, diluted to 1 to 10% by weight solids, and the fiber is dried immediately afterwards and wound onto spools for transport and storage or directly further processing is supplied; the polymer content on the fiber treated in this way is then about 0.5 to 7% by weight.

Insbesondere stark verdünnte wäßrige Dispersionen hochviskoser, nicht selbstemulgierender Epoxidharze neigen zu geringer Emulsionsstabilität - große Teilchendurchmesser, chemisch wenig kompatible und/oder nieder­molekulare Emulgatoren sind die Ursache.In particular, highly diluted aqueous dispersions of highly viscous, non-self-emulsifying epoxy resins tend to have low emulsion stability - large particle diameters, chemically incompatible and / or low molecular weight emulsifiers are the cause.

Mit zunehmender Feinteiligkeit des Epoxidharzes steigt der Bedarf an Emulgator, also proportional der Oberflächenzunahme an dispergierten Teilchen. Für einen gleichmäßigen Schlichteauftrag auf die das Faser-­Bündel konstituierenden Filamente ist eine möglichst feinteilige Disper­sion Grundvoraussetzung, damit die Teilchen leicht in das Innere des Bündels eindringen können.With increasing fine particle size of the epoxy resin, the need for emulsifier increases, i.e. proportional to the increase in surface area of dispersed particles. For an even application of size to the filaments constituting the fiber bundle, the finest possible dispersion is a basic requirement so that the particles can easily penetrate into the interior of the bundle.

Nach DE-OS 3 436 211 soll als Emulgator ein Blockcopolymeres aus Poly­ethylenoxid und Polypropylenoxid der schematischen Formel

Figure imgb0001
verwendet werden. Epoxidharzschlichten auf Basis derartiger Emulgatoren weisen jedoch erhebliche Nachteile auf: Einerseits sind die Filmbildungs­eigenschaften dieser Dispersionen nur mäßig, andererseits zeigen Laminate, hergestellt aus Epoxidharz als Matrix und mit diesen Schlichtedispersionen behandelten Kohlenstoff-Fasern eine erhöhte Wasseraufnahme, die Delamina­tionserscheinungen bewirkt und damit zu geringer mechanischer Festigkeit dieser Verbunde unter heißfeucht Bedingungen führt. Dies ist wohl darauf zurückzuführen, daß dieser Emulgator zu 80 Gew.% terminierende hydrophile aliphatische Gruppen, nämlich Polyethylenoxid, und zu 20 Gew.% hydrophobe aliphatische Gruppen, nämlich Polypropylenoxid, aufweist; die getrocknete Schlichte erweist sich als extrem hygroskopisch. Hinzu kommt die nicht befriedigende chemische Kompatibilität dieser aliphatischen Emulgatoren mit der hydrophoben, überwiegend aromatischen Natur der Epoxidharze.According to DE-OS 3 436 211, a block copolymer of polyethylene oxide and polypropylene oxide of the schematic formula is said to be the emulsifier
Figure imgb0001
be used. However, epoxy resin sizes based on such emulsifiers have considerable disadvantages: on the one hand, the film-forming properties of these dispersions are only moderate, on the other hand, laminates made of epoxy resin as a matrix and carbon fibers treated with these size dispersions show increased water absorption, which causes delamination and thus low mechanical strength this composite leads under hot and humid conditions. This is probably due to that attributable to the fact that this emulsifier has 80% by weight terminating hydrophilic aliphatic groups, namely polyethylene oxide, and 20% by weight hydrophobic aliphatic groups, namely polypropylene oxide; the dried size proves to be extremely hygroscopic. Added to this is the unsatisfactory chemical compatibility of these aliphatic emulsifiers with the hydrophobic, predominantly aromatic nature of the epoxy resins.

In DE-A 27 46 640 und EP-A 295 916 sind Schlichten für Kohlenstoff-Fasern beschrieben, bestehend aus einer wäßrigen Dispersion einer Mischung von

  • a) einem Epoxidharz,
  • b) einem Polyester aus einer ungesättigten Dicarbonsäure und einem oxyalkylierten Bisphenol und
  • c) einem als Emulgator wirkenden Oxyalkylenderivat eines Phenols.
DE-A 27 46 640 and EP-A 295 916 describe sizes for carbon fibers, consisting of an aqueous dispersion of a mixture of
  • a) an epoxy resin,
  • b) a polyester of an unsaturated dicarboxylic acid and an oxyalkylated bisphenol and
  • c) an oxyalkylene derivative of a phenol which acts as an emulsifier.

Derartige Dispersionen zeigen keine ausreichende Lagerstabilität und haben bei starker Verdünnung zu geringe Filmbildungseigenschaften; außerdem sind sie nicht in der Lage, sehr feine Epoxidharzteilchen ausreichend und gleichmäßig zu emulgieren.Such dispersions do not have sufficient storage stability and have too little film-forming properties when diluted strongly; moreover, they are unable to sufficiently and evenly emulsify very fine epoxy resin particles.

Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines Schlichte­mittels für die Behandlung von Kohlenstoff-Fasern und Glasfasern, welches frei von organischen Lösungsmitteln und damit unbedenklich hinsichtlich Toxizität und Entflammbarkeit ist, welches die Handhabbarkeit und Ver­arbeitungseigenschaften der Faserstränge verbessert und auch längerfristig konserviert, welches eine sehr gute chemische Kompatibilität mit Epoxid­harzmatrices über einen weiten Bereich von Temperatur- und Feuchtigkeits­einflüssen aufweist und damit letztendlich zu verbesserten mechanischen Eigenschaften der Verbundwerkstoffe, hergestellt aus einem Epoxidharz als Matrix und geschlichteten Kohlenstoff- oder Glas-Fasern, führt.The object of the present invention is to provide a sizing agent for the treatment of carbon fibers and glass fibers, which is free from organic solvents and therefore harmless with regard to toxicity and flammability, which improves the handling and processing properties of the fiber strands and also preserves them in the long term, which is very good has chemical compatibility with epoxy resin matrices over a wide range of temperature and moisture influences and thus ultimately leads to improved mechanical properties of the composite materials, produced from an epoxy resin as a matrix and sized carbon or glass fibers.

Diese Aufgabe wird erfindungsgemäß gelöst durch eine Schlichte, enthaltend ein Epoxidharz und 5 bis 50 Gew.%, bezogen auf das Epoxidharz, eines Polyesters der allgemeinen Formel A₁-B-A₂-B-A₃-H, wobei die Symbole folgende Bedeutung haben:
A₁ ist der Rest eines Monoalkohols,
B ist der Rest einer Dicarbonsäure,
A₂ ist der Rest eines Diols,
A₃ ist der Rest eines Polyetherdiols,
und der Polyester ein Molekulargewicht zwischen 5000 und 50 000 aufweist.
This object is achieved according to the invention by means of a size comprising an epoxy resin and 5 to 50% by weight, based on the epoxy resin, of a polyester of the general formula A₁-B-A₂-B-A₃-H, where the symbols have the following meaning:
A₁ is the remainder of a mono alcohol,
B is the rest of a dicarboxylic acid,
A₂ is the remainder of a diol,
A₃ is the remainder of a polyether diol,
and the polyester has a molecular weight between 5,000 and 50,000.

Bevorzugt haben die Polyester ein Molekulargewicht zwischen 10.000 und 25.000.The polyesters preferably have a molecular weight between 10,000 and 25,000.

A₁ hat die Struktur

Figure imgb0002
worin R₁ einen aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffrest mit 6 bis 30°C-Atomen, R₂ Wasserstoff oder Methyl und n eine ganze Zahl von 0 bis 30 bedeuten,
B ist der Rest einer gesättigten oder ungesättigten, aliphatischen, cycloaliphatischen oder aromatischen Dicarbonsäure mit 2 bis 20 C-Atomen,
A₂ ist der Rest eines sekundäre OH-Gruppen tragenden Diols mit 10 bis 60 C-Atomen,
A₃ ist der Rest eines Polyetherdiols der Struktur Xp-Yq-Zr
mit X = (CH₂-CH₂-O)
Figure imgb0003
Z = (CH₂-CH₂-O)
p = 50 - 200
q = 0 - 100
r = 0 - 200,
wobei der Rest X das Kettenende bildet.A₁ has the structure
Figure imgb0002
wherein R₁ is an aliphatic, aromatic or araliphatic hydrocarbon radical having 6 to 30 ° C atoms, R₂ is hydrogen or methyl and n is an integer from 0 to 30,
B is the residue of a saturated or unsaturated, aliphatic, cycloaliphatic or aromatic dicarboxylic acid with 2 to 20 carbon atoms,
A₂ is the remainder of a secondary OH group containing diol with 10 to 60 carbon atoms,
A₃ is the remainder of a polyether diol of the structure X p -Y q -Z r
with X = (CH₂-CH₂-O)
Figure imgb0003
Z = (CH₂-CH₂-O)
p = 50-200
q = 0-100
r = 0-200,
where the remainder X forms the chain end.

Bei einer bevorzugten Ausführungsform der Erfindung liegt das Gewichts­verhältnis (A₁ + B + A₂ + Z + Y) : X zwischen 80:20 und 40:60.In a preferred embodiment of the invention, the weight ratio (A₁ + B + A₂ + Z + Y): X is between 80:20 and 40:60.

Dem liegt die Erkenntnis zugrunde, daß für die Emulgatorwirkung des Polyesters ein optimales Verhältnis von hydrophoben zu hydrophilen Gruppen ausschlaggebend ist. Offenbar sind aber nur die am Kettenende befindlichen Polyethylenoxidgruppen X hydrophil, nicht jedoch Polypropylenoxidgruppen Y und mittelständige Polyethylenoxidgruppen Z.This is based on the knowledge that an optimal ratio of hydrophobic to hydrophilic groups is decisive for the emulsifier action of the polyester. Apparently, however, only the polyethylene oxide groups X at the chain end are hydrophilic, but not polypropylene oxide groups Y and medium-sized polyethylene oxide groups Z.

Ganz allgemein gilt, daß solche Polyester gute Emulgatoren sind, die ein Molekulargewicht zwischen 5000 und 50 000 haben und aus einem hydrophoben Molekülteil M und einem hydrophilen Polyethylenoxid-Molekülteil X-H bestehen, wobei das Gewichtsverhältnis M:X zwischen 80:20 und 40:60, vorzugsweise zwischen 70:30 und 50:50 liegt. Ein Polyester mit einem M:X-Verhältnis von größer als 80:20 wirkt nicht mehr ausreichend emul­gierend für das Epoxidharz; bei einem M:X-Verhältnis von kleiner als 40:60 erweist sich die Schlichte als zu hygroskopisch.In general it applies that such polyesters are good emulsifiers which have a molecular weight between 5000 and 50,000 and consist of a hydrophobic molecular part M and a hydrophilic polyethylene oxide molecular part XH, the weight ratio M: X being between 80:20 and 40:60, preferably between 70:30 and 50:50. A polyester with a M: X ratio of greater than 80:20 no longer has a sufficient emulsifying effect for the epoxy resin; with an M: X ratio of less than 40:60, the size proves to be too hygroscopic.

Zur Herstellung der als Emulgator eingesetzten Polyester wird vorzugsweise zunächst ein Äquivalent des Monoalkohols A₁-H mit etwa einen Äquivalent der Dicarbonsäure H-B-H bzw. deren Anhydrid durch eine übliche Konden­sationsreaktion zu dem Halbester A₁-B-H umgesetzt. In einem weiteren Schritt wird dieser Halbester mit etwa einem Aquivalent des Diols H-A₂-H bzw. bevorzugt des entsprechenden Diepoxids kondensiert, bis die Säurezahl unter 1 mg KOH/g gesunken ist. Schließlich werden ein weiteres Äquivalent Dicarbonsäure H-B-H bzw. das entsprechende Anhydrid sowie etwa 1 Äquiva­lent des Polyetherdiols H-A₃-H zugefügt und solange kondensiert, bis die Säurezahl wieder unter 1 mg KOH/g gesunken ist.To produce the polyester used as an emulsifier, one equivalent of the monoalcohol A₁-H is preferably first reacted with about one equivalent of the dicarboxylic acid H-B-H or its anhydride by a conventional condensation reaction to give the half-ester A₁-B-H. In a further step, this half-ester is condensed with about one equivalent of the diol H-A₂-H or preferably the corresponding diepoxide until the acid number has dropped below 1 mg KOH / g. Finally, another equivalent of dicarboxylic acid H-B-H or the corresponding anhydride and about 1 equivalent of the polyether diol H-A₃-H are added and condensed until the acid number has dropped below 1 mg KOH / g.

Bevorzugter Monoalkohol A₁H sind Oktylphenoxypolyethoxyethanol mit einem Molekulargewicht von etwa 640, sowie Nonylphenoxypolyethoxyethanol mit einem Molekulargewicht von etwa 615.Preferred mono alcohol A 1 H are octylphenoxypolyethoxyethanol with a molecular weight of about 640, and nonylphenoxypolyethoxyethanol with a molecular weight of about 615.

Bevorzugte Dicarbonsäuren H-B-H sind Tetrahydrophthalsäure, Adipinsäure, Fumarsäure und Maleinsäure, geeignet sind aber beispielsweise auch Itacon­säure, Bernsteinsäure, ortho- und meta-Phthalsäure, Terephthalsäure, sowie gegebenenfalls deren Anhydride.Preferred dicarboxylic acids H-B-H are tetrahydrophthalic acid, adipic acid, fumaric acid and maleic acid, but it is also suitable, for example, itaconic acid, succinic acid, ortho- and metaphthalic acid, terephthalic acid and, if appropriate, their anhydrides.

Die Diole H-A₂-H werden bevorzugt in Form der entsprechenden Diepoxide eingesetzt. Bevorzugte Diepoxide sind der Diglycidylether von Bisphenol A und F mit einem Epoxidäquivalentgewicht von etwa 100 bis 1000.The diols H-A₂-H are preferably used in the form of the corresponding diepoxides. Preferred diepoxides are the diglycidyl ether of bisphenol A and F with an epoxy equivalent weight of about 100 to 1000.

Als Diole H-A₃-H sind bevorzugt: ein Polyethylenoxid-Polypropylenoxid-­Polyethylenoxid-Blockcopolymeres mit einem Molekulargewicht von etwa 14.000, sowie ein entsprechendes Blockcopolymeres mit dem Molekulargewicht von etwa 9.000; ferner Polyethylenoxid mit einem Molekulargewicht von etwa 4000.As diols H-A₃-H are preferred: a polyethylene oxide-polypropylene oxide-polyethylene oxide block copolymer with a molecular weight of about 14,000, and a corresponding block copolymer with the molecular weight of about 9,000; also polyethylene oxide with a molecular weight of about 4000.

Hauptbestandteil der erfindungsgemäßen Kohlenstoff-Faser- bzw. Glasfaser-­Schlichte ist ein Epoxidharz. In Frage kommen dabei die üblichen Glycidyl­ether von mono- oder polyfunktionellen, vorzugsweise aromatischen Alkoholen mit Epoxidäquivalentgewichten von 100 bis 1500 g/Äq. Bevorzugt sind Diglycidylether von Bisphenol A und F.The main constituent of the carbon fiber or glass fiber size according to the invention is an epoxy resin. The usual glycidyl ethers of mono- or polyfunctional, preferably aromatic alcohols with epoxy equivalent weights of 100 to 1500 g / eq are suitable. Diglycidyl ethers of bisphenol A and F are preferred.

Zur Herstellung der Schlichte werden bevorzugt 100 Gew.-Teile Epoxidharz mit 5 bis 40, insbesondere 8 bis 30 Gew.-Teilen des Emulgators zusammen­gegeben, erwärmt und unter Rühren bis zur Bildung einer klaren Schmelze homogenisiert. Danach wird unter intensivem Rühren portionsweise soviel Wasser zugesetzt, bis sich eine homogene Öl-in-Wasser-Emulsion bildet, die dann beliebig verdünnt werden kann. Die fertige Dispersion hat vorzugs­weise eine Feststoff-Konzentration von 1 bis 10 Gew.%. Diese Schlichte zeichnet sich durch folgende Eigenschaften aus:
sehr feinteilige Dispersion mit hoher Lagerstabilität, guten Filmbildungs­eigenschaften, sowie ausgezeichneter Emulsionsstabilität auch der hochver­dünnten Dispersion.
To produce the size, 100 parts by weight of epoxy resin are preferably combined with 5 to 40, in particular 8 to 30 parts by weight of the emulsifier, heated and homogenized with stirring until a clear melt is formed. Then, with vigorous stirring, add as much in portions Water is added until a homogeneous oil-in-water emulsion forms, which can then be diluted as desired. The finished dispersion preferably has a solids concentration of 1 to 10% by weight. This size is characterized by the following properties:
very fine-particle dispersion with high storage stability, good film-forming properties and excellent emulsion stability, including the highly diluted dispersion.

Zum Auftrag der erfindungsgemäßen Schlichte auf die Kohlenstoff-Fasern werden diese durch die Schlichte-Dispersion gezogen und anschließend in einem Trockenschacht mit 150°C heißer Luft getrocknet. Auf der Faser sollen sich dann 0,3 bis 10 Gew.%, vorzugsweise 0,5 bis 2 Gew.% der Schlichte befinden. Das Aufbringen der Schlichte auf Glasfasern wurde bereits eingangs definiert.To apply the size according to the invention to the carbon fibers, these are drawn through the size dispersion and then dried in a drying shaft with air at 150 ° C. The fiber should then contain 0.3 to 10% by weight, preferably 0.5 to 2% by weight, of the size. The application of the size to glass fibers has already been defined at the beginning.

Die in den Beispielen genannten Teile und Prozente beziehen sich auf das Gewicht.The parts and percentages given in the examples relate to the weight.

Die Beispiele I bis IX beschreiben die Herstellung von Polyestern, wobei nach Beispiel I-V erfindungsgemäße Emulgatoren hergestellt werden.Examples I to IX describe the preparation of polyesters, emulsifiers according to the invention being produced according to Example I-V.

Die Beispiele X bis XXIII beschreiben die Herstellung von Epoxidharz­dispersionen. Dabei wurden in X bis XIV und XVI bis XXI erfindungsgemäße Emulgatoren nach den Beispielen I bis V eingesetzt. Die Beispiele XV und XX bis XXV sind nicht erfindungsgemäß; hier wurden Emulgatoren nach den Beispielen VI bis IX bzw. die bekannten, nicht erfindungsgemäßen Emulgatoren Pluronic L 31 und Pluronic F 108 der BASF Corp. eingesetzt.Examples X to XXIII describe the preparation of epoxy resin dispersions. Emulsifiers according to Examples I to V according to the invention were used in X to XIV and XVI to XXI. Examples XV and XX to XXV are not according to the invention; emulsifiers according to Examples VI to IX or the known, not inventive emulsifiers Pluronic L 31 and Pluronic F 108 from BASF Corp. used.

A. Herstellung der EmulgatorenA. Preparation of the emulsifiers Beispiel IExample I

In einem 6 l Dreihalskolben ausgerüstet mit Flügelrührer, Innenthermo­meter, Rückflußkühler und Schutzgasanschluß (N₂) werden 1290 Teile Oktylphenoxypolyethoxyethanol mit einem Molekulargewicht von ca. 640 g/mol (Triton X100 von Rohm & Haas) unter Rühren bei 100°C mit 300 Teilen Tetrahydrophthalsäureanhydrid versetzt. Nachdem die Temperatur auf 160°C gesteigert worden ist, wird bei dieser Temperatur solange gerührt, bis die Reaktionsmischung eine Säurezahl von 70 mg KOH/g aufweist. Dann werden 760 Teile eines Diglycidylethers von Bisphenol A mit einem Epoxid­äquivalentgewicht von 190 g/Äq (Epikote 828 von Shell) zugesetzt. Nach nochmaliger Steigerung der Temperatur auf 180°C läßt man das Reaktions­gemisch weitere 2 bis 4 h bei dieser Temperatur rühren, bis die Säurezahl < 1 mg KOH/g und das Epoxidäquivalentgewicht ca. 1200 g/Äq ist. Man läßt bis auf 140°C abkühlen und setzt 28 000 Teile eines Polyethylenoxid-­Polypropylenoxid-Blockcopolymeren der ungefähren Formel

Figure imgb0004
mit einem dampfdruckosmometrisch bestimmten Molekulargewicht von 13600 g/mol (Pluronic F108 der BASF Corp.) zu. Nach erneuter Steigerung der Temperatur auf 150°C werden 300 Teile Tetrahydrophthalsäureanhydrid zugegeben, die Temperatur abermals auf 180°C gesteigert und das Reaktions­gemisch unter Rühren bei dieser Temperatur belassen, bis die Säurezahl < 1 mg KOH/g beträgt.In a 6 l three-necked flask equipped with paddle stirrer, internal thermometer, reflux condenser and protective gas connection (N₂), 1290 parts of octylphenoxypolyethoxyethanol with a molecular weight of approx. 640 g / mol (Triton X100 from Rohm & Haas) are mixed with 300 parts of tetrahydrophthalic anhydride while stirring at 100 ° C . After the temperature has been increased to 160 ° C., the mixture is stirred at this temperature until the reaction mixture has an acid number of 70 mg KOH / g. Then 760 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 190 g / eq (Epikote 828 from Shell) are added. After increasing the temperature again to 180 ° C., the reaction mixture is left to stir at this temperature for a further 2 to 4 hours until the acid number is <1 mg KOH / g and the epoxy equivalent weight is approximately 1200 g / eq. You leave cool down to 140 ° C and sets 28,000 parts of a polyethylene oxide-polypropylene oxide block copolymer of the approximate formula
Figure imgb0004
with a molecular weight determined by vapor pressure osmometry of 13600 g / mol (Pluronic F108 from BASF Corp.). After the temperature has risen again to 150 ° C., 300 parts of tetrahydrophthalic anhydride are added, the temperature is increased again to 180 ° C. and the reaction mixture is kept at this temperature with stirring until the acid number is <1 mg KOH / g.

Beispiel IIExample II

Es wird wie in Beispiel I verfahren, jedoch werden anstelle des dort verwendeten Oktylphenoxypolyethoxyethanols nun 1239 Teile Nonylphenoxy­polyethoxyethanol mit einem Molekulargewicht von ca. 615 g/mol (Ethylan BCP von Lankro Chemicals Ltd.) eingesetzt.The procedure is as in Example I, but instead of the octylphenoxypolyethoxyethanol used there, 1239 parts of nonylphenoxypolyethoxyethanol with a molecular weight of approximately 615 g / mol (Ethylan BCP from Lankro Chemicals Ltd.) are now used.

Beispiel IIIExample III

Es wird wie in Beispiel I verfahren, jedoch werden anstelle des dort bei beiden Säurekomponentezugaben in der Reaktionssequenz verwendeten Tetra­hydrophthalsäureanhydrids nun zu Anfang 193 Teile Maleinsäureanhydrid bei 100°C und bei der zweiten Zugabe dann 288 Teile Adipinsäure bei 150°C eingesetzt.The procedure is as in Example I, but instead of the tetrahydrophthalic anhydride used for the addition of two acid components in the reaction sequence, 193 parts of maleic anhydride at 100 ° C. are initially used and then 288 parts of adipic acid at 150 ° C. in the second addition.

Beispiel IVExample IV

Es wird wie in Beispiel I verfahren, jedoch werden anstelle des dort verwendeten Diglycidylethers von Bisphenol A mit einem Epoxidäquivalent­gewicht von ca. 190 g/Äq nun 1800 Teile eines Diglycidylethers von Bisphenol A mit einem Epoxidäquivalentgewicht von ca. 475 g/Äq (Epikote 1001 von Shell) eingesetzt.The procedure is as in Example I, but instead of the diglycidyl ether of bisphenol A with an epoxide equivalent weight of approx. 190 g / eq used there, 1800 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of approx. 475 g / eq (Epikote 1001 of Shell) used.

Beispiel VExample V

Es wird wie in Beispiel I verfahren, jedoch werden anstelle des dort verwendeten Polyethylenoxid-Polypropylenoxid-Blockcopolymeren nun 16600 Teile einer analog strukturierten Verbindung mit einem dampfdruck­osmometrisch bestimmten Molekulargewicht von 9700 g/mol (Pluronic F68 der BASF Corp.) eingesetzt.The procedure is as in Example I, but instead of the polyethylene oxide-polypropylene oxide block copolymer used there, 16,600 parts of an analogously structured compound having a molecular weight determined by vapor pressure osmometry of 9700 g / mol (Pluronic F68 from BASF Corp.) are used.

Beispiel VI (Vergleich)Example VI (comparison)

Es wird wie in Beispiel I verfahren, jedoch werden anstelle des dort verwendeten Polyethylenoxid-Polypropylenoxid-Blockcopolymeren nun 2200 Teile einer analog strukturierten Verbindung mit einem dampfdruck­osmometrisch bestimmten Molekulargewicht von 1070 g/mol (Pluronic L31 der BASF Corp.) eingesetzt.The procedure is as in Example I, but instead of the polyethylene oxide-polypropylene oxide block copolymer used there, 2200 parts of an analogously structured compound having a molecular weight determined by vapor pressure osmometry of 1070 g / mol (Pluronic L31 from BASF Corp.) are now used.

Beispiel VII (Vergleich)Example VII (comparison)

Es wird wie in Beispiel I verfahren, jedoch werden anstelle des dort verwendeten Polyethylenoxid-Polypropylenoxid-Blockcopolymeren nun 12000 Teile eines Polyethylenoxids mit einem dampfdruckosmometrisch bestimmten Molekulargewicht von 6200 g/mol (Pluriol E6000 der BASF AG) eingesetzt.The procedure is as in Example I, but instead of the polyethylene oxide-polypropylene oxide block copolymer used there, 12000 parts of a polyethylene oxide with a molecular weight determined by vapor pressure osmometry of 6200 g / mol (Pluriol E6000 from BASF AG) are now used.

Beispiel VIII (Vergleich)Example VIII (comparison)

Es wird wie in Beispiel I verfahren, jedoch werden anstelle des dort verwendeten Polyethylenoxid-Polypropylenoxid-Blockcopolymeren nun 800 Teile eines Polyethylenoxids mit einem dampfdruckosmometrisch bestimmten Molekulargewicht von 410 g/mol (Pluriol E400 der BASF AG) eingesetzt.The procedure is as in Example I, but instead of the polyethylene oxide-polypropylene oxide block copolymer used there, 800 parts of a polyethylene oxide with a molecular weight determined by vapor pressure osmometry of 410 g / mol (Pluriol E400 from BASF AG) are now used.

Beispiel IX (Vergleich)Example IX (comparison)

Es wird wie in Beispiel I verfahren, jedoch werden anstelle des dort verwendeten Polyethylenoxid-Polypropylenoxid-Blockcopolymeren nun 400 Teile eines Polyethylenoxids mit einem dampfdruckosmometrisch bestimmten Molekulargewicht von 210 g/mol (Pluriol E200 der BASF AG) eingesetzt.The procedure is as in Example I, but instead of the polyethylene oxide-polypropylene oxide block copolymer used there, 400 parts of a polyethylene oxide with a molecular weight determined by vapor pressure osmometry of 210 g / mol (Pluriol E200 from BASF AG) are now used.

B. Herstellung der EpoxidharzdispersionenB. Preparation of the Epoxy Resin Dispersions Beispiel XExample X

170 Teile eines Diglycidylethers von Bisphenol A mit einem Epoxid­äquivalentgewicht von 190 g/Äq (Epikote 828 von Shell), 368 Teile eines Diglycidylethers von Bisphenol A mit einem Epoxidäquivalentgewicht von 475 g/Äq (Epikote 1001 von Shell) und 95 Teile Emulgator wie in Beispiel I beschrieben werden zusammengegeben und durch Erhitzen auf 70°C und Rühren zu einer klaren Schmelze homogenisiert. Die Heizquelle wird entfernt und man läßt auf 60°C abkühlen. Bei dieser Temperatur werden nach Entfernen der Heizquelle 325 Teile entionisiertes Wasser innerhalb ca. 30 min langsam zugegeben, wobei das Harzschmelze/Wasser-System intensiv mittels einer mit 1500 U/min drehenden Dissolverscheibe homogenisiert wird. Diese nun zugegebene Menge Waser entspricht in etwa demjenigen Harz/Wasser-­Verhältnis, bei dem die Wasser-in-Öl in eine Öl-in-Wasser-Emulsion über­geht. An diesem sogenannten Phaseninversionspunkt beträgt die Temperatur der Dispersion nun noch 45°C. Anschließend wird die Agitation durch die Dissolverscheibe auf 200 U/min reduziert und weitere 620 Teile entioni­siertes Wasser zum Verdünnen der Dispersion zugegeben. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht (potentiometrisch) : 390 g/Äq *Brookfield Viskosität bei 60°C : 25 200 mPas *Glasübergangstemperatur (DSC) : -3°C Eigenschaften der erhaltenen wäßrigen Dispersion: *Feststoffgehalt : 40 Gew.% *Teilchengrößenverteilung (Laser Licht Streuung) : 90 % < 2,3 µm 50 % < 1,5 µm 10 % < 1,2 µm *gravimetrische Stabilität der mit entionisiertem Wasser auf 3 % FG verdünnten Dispersion nach 24 h : 98,8 % *Tyndall Effekt : sehr stark *Erscheinung eines 15 µm dicken Filmes nach Trocknung : klar, hochglänzend *erforderliche Minimaltemperatur der Dispersion zur Filmbildung : 7°C 170 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 190 g / eq (Epikote 828 from Shell), 368 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 475 g / eq (Epikote 1001 from Shell) and 95 parts of emulsifier as in Example I are combined and homogenized by heating to 70 ° C. and stirring to give a clear melt. The heat source is removed and allowed to cool to 60 ° C. At this temperature, 325 parts of deionized water are slowly added after about 30 minutes after removal of the heating source, the resin melt / water system being homogenized intensively by means of a dissolver disc rotating at 1500 rpm. This amount of water now added corresponds approximately to the resin / water ratio at which the water-in-oil changes into an oil-in-water emulsion. At this so-called phase inversion point, the temperature of the dispersion is still 45 ° C. The agitation is then reduced to 200 rpm by the dissolver disc and a further 620 parts of deionized water are added to dilute the dispersion. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight (potentiometric): 390 g / eq * Brookfield viscosity at 60 ° C: 25 200 mPas * Glass transition temperature (DSC): -3 ° C Properties of the aqueous dispersion obtained: * Solids content: 40% by weight * Particle size distribution (laser light scattering): 90% <2.3 µm 50% <1.5 µm 10% <1.2 µm * Gravimetric stability of the dispersion diluted with deionized water to 3% FG after 24 h: 98.8% * Tyndall effect: very strong * Appearance of a 15 µm thick film after drying: clear, high-gloss * Minimum temperature of the dispersion required for film formation: 7 ° C

Beispiel XIExample XI

Es wird wie in Beispiel X verfahren, jedoch werden anstelle des dort verwendeten Emulgators 95 Teile des nach Beispiel II hergestellten Emulgators eingesetzt. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht (potentiometrisch) : 388 g/Äq *Brookfield Viskosität bei 60°C : 24 000 mPas *Glasübergangstemperatur (DSC) : 0°C Eigenschaften der erhaltenen wäßrigen Dispersion: *Feststoffgehalt : 40,1 % *Teilchengrößenverteilung (Laser Licht Streuung) : 90 % < 2,4 µm 50 % < 1,3 µm 10 % < 0,6 µm *gravimetrische Stabilität der mit entionisiertem Wasser auf 3 % FG verdünnten Dispersion nach 24 h : 98,5 % *Tyndall Effekt : sehr stark *Erscheinung eines 15 µm dicken Filmes nach Trocknung : klar, hochglänzend *erforderliche Mindesttemperatur der Dispersion zur Filmbildung : 8°C The procedure is as in Example X, but 95 parts of the emulsifier prepared according to Example II are used instead of the emulsifier used there. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight (potentiometric): 388 g / eq * Brookfield viscosity at 60 ° C: 24,000 mPas * Glass transition temperature (DSC): 0 ° C Properties of the aqueous dispersion obtained: * Solids content: 40.1% * Particle size distribution (laser light scattering): 90% <2.4 µm 50% <1.3 µm 10% <0.6 µm * Gravimetric stability of the dispersion diluted with deionized water to 3% FG after 24 h: 98.5% * Tyndall effect: very strong * Appearance of a 15 µm thick film after drying: clear, high-gloss * Minimum temperature of the dispersion required for film formation: 8 ° C

Beispiel XIIExample XII

Es wird wie in Beispiel X verfahren, wobei sich jedoch die zu dispergierende Harzschmelzezubereitung zusammensetzt aus 100 Teilen eines Diglycidylethers von Bisphenol A mit einem Epoxidäquivalentgewicht von 190 g/Äq (Epikote 828 von Shell), 170 Teile eines Diglycidylethers von Bisphenol A mit einem Epoxidäquivalentgewicht von 475 g/Äq (Epikote 1001 von Shell) und 265 Teile eines Diglycidylethers von Bisphenol A mit einem Epoxidäquivalentgewicht von 860 g/Äq (Epikote 1004 von Shell) und 95 Teilen des nach Beispiel I hergestellten Emulgators. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht (potentiometrisch) : 585 g/Äq *Brookfield Viskosität bei 60°C : 190000 mPas *Glasübergangstemperatur (DSC) : 1°C Eigenschaften der erhaltenen wäßrigen Dispersion: *Feststoffgehalt : 40,2 % *Teilchengrößenverteilung (Laser Licht Streuung) : 90 % < 3,9 µm 50 % < 1,6 µm 10 % < 0,7 µm *gravimetrische Stabilität der mit entionisiertem Wasser auf 3 % FG verdünnten Dispersion nach 24 h : 99,2 % *Tyndall Effekt : stark *Erscheinung eines 15 µm dicken Filmes nach Trocknung : klar, hochglänzend *erforderliche Mindesttemperatur der Dispersion zur Filmbildung : 8 - 10°C The procedure is as in Example X, but the melted resin preparation to be dispersed is composed of 100 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 190 g / eq (Epikote 828 from Shell), 170 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 475 g / eq (Shell's Epikote 1001) and 265 parts of a diglycidyl ether of bisphenol A with an epoxy equivalent weight of 860 g / eq (Shell's Epikote 1004) and 95 parts of the emulsifier prepared according to Example I. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight (potentiometric): 585 g / eq * Brookfield viscosity at 60 ° C: 190000 mPas * Glass transition temperature (DSC): 1 ° C Properties of the aqueous dispersion obtained: * Solids content: 40.2% * Particle size distribution (laser light scattering): 90% <3.9 µm 50% <1.6 µm 10% <0.7 µm * Gravimetric stability of the dispersion diluted with deionized water to 3% FG after 24 h: 99.2% * Tyndall effect: strong * Appearance of a 15 µm thick film after drying: clear, high-gloss * Minimum temperature of the dispersion required for film formation: 8-10 ° C

Beispiel XIIIExample XIII

Es wird wie in Beispiel XII verfahren, wobei jedoch der Anteil an Emulgator in der Harzschmelzezubereitung 160 Teile beträgt. Entsprechend wird die Menge an zum Verdünnen der Dispersion auf ca. 40 % Feststoff­gehalt notwendigem Wasser erhöht. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht : 525 g/Äq *Brookfield Viskosität bei 60°C : 247000 mPas *Glasübergangstemperatur (DSC) : 1°C Eigenschaften der erhaltenen wäßrigen Dispersion: *Feststoffgehalt : 39,8 % *Teilchengrößenverteilung (Laser Licht Streuung) : 90 % < 4,8 µm 50 % < 3,1 µm 10 % < 1,2 µm *gravimetrische Stabilität der mit entionisiertem Wasser auf 3 % FG verdünnten Dispersion nach 24 h : 96,5 % *Tyndall Effekt : schwach *Erscheinung eines 15 µm dicken Filmes nach Trocknung : leicht trüb *erforderliche Mindesttemperatur der Dispersion zur Filmbildung : 15-17°C The procedure is as in Example XII, but the proportion of emulsifier in the resin melt preparation is 160 parts. The amount of water required to dilute the dispersion to about 40% solids content is increased accordingly. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight: 525 g / eq * Brookfield viscosity at 60 ° C: 247000 mPas * Glass transition temperature (DSC): 1 ° C Properties of the aqueous dispersion obtained: * Solids content: 39.8% * Particle size distribution (laser light scattering): 90% <4.8 µm 50% <3.1 µm 10% <1.2 µm * Gravimetric stability of the dispersion diluted with deionized water to 3% FG after 24 h: 96.5% * Tyndall effect: weak * Appearance of a 15 µm thick film after drying: slightly cloudy * Minimum temperature of the dispersion required for film formation: 15-17 ° C

Beispiel XIVExample XIV

Es wird wie in Beispiel X verfahren, wobei sich die zu dispergierende Harzschmelzezubereitung zusammensetzt aus 72 Teilen eines Diglycidylethers von Bisphenol A mit einem Epoxidäquivalentgewicht von 190 g/Äq (Epikote 828 von Shell), 72 Teilen eines Diglycidylethers von Bisphenol A mit einem Epoxidäquivalentgewicht von 475 g/Äq (Epikote 1001 von Shell), 388 Teilen eines Diglycidylethers von Bisphenol A mit einem Epoxid­äquivalentgericht von 870 g/Äq (Epikote 1004 von Shell) und 182 Teile des in Beispiel I beschriebenen Emulgators. Die Anfangstemperatur der Harzschmelzezubereitung zu Beginn der Dispergierung beträgt 75°C. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht (potentiometrisch) : 735 g/Äq *Brookfield Viskosität bei 60°C : 785000 mPas *Glasübergangstemperatur (DSC) : 1°C Eigenschaften der erhaltenen wäßrigen Dispersion: *Feststoffgehalt : 40,4 % *Teilchengrößenverteilung (Laser Licht Streuung) : 90 % < 1,8 µm 50 % < 1,2 µm 10 % < 0,6 µm *gravimetrische Stabilität der mit entionisiertem Wasser auf 3 % FG verdünnten Dispersion nach 24 h : 98,2 % *Tyndall Effekt : sehr stark *Erscheinung eines 15 µm dicken Filmes nach Trocknung : klar, hochglänzend *erforderliche Mindesttemperatur der Dispersion zur Filmbildung : 13-15°C The procedure is as in Example X, the resin melt preparation to be dispersed being composed of 72 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 190 g / eq (Epikote 828 from Shell), 72 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 475 g / eq (Shell's Epikote 1001), 388 parts of a bisphenol A diglycidyl ether with an epoxy equivalent dish of 870 g / eq (Shell's Epikote 1004) and 182 parts of the emulsifier described in Example I. The initial temperature of the resin melt preparation at the start of the dispersion is 75 ° C. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight (potentiometric): 735 g / eq * Brookfield viscosity at 60 ° C: 785000 mPas * Glass transition temperature (DSC): 1 ° C Properties of the aqueous dispersion obtained: * Solids content: 40.4% * Particle size distribution (laser light scattering): 90% <1.8 µm 50% <1.2 µm 10% <0.6 µm * Gravimetric stability of the dispersion diluted with deionized water to 3% FG after 24 h: 98.2% * Tyndall effect: very strong * Appearance of a 15 µm thick film after drying: clear, high-gloss * Minimum temperature of the dispersion required for film formation: 13-15 ° C

Beispiel XV (Vergleich)Example XV (comparison)

Es wird wie in Beispiel X verfahren, jedoch werden anstelle des dort verwendeten Emulgators nun 95 Teile eines Polyethylenoxid-Polypropylen­oxid-Blockcopolymeren der ungefähren Formel

Figure imgb0005
mit einem dampfdruckosmometrisch bestimmten Molekulargewicht von 1070 g/mol (Pluronic L31 der BASF Corp.) eingesetzt. Nachdem die zur Phaseninversion der Wasser-in-Öl-Emulsion in eine Öl-in-Wasser-Emulsion erforderliche Menge Wasser in die Harzschmelzezubereitung eindispergiert worden ist, führt die Zugabe von weiterem Wasser zum Einstellen der gewünschten Endkonzentration zum irreversiblen Zusammenbrechen der Dispersion (Emulsionsspaltung), das Polymere setzt sich in Form eines Schleimes ab. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht (potentiometrisch) : 380 g/Äq *Brookfield Viskosität bei 60°C : 26 100 mPas *Glasübergangstemperatur (DSC) : 6°C Eigenschaften der erhaltenen wäßrigen Dispersion: *Feststoffgehalt : - *Teilchengrößenverteilung (Laser Licht Streuung) : - *gravimetrische Stabilität der mit entionisiertem Wasser auf 3 % FG verdünnten Dispersion nach 24 h : - *Tyndall Effekt : - *Erscheinung eines 15 µm dicken Filmes nach Trocknung : - *erforderliche Mindesttemperatur der Dispersion zur Filmbildung : - The procedure is as in Example X, but instead of the emulsifier used there are now 95 parts of a polyethylene oxide-polypropylene oxide block copolymer of the approximate formula
Figure imgb0005
with a molecular weight determined by vapor pressure osmometry of 1070 g / mol (Pluronic L31 from BASF Corp.). After the amount of water required for the phase inversion of the water-in-oil emulsion into an oil-in-water emulsion has been dispersed into the resin melt preparation, the addition of further water leads to the irreversible breakdown of the dispersion (emulsion splitting) in order to set the desired final concentration. , the polymer is deposited in the form of a slime. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight (potentiometric): 380 g / eq * Brookfield viscosity at 60 ° C: 26 100 mPas * Glass transition temperature (DSC): 6 ° C Properties of the aqueous dispersion obtained: * Solids content: - * Particle size distribution (laser light scattering): - * Gravimetric stability of the dispersion diluted with deionized water to 3% FG after 24 h: - * Tyndall effect: - * Appearance of a 15 µm thick film after drying: - * Minimum temperature of the dispersion required for film formation: -

Beispiel XVIExample XVI

Es wird wie in Beispiel X verfahren, jedoch werden anstelle des dort verwendeten Emulgators nun 95 Teile des noch Beispiel III hergestellten Emulgators eingesetzt. Die erhaltene Dispersion ist leicht gelblich. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht (potentiometrisch) : 390 g/Äq *Brookfield Viskosität bei 60°C : 25 000 mPas *Glasübergangstemperatur (DSC) : -3°C Eigenschaften der erhaltenen wäßrigen Dispersion: *Feststoffgehalt : *Teilchengrößenverteilung (Laser Licht Streuung) : 90 % < 2,4 µm 50 % < 1,2 µm 10 % < 0,6 µm *gravimetrische Stabilität der mit entionisiertem Wasser auf 3 % FG verdünnten Dispersion nach 24 h : 98,8 % *Tyndall Effekt : sehr stark *Erscheinung eines 15 µm dicken Filmes nach Trocknung : klar, hochglänzend *erforderliche Mindesttemperatur der Dispersion zur Filmbildung : 7-8°C The procedure is as in Example X, but now 95 parts of the emulsifier still produced in Example III are used instead of the emulsifier used there. The dispersion obtained is slightly yellowish. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight (potentiometric): 390 g / eq * Brookfield viscosity at 60 ° C: 25,000 mPas * Glass transition temperature (DSC): -3 ° C Properties of the aqueous dispersion obtained: * Solids content: * Particle size distribution (laser light scattering): 90% <2.4 µm 50% <1.2 µm 10% <0.6 µm * Gravimetric stability of the dispersion diluted with deionized water to 3% FG after 24 h: 98.8% * Tyndall effect: very strong * Appearance of a 15 µm thick film after drying: clear, high-gloss * Minimum temperature of the dispersion required for film formation: 7-8 ° C

Beispiel XVIIExample XVII

Es wird wie in Beispiel X verfahren, jedoch werden anstelle des dort verwendeten Emulgators nun 95 Teile des nach Beispiel IV hergestellten Emulgators eingesetzt. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht : 390 g/Äq *Brookfield Viskosität bei 60°C : 29 000 mPas *Glasübergangstemperatur (DSC) : 0°C Eigenschaften der erhaltenen wäßrigen Dispersion: *Feststoffgehalt : 40,3 % *Teilchengrößenverteilung (Laser Licht Streuung) : 90 % < 3,3 µm 50 % < 1,6 µm 10 % < 0,7 µm *gravimetrische Stabilität der mit entionisiertem Wasser auf 3 % FG verdünnten Dispersion nach 24 h : 93 % *Tyndall Effekt : sehr stark *Erscheinung eines 15 µm dicken Filmes nach Trocknung : klar, hochglänzend *erforderliche Mindesttemperatur der Dispersion zur Filmbildung : 9°C The procedure is as in Example X, but now 95 parts of the emulsifier prepared according to Example IV are used instead of the emulsifier used there. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight: 390 g / eq * Brookfield viscosity at 60 ° C: 29,000 mPas * Glass transition temperature (DSC): 0 ° C Properties of the aqueous dispersion obtained: * Solids content: 40.3% * Particle size distribution (laser light scattering): 90% <3.3 µm 50% <1.6 µm 10% <0.7 µm * Gravimetric stability of the dispersion diluted with deionized water to 3% FG after 24 h: 93% * Tyndall effect: very strong * Appearance of a 15 µm thick film after drying: clear, high-gloss * Minimum temperature of the dispersion required for film formation: 9 ° C

Beispiel XVIIIExample XVIII

Es wird wie in Beispiel X verfahren, wobei sich die zu dispergierende Harzschmelzezubereitung zusammensetzt aus 72 Teilen eines Diglycidylethers von Bisphenol A mit einem Epoxidäquivalentgewicht von 190 g/Äq (Epikote 828 von Shell), 72 Teilen eines Diglycidylethers von Bisphenol A mit einem Epoxidäquivalentgewicht von 475 g/Äq (Epikote 1001 von Shell), 388 Teilen eines Diglycidylethers von Bisphenol A mit einem Epoxid­äquivalentgewicht von 870 g/Äq (Epikote 1004 von Shell) und 200 Teilen des in Beispiel IV beschriebenen Emulgators. Die Anfangstemperatur der Harz­schmelzezubereitung zu Beginn der Dispergierung beträgt 85°C. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht (potentiometrisch) : 748 g/Äq *Brookfield Viskosität bei 60°C : 800000 mPas *Glasübergangstemperatur (DSC) : 2°C Eigenschaften der erhaltenen wäßrigen Dispersion: *Feststoffgehalt : 40,6 % *Teilchengrößenverteilung (Laser Licht Streuung) : 90 % < 3,7 µm 50 % < 1,8 µm 10 % < 0,8 µm *gravimetrische Stabilität der mit entionisiertem Wasser auf 3 % FG verdünnten Dispersion nach 24 h : 97.5 % *Tyndall Effekt : stark *Erscheinung eines 15 µm dicken Filmes nach Trocknung klar, glänzend *erforderliche Mindesttemperatur der Dispersion zur Filmbildung : 14-16°C The procedure is as in Example X, the resin melt preparation to be dispersed being composed of 72 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 190 g / eq (Epikote 828 from Shell), 72 parts of a diglycidyl ether of bisphenol A with an epoxide equivalent weight of 475 g / eq (Shell's Epikote 1001), 388 parts of a bisphenol A diglycidyl ether with an epoxy equivalent weight of 870 g / eq (Shell's Epikote 1004) and 200 parts of the emulsifier described in Example IV. The initial temperature of the resin melt preparation at the start of the dispersion is 85 ° C. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight (potentiometric): 748 g / eq * Brookfield viscosity at 60 ° C: 800000 mPas * Glass transition temperature (DSC): 2 ° C Properties of the aqueous dispersion obtained: * Solids content: 40.6% * Particle size distribution (laser light scattering): 90% <3.7 µm 50% <1.8 µm 10% <0.8 µm * Gravimetric stability of the dispersion diluted with deionized water to 3% FG after 24 h: 97.5% * Tyndall effect: strong * Appearance of a 15 µm thick film after drying clear, shiny * Minimum temperature of the dispersion required for film formation: 14-16 ° C

Beispiel XIXExample XIX

Es wird wie in Beispiel XII verfahren, jedoch werden anstelle des dort verwendeten Emulgators nun 160 Teile des nach Beispiel V hergestellten Emulgators eingesetzt. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht : 572 g/Äq *Brookfield Viskosität bei 60°C : 18 300 mPas *Glasübergangstemperatur (DSC) : -1°C Eigenschaften der erhaltenen wäßrigen Dispersion: *Feststoffgehalt : 38,1 % *Teilchengrößenverteilung (Laser Licht Streuung) : 90 % < 1,6 µm 50 % < 1,3 µm 10 % < 0,8 µm *gravimetrische Stabilität der mit entionisiertem Wasser auf 3 % FG verdünnten Dispersion nach 24 h : 98,5 % *Tyndall Effekt : sehr stark *Erscheinung eines 15 µm dicken Filmes nach Trocknung : klar, hochglänzend *erforderliche Mindesttemperatur der Dispersion zur Filmbildung : 8°C The procedure is as in Example XII, but instead of the emulsifier used there, 160 parts of the emulsifier prepared according to Example V are now used. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight: 572 g / eq * Brookfield viscosity at 60 ° C: 18 300 mPas * Glass transition temperature (DSC): -1 ° C Properties of the aqueous dispersion obtained: * Solids content: 38.1% * Particle size distribution (laser light scattering): 90% <1.6 µm 50% <1.3 µm 10% <0.8 µm * Gravimetric stability of the dispersion diluted with deionized water to 3% FG after 24 h: 98.5% * Tyndall effect: very strong * Appearance of a 15 µm thick film after drying: clear, high-gloss * Minimum temperature of the dispersion required for film formation: 8 ° C

Beispiel XX (Vergleich)Example XX (comparison)

Es wird wie in Beispiel XII verfahren, jedoch werden anstelle des dort verwendeten Emulgators nun 160 Teile des nach Beispiel VI hergestellten Emulgators eingesetzt. Nachdem die zur Phaseninversion der Wasser-in-Öl in eine Öl-in-Wasser-Emulsion erforderliche Menge Wasser in die Harzschmelze­zubereitung eindispergiert worden ist, führt die Zugabe von weiterem Wasser zum Einstellen der gewünschten Endkonzentration zum Zusammenbrechen der Dispersion. Innerhalb von 24 h setzen sich ca. 30 % des dispergierten Polymeren in Form eines Schleimes ab. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht : 589 g/Äq *Brookfield Viskosität bei 60°C : 14 300 mPas *Glasübergangstemperatur (DSC) : -3°C Eigenschaften der erhaltenen wäßrigen Dispersion: *gravimetrische Stabilität der mit entionisiertem Wasser auf 3 % FG verdünnten Dispersion nach 24 h : < 10 % *Tyndall Effekt : - *Erscheinung eines 15 µm dicken Filmes nach Trocknung : - *erforderliche Minimaltemperatur der Dispersion zur Filmbildung : - The procedure is as in Example XII, but 160 parts of the emulsifier prepared according to Example VI are now used instead of the emulsifier used there. After the amount of water required for the phase inversion of the water-in-oil into an oil-in-water emulsion has been dispersed into the resin melt preparation, the addition of further water leads to the breakdown of the dispersion in order to set the desired final concentration. About 30% of the dispersed polymer settles out in the form of a slime within 24 hours. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight: 589 g / eq * Brookfield viscosity at 60 ° C: 14,300 mPas * Glass transition temperature (DSC): -3 ° C Properties of the aqueous dispersion obtained: * Gravimetric stability of the dispersion diluted with deionized water to 3% FG after 24 h: <10% * Tyndall effect: - * Appearance of a 15 µm thick film after drying: - * Minimum temperature of the dispersion required for film formation: -

Beispiel XXI (Vergleich)Example XXI (comparison)

Es wird wie in Beispiel X verfahren, jedoch werden anstelle des dort verwendeten Emulgators nun 95 Teile (∼ 15 %) des nach Beispiel VII hergestellten Emulgators eingesetzt. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht : 382 g/Äq *Brookfield Viskosität bei 60°C : 30 400 mPas *Glasübergangstemperatur (DSC) : -1°C Eigenschaften der erhaltenen wäßrigen Dispersion: *Feststoffgehalt : 34,9 % *Teilchengrößenverteilung (Laser Licht Streuung) : 90 % < 3,2 µm 50 % < 2,0 µm 10 % < 1,0 µm *gravimetrische Stabilität der mit entionisiertem Wasser auf 3 % FG verdünnten Dispersion nach 24 h : 90 % *Tyndall Effekt : stark *Erscheinung eines 15 µm dicken Filmes nach Trocknung : klar, glänzend *erforderliche Minimaltemperatur der Dispersion zur Filmbildung : 8-10°C The procedure is as in Example X, but now 95 parts (∼ 15%) of the emulsifier prepared according to Example VII are used instead of the emulsifier used there. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight: 382 g / eq * Brookfield viscosity at 60 ° C: 30 400 mPas * Glass transition temperature (DSC): -1 ° C Properties of the aqueous dispersion obtained: * Solids content: 34.9% * Particle size distribution (laser light scattering): 90% <3.2 µm 50% <2.0 µm 10% <1.0 µm * Gravimetric stability of the dispersion diluted with deionized water to 3% FG after 24 h: 90% * Tyndall effect: strong * Appearance of a 15 µm thick film after drying: clear, shiny * Minimum temperature of the dispersion required for film formation: 8-10 ° C

Beispiel XXII (Vergleich)Example XXII (comparison)

Es wird wie in Beispiel XIV verfahren, jedoch werden anstelle des dort verwendeten Emulgators nun 182 Teile (∼ 25,5 %) des nach Beispiel VII hergestellten Emulgators eingesetzt. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht : 750 g/Äq *Brookfield Viskosität bei 60°C : 650000 mPas *Glasübergangstemperatur (DSC) : -1°C Eigenschaften der erhaltenen wäßrigen Dispersion: *Feststoffgehalt : 40,2 % *Teilchengrößenverteilung (Laser Licht Streuung) : 90 % < 3,1 µm 50 % < 1,7 µm 10 % < 0,6 µm *gravimetrische Stabilität der mit entionisiertem Wasser auf 3 % FG verdünnten Dispersion nach 24 h : 87 % *Tyndall Effekt : sehr stark *Erscheinung eines 15 µm dicken Filmes nach Trocknung : klar *erforderliche Minimaltemperatur der Dispersion zur Filmbildung : 11-13°C The procedure is as in Example XIV, but instead of the emulsifier used there, 182 parts (∼ 25.5%) of the emulsifier prepared according to Example VII are now used. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight: 750 g / eq * Brookfield viscosity at 60 ° C: 650000 mPas * Glass transition temperature (DSC): -1 ° C Properties of the aqueous dispersion obtained: * Solids content: 40.2% * Particle size distribution (laser light scattering): 90% <3.1 µm 50% <1.7 µm 10% <0.6 µm * Gravimetric stability of the dispersion diluted with deionized water to 3% FG after 24 h: 87% * Tyndall effect: very strong * Appearance of a 15 µm thick film after drying: clear * Minimum temperature of the dispersion required for film formation: 11-13 ° C

Beispiel XXIII (Vergleich)Example XXIII (comparison)

Es wird wie in Beispiel XIV verfahren, jedoch werden anstelle des dort verwendeten Emulgators nun 58 Teile (∼ 10 %) eines Polyethylenoxid-­Propylenoxid-Blockcopolymer mit einem dampfdruckosmometrisch bestimmten Molekulargewicht von 10060 g/mol (Pluronic F108 der BASF Corp.) ein­gesetzt. Das in der Nähe des Phaseninversionspunktes erhaltene Disper­sionskonzentrat läßt sich durch weitere Wasserzugabe nicht verdünnen. Es bilden sich zwei Phasen. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht : 690 g/Äq *Brookfield Viskosität bei 60°C : 890000 mPas *Glasübergangstemperatur (DSC) : +10°C The procedure is as in Example XIV, but instead of the emulsifier used there, 58 parts (∼ 10%) of a polyethylene oxide-propylene oxide block copolymer with a molecular weight determined by vapor pressure osmometry of 10060 g / mol (Pluronic F108 from BASF Corp.) are used. The dispersion concentrate obtained in the vicinity of the phase inversion point cannot be diluted by further addition of water. Two phases are formed. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight: 690 g / eq * Brookfield viscosity at 60 ° C: 890000 mPas * Glass transition temperature (DSC): + 10 ° C

Beispiel XXIV (Vergleich)Example XXIV (comparison)

Es wird wie in Beispiel X verfahren, jedoch werden anstelle des dort verwendeten Emulgators nun 95 Teile des nach Beispiel VIII hergestellten Emulgators eingesetzt. Das in der Nähe des Phaseninversionspunktes erhaltene Dispersionskonzentrat läßt sich durch weitere Wasserzugabe nicht verdünnen. Es erfolgt Phasenseparation. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht (potentiometrisch) : 397 g/Äq *Brookfield Viskosität bei 60°C : 45400 mPas *Glasübergangstemperatur (DSC) : -5°C The procedure is as in Example X, but now 95 parts of the emulsifier prepared according to Example VIII are used instead of the emulsifier used there. The dispersion concentrate obtained in the vicinity of the phase inversion point cannot be diluted by further addition of water. There is phase separation. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight (potentiometric): 397 g / eq * Brookfield viscosity at 60 ° C: 45400 mPas * Glass transition temperature (DSC): -5 ° C

Auch bei Verwendung von 235 Teilen des Emulgators nach Beispiel VIII wird keine Dispersion erhalten.Even when 235 parts of the emulsifier according to Example VIII are used, no dispersion is obtained.

Beispiel XXV (Vergleich)Example XXV (comparison)

Es wird wie in Beispiel X verfahren, jedoch werden anstelle des dort verwendeten Emulgators nun 95 Teile des nach Beispiel IX hergestellten Emulgators eingesetzt. Das in der Nähe des Phaseninversionspunktes erhaltene Dispersionskonzentrat läßt sich durch weitere Wasserzugabe nicht verdünnen. Es erfolgt Phasenseparation. Eigenschaften der Harzschmelzezubereitung vor dem Dispergieren: *Epoxidäquivalentgewicht (potentiometrisch) : 393 g/Äq *Brookfield Viskosität bei 60°C : 39100 mPas *Glasübergangstemperatur (DSC) : -2°C Tabelle 1 Teile eingesetzter Ausgangsmaterialien bei der Synthese der Emulgatoren wie in den Beispielen I bis IX beschrieben Einsatzstoffe I II III IV V VI VII VIII IX Triton X100 1290 - 1290 1290 1290 1290 1290 1290 1290 Ethylan BCP - 1239 - - - - - - - Tetrahydrophthalsäureanhydrid 600 600 - 600 600 600 600 600 600 Maleinsäureanhydrid - - 193 - - - - - - Adipinsäure - - 288 - - - - - - Epikote 828 760 760 760 - 760 760 760 760 760 Epikote 1001 - - - 1800 - - - - - Pluronic F108 28000 28000 28000 28000 - - - - - Pluronic F68 - - - - 16600 - - - - Pluronic L31 - - - - - 2200 - - - Pluriol E6000 - - - - - - 12000 - - Pluriol E400 - - - - - - - - 800 Pluriol E200 - - - - - - - 400 - Die Emulgatoren der Beispiele VI bis IX sind nicht erfindungsgemäß.

Figure imgb0006
Figure imgb0007
Figure imgb0008
The procedure is as in Example X, but now 95 parts of the emulsifier prepared according to Example IX are used instead of the emulsifier used there. The dispersion concentrate obtained in the vicinity of the phase inversion point cannot be diluted by further addition of water. There is phase separation. Properties of the resin melt preparation before dispersing: * Epoxy equivalent weight (potentiometric): 393 g / eq * Brookfield viscosity at 60 ° C: 39100 mPas * Glass transition temperature (DSC): -2 ° C Table 1 Parts of the starting materials used in the synthesis of the emulsifiers as described in Examples I to IX Input materials I. II III IV V VI VII VIII IX Triton X100 1290 - 1290 1290 1290 1290 1290 1290 1290 Ethylan BCP - 1239 - - - - - - - Tetrahydrophthalic anhydride 600 600 - 600 600 600 600 600 600 Maleic anhydride - - 193 - - - - - - Adipic acid - - 288 - - - - - - Epicote 828 760 760 760 - 760 760 760 760 760 Epikote 1001 - - - 1800 - - - - - Pluronic F108 28000 28000 28000 28000 - - - - - Pluronic F68 - - - - 16600 - - - - Pluronic L31 - - - - - 2200 - - - Pluriol E6000 - - - - - - 12,000 - - Pluriol E400 - - - - - - - - 800 Pluriol E200 - - - - - - - 400 - The emulsifiers of Examples VI to IX are not according to the invention.
Figure imgb0006
Figure imgb0007
Figure imgb0008

Claims (7)

1. Schlichte für Kohlenstoff-Fasern und Glasfasern auf Basis einer wäßrigen Dispersion, enthaltend ein Epoxidharz und 5 bis 50 Gew.%, bezogen auf das Epoxidharz, eines Emulgators, dadurch gekennzeichnet, daß der Emulgator ein Polyester der allgemeinen Formel
A₁-B-A₂-B-A₃-H      (1)
ist, wobei die Symbole folgende Bedeutung haben:
A₁ ist der Rest eines Monoalkohols,
B ist der Rest einer Dicarbonsäure,
A₂ ist der Rest eines Diols,
A₃ ist der Rest eines Polyetherdiols,
und der Polyester ein Molekulargewicht zwischen 5000 und 50 000 aufweist.
1. Size for carbon fibers and glass fibers based on an aqueous dispersion containing an epoxy resin and 5 to 50 wt.%, Based on the epoxy resin, of an emulsifier, characterized in that the emulsifier is a polyester of the general formula
A₁-B-A₂-B-A₃-H (1)
where the symbols have the following meaning:
A₁ is the remainder of a mono alcohol,
B is the rest of a dicarboxylic acid,
A₂ is the remainder of a diol,
A₃ is the remainder of a polyether diol,
and the polyester has a molecular weight between 5,000 and 50,000.
2. Schlichte nach Anspruch 1, dadurch gekennzeichnet, daß die Symbole folgende Bedeutung haben:
A₁ hat die Struktur
Figure imgb0009
worin R₁ einen aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffrest mit 6 bis 30 C-Atomen, R₂ Wasserstoff oder Methyl und n eine ganze Zahl von 0 bis 30 bedeuten,
B ist der Rest einer gesättigten oder ungesättigten, aliphatischen, cycloaliphatischen oder aromatischen Dicarbonsäure mit 2 bis 20 C-Atomen,
A₂ ist der Rest eines sekundäre OH-Gruppen tragenden Diols mit 10 bis 60 C-Atomen,
A₃ ist der Rest eines Polyetherdiols der Struktur Xp-Yq-Zr
mit X = (CH₂-CH₂-O)
Figure imgb0010
Z = (CH₂-CH₂-O)
p = 50 - 200
g = 0 - 100
r = 0 - 200.
wobei der Rest X das Kettenende bildet.
2. Sizing according to claim 1, characterized in that the symbols have the following meaning:
A₁ has the structure
Figure imgb0009
wherein R₁ is an aliphatic, aromatic or araliphatic hydrocarbon radical having 6 to 30 carbon atoms, R₂ is hydrogen or methyl and n is an integer from 0 to 30,
B is the residue of a saturated or unsaturated, aliphatic, cycloaliphatic or aromatic dicarboxylic acid with 2 to 20 carbon atoms,
A₂ is the remainder of a secondary OH group containing diol with 10 to 60 carbon atoms,
A₃ is the remainder of a polyether diol of the structure X p -Y q -Z r
with X = (CH₂-CH₂-O)
Figure imgb0010
Z = (CH₂-CH₂-O)
p = 50-200
g = 0-100
r = 0-200.
where the remainder X forms the chain end.
3. Schlichte nach Anspruch 2, dadurch gekennzeichnet, daß das Gewichts­verhältnis (A₁ + B + A₂ + Y + Z) : X zwischen 80:20 und 40:60 liegt.3. size according to claim 2, characterized in that the weight ratio (A₁ + B + A₂ + Y + Z): X is between 80:20 and 40:60. 4. Schlichte für Kohlenstoff-Fasern auf Basis einer wäßrigen Dispersion, enthaltend ein Epoxidharz und 5 bis 50 Gew.%, bezogen auf das Epoxidharz, eines Polyesters mit einem Molekulargewicht zwischen 5000 und 50 000 der allgemeinen Formel M-X-H, worin M ein hydrophober Molekülteil und X-H ein hydrophiler Polyethylenoxid-Molekülteil ist, dadurch gekennzeichnet, daß das Gewichtsverhältnis M:X zwischen 80:20 und 40:60 liegt.4. Sizing for carbon fibers based on an aqueous dispersion containing an epoxy resin and 5 to 50 wt.%, Based on the epoxy resin, of a polyester with a molecular weight between 5000 and 50,000 of the general formula MXH, wherein M is a hydrophobic part of the molecule and XH is a hydrophilic polyethylene oxide part of the molecule, characterized in that the weight ratio M: X is between 80:20 and 40:60. 5. Schlichte nach Anspruch 1 oder 4, dadurch gekennzeichnet, daß das Epoxidharz ein Polyglycidylether eines aromatischen Polyalkohols mit einem Epoxidäquivalentgewicht von 100 bis 1500 g/Äq. ist.5. size according to claim 1 or 4, characterized in that the epoxy resin is a polyglycidyl ether of an aromatic polyalcohol with an epoxy equivalent weight of 100 to 1500 g / eq. is. 6. Kohlenstoff-Fasern, die mit 0,3 bis 10 Gew.% des Epoxidharzes und des Emulgators nach Anspruch 1 oder 4 geschlichtet sind.6. carbon fibers, which are sized with 0.3 to 10 wt.% Of the epoxy resin and the emulsifier according to claim 1 or 4. 7. Glasfasern, die mit 0,3 bis 10 Gew.% des Epoxidharzes und des Emulgators nach Anspruch 1 oder 4 geschlichtet sind.7. Glass fibers which are sized with 0.3 to 10 wt.% Of the epoxy resin and the emulsifier according to claim 1 or 4.
EP19900107430 1989-04-21 1990-04-19 Sizing composition for carbon and glass fibres Withdrawn EP0393665A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3913145A DE3913145A1 (en) 1989-04-21 1989-04-21 LEGS FOR CARBON FIBERS
DE3913145 1989-04-21

Publications (2)

Publication Number Publication Date
EP0393665A2 true EP0393665A2 (en) 1990-10-24
EP0393665A3 EP0393665A3 (en) 1991-12-18

Family

ID=6379153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900107430 Withdrawn EP0393665A3 (en) 1989-04-21 1990-04-19 Sizing composition for carbon and glass fibres

Country Status (4)

Country Link
US (1) US5063261A (en)
EP (1) EP0393665A3 (en)
CA (1) CA2015052A1 (en)
DE (1) DE3913145A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204353B1 (en) 1991-03-07 2001-03-20 Henkel Kommanditgesellschaft Auf Aktien Spinning finishes for synthetic filament fibers

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020064A (en) * 1997-05-13 2000-02-01 Owens Corning Fiberglas Technology, Inc. Nonaqueous sizing for glass and carbon fibers
US20060147707A1 (en) * 2004-12-30 2006-07-06 Jian Meng Compacted, chopped fiber glass strands
DE102009040964A1 (en) * 2009-09-11 2011-03-24 Sgl Carbon Se rope
WO2015157177A1 (en) 2014-04-07 2015-10-15 Dow Global Technologies Llc Sizing compositions for carbon fibers
CN107385921B (en) * 2017-07-12 2020-04-07 中国航发北京航空材料研究院 Multifunctional epoxy resin-based water-soluble sizing agent containing graphene oxide and preparation method thereof
CN111574719B (en) * 2020-04-09 2023-06-06 深圳航天科技创新研究院 Thermoplastic epoxy resin and application thereof, and surface modifier for carbon fiber
CN112679717B (en) * 2020-12-04 2023-06-27 吉林乾仁新材料有限公司 Preparation method of multipurpose self-emulsifying anionic unsaturated polyester carbon fiber sizing agent, product and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2854396A1 (en) * 1978-12-16 1980-07-03 Bayer Ag Polyester sizes for glass fibres - contg. poly-alkylene units, giving improved stability and processability
US4787989A (en) * 1988-01-13 1988-11-29 Gaf Corporation Anionic soil release compositions
EP0295916A2 (en) * 1987-06-16 1988-12-21 Takemoto Yushi Kabushiki Kaisha Sizing agents for carbon fibers
EP0311894A2 (en) * 1987-10-14 1989-04-19 Bayer Ag Aqueous dispersions, process for their preparation and their application

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104223A (en) * 1973-09-27 1978-08-01 Dai Nippon Toryo Co., Ltd. Aqueous epoxy resin paint composition
US3983056A (en) * 1973-09-27 1976-09-28 Dai Nippon Toryo Co., Ltd. Aqueous epoxy resin paint composition
JPS5352796A (en) * 1976-10-19 1978-05-13 Sanyo Chemical Ind Ltd Surface treating resin composition for carbon fiber and composite carbon fiber material containing said treated fiber
JPS5841973A (en) * 1981-09-07 1983-03-11 東邦レーヨン株式会社 Emulsion type sizing agent for carbon fiber
US4517245A (en) * 1984-01-26 1985-05-14 Hitco Non-ionic epoxy resin emulsion finishes for carbon fibers
JPH0718085B2 (en) * 1987-04-27 1995-03-01 竹本油脂株式会社 Sizing agent for carbon fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2854396A1 (en) * 1978-12-16 1980-07-03 Bayer Ag Polyester sizes for glass fibres - contg. poly-alkylene units, giving improved stability and processability
EP0295916A2 (en) * 1987-06-16 1988-12-21 Takemoto Yushi Kabushiki Kaisha Sizing agents for carbon fibers
EP0311894A2 (en) * 1987-10-14 1989-04-19 Bayer Ag Aqueous dispersions, process for their preparation and their application
US4787989A (en) * 1988-01-13 1988-11-29 Gaf Corporation Anionic soil release compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204353B1 (en) 1991-03-07 2001-03-20 Henkel Kommanditgesellschaft Auf Aktien Spinning finishes for synthetic filament fibers

Also Published As

Publication number Publication date
US5063261A (en) 1991-11-05
DE3913145A1 (en) 1990-10-25
CA2015052A1 (en) 1990-10-21
EP0393665A3 (en) 1991-12-18

Similar Documents

Publication Publication Date Title
DE3120764C2 (en) Sized glass fibers, process for their manufacture and use of the sized fibers
DE2746640C2 (en)
DE3233230C2 (en) Aqueous carbon fiber sizing agent, process for its manufacture and method of use
DE112012004353B4 (en) Carbon fiber sizing agent, sized carbon fiber strand and fiber reinforced composite
DE2947909C2 (en) Semi-finished strand products
US4555446A (en) Carbon fiber and process for preparing same
DE3120750C2 (en) Sized Glass Fibers, Methods of Sizing Glass Fibers, and Use of the Sized Fibers
DE3049703C2 (en) Glass fiber reinforced polyolefins
DE69838021T2 (en) CARBON FIBERS AND METHOD FOR THE PRODUCTION THEREOF
DE3942858A1 (en) REACTIVE EMULSIFICATES CONTAINING WAFEREN RESPONSE RESIN DISPERSIONS AS SLIMENS FOR CARBON FIBERS
EP1492666B1 (en) Composite material, method for the production and use thereof
DE1643309B2 (en) EPOXY RESINS, PROCESS FOR THEIR MANUFACTURING AND THEIR USE
EP0027942B1 (en) Sizing composition for glass fibres, glass fibres sized therewith and process for their preparation, as well as glass fibre composites
EP0393665A2 (en) Sizing composition for carbon and glass fibres
EP0373440A2 (en) Curable, tough modified epoxy resins
EP0751100B1 (en) Size composition, sized glass fibres and their use
DE1595409B2 (en) METHOD FOR MANUFACTURING PRE-IMPRAEGNATED FLATS
EP0311894B1 (en) Aqueous dispersions, process for their preparation and their application
DE3436211A1 (en) COMPOSITION FOR REFINING CARBON FIBERS
DE2528995B2 (en) Sizing agent for glass fibers
DE2920641C2 (en)
JPS60104578A (en) Sizing agent for carbon fiber
DE1809758A1 (en) Resin-treatment of carbon fibres and production of
DE2853755C2 (en) Shelf-proof molded packing of a fiberglass filament and its use for reinforcing polyolefins
DE19627496C2 (en) Phenoxy resin-cured modified phenolic resin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19901227

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19931006