EP0392204B1 - Use of a microcrystalline iron-based alloy as a magnetic material for a fault current-protective switch - Google Patents

Use of a microcrystalline iron-based alloy as a magnetic material for a fault current-protective switch Download PDF

Info

Publication number
EP0392204B1
EP0392204B1 EP90104798A EP90104798A EP0392204B1 EP 0392204 B1 EP0392204 B1 EP 0392204B1 EP 90104798 A EP90104798 A EP 90104798A EP 90104798 A EP90104798 A EP 90104798A EP 0392204 B1 EP0392204 B1 EP 0392204B1
Authority
EP
European Patent Office
Prior art keywords
iron
based alloy
magnetic
less
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90104798A
Other languages
German (de)
French (fr)
Other versions
EP0392204A2 (en
EP0392204A3 (en
Inventor
Hans-Reiner Dr. Hilzinger
Christian Dr. Radeloff
Giselher Dr. Herzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6378191&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0392204(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP0392204A2 publication Critical patent/EP0392204A2/en
Publication of EP0392204A3 publication Critical patent/EP0392204A3/en
Application granted granted Critical
Publication of EP0392204B1 publication Critical patent/EP0392204B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/14Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by unbalance of two or more currents or voltages, e.g. for differential protection
    • H01H83/144Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by unbalance of two or more currents or voltages, e.g. for differential protection with differential transformer

Definitions

  • the invention relates to the use of a fine crystalline iron base alloy as a magnetic core material for residual current circuit breakers.
  • Residual current circuit breakers have been used for many years to protect people and machines.
  • An essential part of the RCDs is a soft magnetic core that acts as a residual current transformer.
  • the tripping current for RCDs for machine protection is in the range of approximately 300 to 500 mA. In the case of RCDs for personal protection, however, the tripping current is only 30 mA.
  • Hilzinger and Boll Soft Magnetic Crystalline and Amorphous Metals
  • amorphous materials for RCDs have also been proposed. Because of the required low magnetization field strength, only cobalt-rich alloys are suitable for 30 mA RCCBs whose saturation is in the range of 0.55 to 0.7 T. As explained in the previously mentioned publication by Boll and Hilzinger, however, when using the amorphous materials, problems arise with high requirements with regard to the temperature dependence.
  • the object of the invention is to provide a magnetic core material for RCCBs which, in addition to a high saturation induction, has a low temperature dependence of the magnetic properties.
  • the object is achieved by using an iron-based alloy with the features of claim 1.
  • Such fine-crystalline iron base alloys are known from EP-OS 271 657. These are in particular alloys which, in addition to iron, contain essentially 0.1 to 3 atom% of copper, 0.1 to 30 atom% of a further metal, such as Nb, W, Ta, Zr, Hf, Ti and Mo, have up to 30 atomic% Si and up to 25 atomic% B, the total content of B and Si being in the range from 5 to 30 atomic%.
  • the iron can be partially replaced by cobalt and / or nickel. These materials are due their good magnetic high-frequency properties have been proposed for use in high-frequency transformers, chokes and magnetic heads.
  • fine-crystalline iron-based alloys have an extremely low dependence of the magnetic properties on the temperature, even at temperatures below freezing point down to the temperature of -25 ° C. which is of interest for use in residual current circuit breakers.
  • a low temperature dependency of the magnetic properties above freezing point is not sufficient for use as a magnetic core material in residual current circuit breakers and, moreover, as is known from the materials previously used for residual current circuit breakers (see FIG. 4), there is no indication of a low temperature dependency at temperatures below freezing.
  • nickel-iron alloys according to the prior art also show a lower permeability at higher temperatures, but a strong decrease at lower temperatures.
  • the fine-crystalline magnetic cores for RCCBs according to the invention have very good soft magnetic properties and a low temperature dependence of these properties. This is especially true for magnetic cores with a round hysteresis loop, i.e. H. with a remanence ratio of 0.4 and more and less than 0.7.
  • the alloys are less expensive to manufacture, since an additional special annealing treatment to achieve the low temperature dependence of the magnetic properties is not necessary.
  • the toroidal cores show a very good stability against pulse control as well as against small superimposed DC fields.
  • Both toroidal tape cores with a flat and a round hysteresis loop were produced.
  • materials with a remanence ratio in the range from 0.4 to 0.7 have proven to be advantageous for use in 30 mA RCDs.
  • the fine crystalline ribbons were produced by crystallizing an originally amorphous ribbon using a single heat treatment step and then cooling at a cooling rate of more than 0.4 K / min.
  • the production processes for the fine crystalline strips are known in principle from the European published documents already mentioned.
  • the grain size of the fine-crystalline grains was always less than 25 nm in all of the exemplary embodiments.
  • the magnetic cores of the exemplary embodiments also had 1 atom% copper, 3 atom% niobium, 13.5 atom% silicon and 9 atomic percent boron.
  • the finished toroidal cores had the dimensions ⁇ 19 x ⁇ 15 x 5 mm.
  • the hysteresis loops and the magnetization curves of B ⁇ as well as the static induction stroke ⁇ B stat and the dynamic induction stroke ⁇ B dyn with sinusoidal, one-way and two-way rectified current at room temperature were measured on the toroidal cores.
  • the temperature dependence of the static and dynamic induction stroke and the permeability ⁇ 4 at 50 Hz was determined.
  • 1 shows the quasi-static hysteresis loop of these magnetic cores.
  • Fig. 2 shows the relationship between B ⁇ , ⁇ B stat , ⁇ B dyn and the magnetic field strength.
  • the induction B ⁇ of the magnetic cores according to the invention with a round hysteresis loop already reaches a value of 0.5 T at a field strength of 10 mA / cm and is therefore above the values of magnetic materials for RCDs according to the prior art.
  • the cores according to the invention also have high values for the static and dynamic induction stroke.
  • 3 shows the temperature dependence of the magnetic properties of the magnetic cores according to the invention. They have a very high constancy with little fluctuations over the entire temperature range of -25 ° C to + 80 ° C that is of interest for practical use.
  • FIG. 4 For comparison, the temperature dependence of the magnetic properties for an alloy according to the prior art is shown in FIG. 4. This is a high nickel alloy that is sold under the name ULTRAPERM F 80 for residual current circuit breakers. This alloy also has a very good constancy of the magnetic values for temperatures above freezing point. However, there are significant changes here for temperatures below freezing.
  • a remanence ratio of 0.1 (flat loop) was measured on magnetic cores in which the heat treatment was carried out in a transverse magnetic field. They also showed good constancy of the magnetic properties with temperature changes, as can be seen from FIG. 5. However, the changes were greater than for the round hysteresis loop cores.

Abstract

In magnetic core materials for fault current protective switches, a high constancy of the magnetic properties is required over the entire application temperature range from -25 DEG C to +80 DEG C. In the case of the known magnetic core materials with a high nickel content of the permalloy type, this requires a special additional anneal. This can be dispensed with if the magnetic core material used is an iron-based alloy with an iron content of more than 60 atomic %, more than 50% of whose structure consists of fine crystalline grains having a grain size of less than 100 nm and which has a saturation induction of more than 1.1 T and also a remanence ratio of less than 0.7. <IMAGE>

Description

Die Erfindung betrifft die Verwendung einer feinkristallinen Eisen-Basislegierung als Magnetkernwerkstoff für Fehlerstrom-Schutzschalter.The invention relates to the use of a fine crystalline iron base alloy as a magnetic core material for residual current circuit breakers.

Fehlerstrom-Schutzschalter (FI-Schalter) finden seit vielen Jahren Anwendung für den Personen- und Maschinenschutz. Wesentlicher Bestandteil der FI-Schalter ist ein weichmagnetischer Kern, der als Differenzstromwandler wirkt. Der Auslösestrom für FI-Schalter für den Maschinenschutz liegt im Bereich von etwa 300 bis 500 mA. Bei FI-Schaltern für den Personenschutz liegt der Auslösestrom dagegen nur bei 30 mA. In der Veröffentlichung von Hilzinger und Boll "Weichmagnetische kristalline und amorphe Metalle", Elektronik, Heft 22, 1987, sind die Anforderungen an die Magnetkerne und die hierfür verwendeten Werkstoffe dargestellt. Die Magnetkernwerkstoffe müssen neben der hohen maximalen Permeabilität bzw. ausreichenden Induktion bei kleinen Feldstärken insbesondere eine geringe Temperaturabhängigkeit der magnetischen Eigenschaften über den gesamten Einsatzbereich aufweisen. Für 30mA-FI-Schalter werden im wesentlichen kristalline Nickel-Eisen-Legierungen mit ca. 77 % Nickel (Permalloy-Typ) eingesetzt. Die Sättigung dieser Werkstoffe beträgt etwa 0,8 T. Um die geforderte geringe Temperaturabhängigkeit der magnetischen Eigenschaften der Werkstoffe zu erreichen, ist bei den Permalloy-Legierungen jedoch eine zusätzliche, aufwendige Glühbehandlung erforderlich. Hierdurch wird die Herstellung von Magnetkernen für FI-Schalter aufwendig und verteuert. Das Erfordernis der Glühbehandlung wird in der Veröffentlichung von Pfeifer und Boll in IEEE Transactions on Magnetics, Vol. MAG-5, Nr. 3, Sept. 1969, Seiten 365 bis 370, näher erörtert.Residual current circuit breakers (FI switches) have been used for many years to protect people and machines. An essential part of the RCDs is a soft magnetic core that acts as a residual current transformer. The tripping current for RCDs for machine protection is in the range of approximately 300 to 500 mA. In the case of RCDs for personal protection, however, the tripping current is only 30 mA. In the publication by Hilzinger and Boll "Soft Magnetic Crystalline and Amorphous Metals", Electronics, Issue 22, 1987, the requirements for the magnetic cores and the materials used for this are presented. In addition to the high maximum permeability or sufficient induction with small field strengths, the magnetic core materials must in particular have a low temperature dependence of the magnetic properties over the entire area of use. Essentially crystalline nickel-iron alloys with approx. 77% nickel (permalloy type) are used for 30 mA FI switches. The saturation of these materials is approximately 0.8 T. However, in order to achieve the required low temperature dependence of the magnetic properties of the materials, an additional, complex annealing treatment is required for the Permalloy alloys. This makes the manufacture of magnetic cores for RCDs complex and expensive. The requirement of Annealing treatment is discussed in more detail in the publication by Pfeifer and Boll in IEEE Transactions on Magnetics, Vol. MAG-5, No. 3, Sept. 1969, pages 365 to 370.

Neben kristallinen Werkstoffen wurden auch bereits amorphe Werkstoffe für FI-Schalter vorgeschlagen. Wegen der geforderten geringen Magnetisierungsfeldstärke kommen für 30 mA-FI-Schalter nur kobaltreiche Legierungen in Frage, deren Sättigung im Bereich von 0,55 bis 0,7 T liegt. Wie in der bereits genannten Veröffentlichung von Boll und Hilzinger dargelegt, ergeben sich bei Verwendung der amorphen Werkstoffe jedoch Probleme bei hohen Anforderungen bezüglich der Temperaturabhängigkeit.In addition to crystalline materials, amorphous materials for RCDs have also been proposed. Because of the required low magnetization field strength, only cobalt-rich alloys are suitable for 30 mA RCCBs whose saturation is in the range of 0.55 to 0.7 T. As explained in the previously mentioned publication by Boll and Hilzinger, however, when using the amorphous materials, problems arise with high requirements with regard to the temperature dependence.

Aufgabe der Erfindung ist es, einen Magnetkern-Werkstoff für FI-Schalter anzugeben, der neben einer hohen Sättigungsinduktion eine geringe Temperaturabhängigkeit der magnetischen Eigenschaften aufweist.The object of the invention is to provide a magnetic core material for RCCBs which, in addition to a high saturation induction, has a low temperature dependence of the magnetic properties.

Die Aufgabe wird gelöst durch die Verwendung einer Eisen-Basislegierung mit den Merkmalen des Anspruchs 1.The object is achieved by using an iron-based alloy with the features of claim 1.

Solche feinkristallinen Eisen-Basislegierungen sind aus der EP-OS 271 657 bekannt. Es handelt sich hierbei insbesondere um Legierungen, die neben Eisen im wesentlichen 0,1 bis 3 Atom-% Kupfer, 0,1 bis 30 Atom-% eines weiteren Metalls, wie Nb, W, Ta, Zr, Hf, Ti und Mo, bis zu 30 Atom-% Si und bis zu 25 Atom-% B aufweisen, wobei der Gesamtgehalt an B und Si im Bereich von 5 bis 30 Atom-% liegt. Das Eisen kann teilweise durch Kobalt und/oder Nickel ersetzt sein. Diese Materialien werden aufgrund ihrer guten magnetischen Hochfrequenz-Eigenschaften für die Anwendung in Hochfrequenz-Transformatoren, Drosseln und Magnetköpfen vorgeschlagen. Aus der EP-OS 299 498 ist ein Magnetkern aus einer feinkristallinen Eisen-Basislegierung bekannt, der nur geringe zeitabhängige Änderungen der Permeabilität aufweist. Für die dort genannten Anwendungen der Magnetkerne in Drosseln, Filtern und Hochfrequenz-Transformatoren werden Magnetkerne mit einem Remanenzverhältnis von 0,3 und weniger bzw. von 0,7 und mehr eingesetzt. Weiterhin ist aus einer Veröffentlichung von Yoshizawa, Yamauchi, Yamane und Sugihara, Journal of Applied Physics, Vol. 64, Heft 10, 1988, Seiten 6047 bis 6049, ein Magnetkern aus einer feinkristallinen Eisen-Basislegierung zur Verwendung in einer Drosselspule bekannt. In dieser Veröffentlichung finden sich auch Meßwerte über die Temperaturabhängigkeit der Sättigungsinduktion und der Permeabilität für Temperaturen oberhalb des Gefrierpunktes.Such fine-crystalline iron base alloys are known from EP-OS 271 657. These are in particular alloys which, in addition to iron, contain essentially 0.1 to 3 atom% of copper, 0.1 to 30 atom% of a further metal, such as Nb, W, Ta, Zr, Hf, Ti and Mo, have up to 30 atomic% Si and up to 25 atomic% B, the total content of B and Si being in the range from 5 to 30 atomic%. The iron can be partially replaced by cobalt and / or nickel. These materials are due their good magnetic high-frequency properties have been proposed for use in high-frequency transformers, chokes and magnetic heads. From EP-OS 299 498 a magnetic core made of a finely crystalline iron base alloy is known, which exhibits only slight changes in permeability over time. Magnetic cores with a remanence ratio of 0.3 and less or of 0.7 and more are used for the applications of the magnetic cores in chokes, filters and high-frequency transformers mentioned there. Furthermore, from a publication by Yoshizawa, Yamauchi, Yamane and Sugihara, Journal of Applied Physics, Vol. 64, Issue 10, 1988, pages 6047 to 6049, a magnetic core made of a fine-crystalline iron-based alloy for use in a choke coil is known. This publication also contains measurements of the temperature dependence of the saturation induction and the permeability for temperatures above freezing.

Überraschenderweise wurde nun gefunden, daß feinkristalline Eisen-Basislegierungen auch bei Temperaturen unterhalb des Gefrierpunktes bis zu der für die Anwendung in Fehlerstrom-Schutzschaltern interessanten Temperatur von -25 °C eine extrem geringe Abhängigkeit der magnetischen Eigenschaften von der Temperatur aufweisen. Eine geringe Temperaturabhängigkeit der magnetischen Eigenschaften oberhalb des Gefrierpunktes ist für eine Anwendung als Magnetkernwerkstoff in Fehlerstrom-Schutzschaltern nicht ausreichend und zudem - wie von den bisher für Fehlerstromschutz-Schalter eingesetzten Materialien bekannt ist (vgl. Fig. 4) - kein Indiz für eine geringe Temperaturabhängigkeit bei Temperaturen unterhalb des Gefrierpunktes. Wie bereits in der Veröffentlichung von Pfeifer und Boll dargelegt, zeigen auch Nickel-Eisen-Legierungen nach dem Stand der Technik bei höheren Temperaturen einen geringeren, bei niedrigeren Temperaturen dagegen einen starken Abfall der Permeabilität.Surprisingly, it has now been found that fine-crystalline iron-based alloys have an extremely low dependence of the magnetic properties on the temperature, even at temperatures below freezing point down to the temperature of -25 ° C. which is of interest for use in residual current circuit breakers. A low temperature dependency of the magnetic properties above freezing point is not sufficient for use as a magnetic core material in residual current circuit breakers and, moreover, as is known from the materials previously used for residual current circuit breakers (see FIG. 4), there is no indication of a low temperature dependency at temperatures below freezing. As already explained in the publication by Pfeifer and Boll, nickel-iron alloys according to the prior art also show a lower permeability at higher temperatures, but a strong decrease at lower temperatures.

Die erfindungsgemäßen feinkristallinen Magnetkerne für FI-Schalter weisen sehr gute weichmagnetische Eigenschaften sowie eine geringe Temperaturabhängigkeit dieser Eigenschaften auf. Dies gilt insbesondere für Magnetkerne mit einer runden Hystereseschleife, d. h. mit einem Remanenzverhältnis von 0,4 und mehr sowie weniger als 0,7. Die Legierungen sind in der Herstellung kostengünstiger, da eine zusätzliche spezielle Glühbehandlung zur Erzielung der geringen Temperaturabhängigkeit der magnetischen Eigenschaften nicht erforderlich ist. Die Ringkerne zeigen eine sehr gute Stabilität sowohl gegen Pulsaussteuerung als auch gegen kleine überlagerte Gleichfelder.The fine-crystalline magnetic cores for RCCBs according to the invention have very good soft magnetic properties and a low temperature dependence of these properties. This is especially true for magnetic cores with a round hysteresis loop, i.e. H. with a remanence ratio of 0.4 and more and less than 0.7. The alloys are less expensive to manufacture, since an additional special annealing treatment to achieve the low temperature dependence of the magnetic properties is not necessary. The toroidal cores show a very good stability against pulse control as well as against small superimposed DC fields.

Anhand der Ausführungsbeispiele und der Figuren soll die Erfindung nun näher erläutert werden. Es zeigen:

Fig. 1
die Abhängigkeit der Induktion von der Feldstärke für einen erfindungsgemäßen Magnetkern mit runder Hystereseschleife
Fig. 2
die Abhängigkeit der Induktion B̂ (50 Hz), des statischen und dynamischen Induktionshubes von der Feldstärke
Fig. 3
die Temperaturabhängigkeit der magnetischen Eigenschaften eines erfindungsgemäßen Magnetkerns mit runder Hystereseschleife
Fig. 4
die Temperaturabhängigkeit der magnetischen Eigenschaften eines Kerns nach dem Stand der Technik
Fig. 5
die Temperaturabhängigkeit der magnetischen Eigenschaften eines erfindungsgemäßen Kerns mit flacher Hystereseschleife.
The invention will now be explained in more detail with reference to the exemplary embodiments and the figures. Show it:
Fig. 1
the dependence of the induction on the field strength for a magnetic core according to the invention with a round hysteresis loop
Fig. 2
the dependence of the induction B̂ (50 Hz), the static and dynamic induction stroke on the field strength
Fig. 3
the temperature dependence of the magnetic properties of a magnetic core according to the invention with a round hysteresis loop
Fig. 4
the temperature dependence of the magnetic properties of a core according to the prior art
Fig. 5
the temperature dependence of the magnetic properties of a core according to the invention with a flat hysteresis loop.

AusführungsbeispieleEmbodiments

Es wurden sowohl Ringbandkerne mit flacher als auch mit runder Hystereseschleife hergestellt. Für die Verwendung in 30 mA FI-Schaltern erwiesen sich insbesondere Materialien mit einem Remanenzverhältnis im Bereich von 0,4 bis 0,7 als vorteilhaft. Die feinkristallinen Bänder wurden durch Kristallisieren eines ursprünglich amorphen Bandes unter Verwendung eines einzigen Wärmebehandlungsschrittes und einer anschließenden Abkühlung mit einer Abkühlgeschwindigkeit von mehr als 0,4 K/min hergestellt.Both toroidal tape cores with a flat and a round hysteresis loop were produced. In particular, materials with a remanence ratio in the range from 0.4 to 0.7 have proven to be advantageous for use in 30 mA RCDs. The fine crystalline ribbons were produced by crystallizing an originally amorphous ribbon using a single heat treatment step and then cooling at a cooling rate of more than 0.4 K / min.

Die Herstellungsverfahren der feinkristallinen Bänder sind prinzipiell aus den bereits genannten europäischen Offenlegungsschriften bekannt. Die Korngröße der feinkristallinen Körner war in allen Ausführungsbeispielen stets kleiner als 25 nm. Die Magnetkerne der Ausführungsbeispiele wiesen neben einem Eisengehalt von 73,5 Atom-% weiterhin 1 Atom-% Kupfer, 3 Atom-% Niob, 13,5 Atom-% Silizium und 9 Atom-% Bor auf. Die fertigen Ringbandkerne hatten die Abmessungen ∅ 19 x ∅ 15 x 5 mm. An den Ringbandkernen wurden jeweils die Hystereseschleifen und die Magnetisierungskurven von B̂ sowie dem statischen Induktionshub ΔBstat und dem dynamischen Induktionshub ΔBdyn bei sinusförmigem, einweg- und zweiweggleichgerichtetem Strom bei Raumtemperatur gemessen. Außerdem wurde die Temperaturabhängigkeit des statischen und dynamischen Induktionshubes sowie der Permeabilität µ4 bei 50 Hz bestimmt.The production processes for the fine crystalline strips are known in principle from the European published documents already mentioned. The grain size of the fine-crystalline grains was always less than 25 nm in all of the exemplary embodiments. In addition to an iron content of 73.5 atom%, the magnetic cores of the exemplary embodiments also had 1 atom% copper, 3 atom% niobium, 13.5 atom% silicon and 9 atomic percent boron. The finished toroidal cores had the dimensions ∅ 19 x ∅ 15 x 5 mm. The hysteresis loops and the magnetization curves of B̂ as well as the static induction stroke ΔB stat and the dynamic induction stroke ΔB dyn with sinusoidal, one-way and two-way rectified current at room temperature were measured on the toroidal cores. In addition, the temperature dependence of the static and dynamic induction stroke and the permeability µ 4 at 50 Hz was determined.

Beispiel 1:Example 1:

Diejenigen Magnetkerne, bei denen die Wärmebehandlung ohne Magnetfeld durchgeführt wurde, wiesen ein Remanenzverhältnis von 0,65 auf (runde Hystereseschleife). In Fig. 1 ist die quasistatische Hystereseschleife dieser Magnetkerne dargestellt. Fig. 2 zeigt den Zusammenhang zwischen B̂, ΔBstat, ΔBdyn und der Magnetfeldstärke. Die Induktion B̂ der erfindungsgemäßen Magnetkerne mit runder Hystereseschleife erreicht bereits bei einer Feldstärke von 10 mA/cm einen Wert von 0,5 T und liegt damit oberhalb der Werte von Magnetwerkstoffen für FI-Schalter nach dem Stand der Technik. Die erfindungsgemäßen Kerne weisen zudem hohe Werte für den statischen und dynamischen Induktionshub auf. In Fig. 3 ist die Temperaturabhängigkeit der magnetischen Eigenschaften der erfindungsgemäßen Magnetkerne dargestellt. Sie weisen eine sehr hohe Konstanz mit geringen Schwankungen über den gesamten für die praktische Anwendung interessierenden Temperaturbereich von -25 °C bis + 80 °C auf.Those magnetic cores in which the heat treatment was carried out without a magnetic field had a remanence ratio of 0.65 (round hysteresis loop). 1 shows the quasi-static hysteresis loop of these magnetic cores. Fig. 2 shows the relationship between B̂, ΔB stat , ΔB dyn and the magnetic field strength. The induction B̂ of the magnetic cores according to the invention with a round hysteresis loop already reaches a value of 0.5 T at a field strength of 10 mA / cm and is therefore above the values of magnetic materials for RCDs according to the prior art. The cores according to the invention also have high values for the static and dynamic induction stroke. 3 shows the temperature dependence of the magnetic properties of the magnetic cores according to the invention. They have a very high constancy with little fluctuations over the entire temperature range of -25 ° C to + 80 ° C that is of interest for practical use.

Zum Vergleich ist in Fig. 4 die Temperaturabhängigkeit der magnetischen Eigenschaften für eine Legierung nach dem Stand der Technik dargestellt. Es handelt sich hierbei um eine hochnickelhaltige Legierung, die unter der Bezeichnung ULTRAPERM F 80 für Fehlerstrom-Schutzschalter vertrieben wird. Auch diese Legierung weist für Temperaturen oberhalb des Gefrierpunktes eine recht gute Konstanz der Magnetwerte auf. Für Temperaturen unterhalb des Gefrierpunktes zeigen sich hier jedoch starke Änderungen.For comparison, the temperature dependence of the magnetic properties for an alloy according to the prior art is shown in FIG. 4. This is a high nickel alloy that is sold under the name ULTRAPERM F 80 for residual current circuit breakers. This alloy also has a very good constancy of the magnetic values for temperatures above freezing point. However, there are significant changes here for temperatures below freezing.

Beispiel 2:Example 2:

An Magnetkernen, bei denen die Wärmebehandlung in einem magnetischen Querfeld durchgeführt wurde, wurde ein Remanenzverhältnis von 0,1 (flache Schleife) gemessen. Sie wiesen ebenfalls eine gute Konstanz der magnetischen Eigenschaften bei Temperaturänderungen auf, wie aus Fig. 5 ersichtlich ist. Die Änderungen waren jedoch größer als bei den Kernen mit runder Hystereseschleife.A remanence ratio of 0.1 (flat loop) was measured on magnetic cores in which the heat treatment was carried out in a transverse magnetic field. They also showed good constancy of the magnetic properties with temperature changes, as can be seen from FIG. 5. However, the changes were greater than for the round hysteresis loop cores.

Claims (3)

  1. Use of an iron-based alloy having an iron content of more than 60 atom %, the structure of which consists to the extent of more than 50% of finely crystalline grains having a grain size of less than 100 nm and which has a saturation induction of more than 1.1 T, as well as a remanence ratio Br/Bs of less than 0.7 and a temperature-dependent variation in the induction excursion at the working point of less than ±10% in the temperature range of -25 to +80°C relative to room temperature, as a magnetic core material for fault-current circuit breakers.
  2. Use of an iron-based alloy according to Claim 1, the iron-based alloy being further characterized by a remanence ratio of 0.4 and above.
  3. Use of an iron-based alloy according to Claim 1, the iron-based alloy being further characterized in that the finely crystalline grains have a grain size of less than 25 nm.
EP90104798A 1989-04-08 1990-03-14 Use of a microcrystalline iron-based alloy as a magnetic material for a fault current-protective switch Expired - Lifetime EP0392204B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3911480 1989-04-08
DE3911480A DE3911480A1 (en) 1989-04-08 1989-04-08 USE OF A FINE CRYSTALLINE IRON BASE ALLOY AS A MAGNETIC MATERIAL FOR FAULT CURRENT CIRCUIT BREAKERS

Publications (3)

Publication Number Publication Date
EP0392204A2 EP0392204A2 (en) 1990-10-17
EP0392204A3 EP0392204A3 (en) 1992-04-08
EP0392204B1 true EP0392204B1 (en) 1996-11-06

Family

ID=6378191

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90104798A Expired - Lifetime EP0392204B1 (en) 1989-04-08 1990-03-14 Use of a microcrystalline iron-based alloy as a magnetic material for a fault current-protective switch

Country Status (5)

Country Link
EP (1) EP0392204B1 (en)
JP (1) JP2563097B2 (en)
AT (1) ATE145089T1 (en)
DE (2) DE3911480A1 (en)
ES (1) ES2094125T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416329A1 (en) 2010-08-06 2012-02-08 Vaccumschmelze Gmbh & Co. KG Magnetic core for low-frequency applications and manufacturing process of a magnetic core for low-frequency applications

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4210748C1 (en) * 1992-04-01 1993-12-16 Vacuumschmelze Gmbh Current transformers for pulse current sensitive residual current circuit breakers, residual current circuit breakers with such a current transformer, and method for heat treatment of the iron alloy strip for its magnetic core
ATE142382T1 (en) * 1992-06-16 1996-09-15 Siemens Ag RESIDUAL CURRENT PROTECTION BREAKER
ATE149755T1 (en) * 1993-06-25 1997-03-15 Siemens Ag LEAD CURRENT DETECTION DEVICE WITH HIGH SENSITIVITY
DE4423622A1 (en) * 1994-07-06 1996-01-11 Vacuumschmelze Gmbh Total current transformer for electronic protective devices
WO1996009639A1 (en) * 1994-09-19 1996-03-28 Siemens Aktiengesellschaft Differential current protective switch with special core material
FR2733374B1 (en) 1995-04-18 1997-06-06 Schneider Electric Sa DIFFERENTIAL PROTECTION DEVICE SENSITIVE TO PULSED CURRENTS
ATE220827T1 (en) * 1996-03-18 2002-08-15 Siemens Ag RESIDUAL CURRENT BREAKER WITH ENERGY STORAGE CIRCUIT
DE19702371A1 (en) * 1997-01-23 1998-07-30 Siemens Ag Residual current device
FR2772181B1 (en) * 1997-12-04 2000-01-14 Mecagis METHOD FOR MANUFACTURING A NANOCRYSTALLINE SOFT MAGNETIC ALLOY MAGNETIC CORE FOR USE IN A CLASS A DIFFERENTIAL CIRCUIT BREAKER AND MAGNETIC CORE OBTAINED
FR2772182B1 (en) * 1997-12-04 2000-01-14 Mecagis METHOD FOR MANUFACTURING A NANOCRYSTALLINE SOFT MAGNETIC ALLOY MAGNETIC CORE AND USE IN AN AC CLASS DIFFERENTIAL CIRCUIT BREAKER
EP1154539A1 (en) * 2000-05-10 2001-11-14 Siemens Aktiengesellschaft Fault current breaker with summation transformer
DE10134056B8 (en) 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
EP1710812B1 (en) * 2005-02-25 2008-07-16 Magnetec GmbH Fault-current circuit breaker and magnetic core for a fault-current circuit breaker
DE102007034532A1 (en) 2007-07-24 2009-02-05 Vacuumschmelze Gmbh & Co. Kg Magnetic core, process for its production and residual current circuit breaker
US8699190B2 (en) 2010-11-23 2014-04-15 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
DE102010060740A1 (en) * 2010-11-23 2012-05-24 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
JP5886024B2 (en) * 2011-12-19 2016-03-16 株式会社東芝 Magnetic resonance imaging system
DE102015211487B4 (en) 2015-06-22 2018-09-20 Vacuumschmelze Gmbh & Co. Kg METHOD FOR PRODUCING A NANOCRYSTALLINE MAGNETIC CORE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1341105C (en) * 1987-07-14 2000-10-03 Yoshihito Yoshizawa Magnetic core made of fe-base soft magnetic alloy and use thereof
JP2667402B2 (en) * 1987-08-06 1997-10-27 日立金属株式会社 Fe-based soft magnetic alloy
JPH0680611B2 (en) * 1987-10-23 1994-10-12 日立金属株式会社 Magnetic core

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELEKTRONIK Nr. 22, 30. Oktober 1987, MüNCHEN Seiten 99 - 112; R.BOLL, H.R.HILZINGER: 'Weichmagnetische kristalline und amorphe Metalle' *Seite 105, rechte Spalte, Zeile 18 - Zeile 29; Abbildung 8* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416329A1 (en) 2010-08-06 2012-02-08 Vaccumschmelze Gmbh & Co. KG Magnetic core for low-frequency applications and manufacturing process of a magnetic core for low-frequency applications
WO2012017421A1 (en) 2010-08-06 2012-02-09 Vacuumschmelze Gmbh & Co. Kg Magnet core for low-frequency applications and method for producing a magnet core for low-frequency applications

Also Published As

Publication number Publication date
ATE145089T1 (en) 1996-11-15
ES2094125T3 (en) 1997-01-16
EP0392204A2 (en) 1990-10-17
DE59010553D1 (en) 1996-12-12
EP0392204A3 (en) 1992-04-08
DE3911480A1 (en) 1990-10-11
JPH03201412A (en) 1991-09-03
JP2563097B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
EP0392204B1 (en) Use of a microcrystalline iron-based alloy as a magnetic material for a fault current-protective switch
EP1609159B1 (en) Magnet core, method for the production of such a magnet core, uses of such a magnet core especially in current transformers and current-compensated inductors, and alloys and bands used for producing such a magnet core
DE2855858C2 (en) Vitreous alloy with high magnetic permeability
DE2835389C2 (en) Use of a vitreous alloy as a magnetic material
DE2553003C2 (en) Magnetic core for a transformer, motor or generator
DE2756920C2 (en) Use of a glass-like alloy for tape heads, relay cores or transformers
DE2708151A1 (en) MAGNETIC ALLOYS
DE4210748C1 (en) Current transformers for pulse current sensitive residual current circuit breakers, residual current circuit breakers with such a current transformer, and method for heat treatment of the iron alloy strip for its magnetic core
CH630665A5 (en) PERMANENT MAGNETIC ALLOY.
DE102007004835A1 (en) Amorphous soft magnetic alloy and induction component using the same
DE202005022087U1 (en) Nanocrystalline core for current sensors, one- and two-stage energy meters and these integrating current probes
DE2924280A1 (en) AMORPHE SOFT MAGNETIC ALLOY
DE102012109744A1 (en) Alloy, magnetic core and method of making an alloy strip
DE3705893C3 (en) Method of manufacturing a magnetic core with high permeability and using a magnetic core produced thereafter
DE102011002114A1 (en) Alloy, magnetic core and method of making an alloy strip
DE3201569A1 (en) DIFFERENTIAL TRANSFORMER CORE FOR PULSING CURRENTS
DE3619659C2 (en) Use of a glass-like alloy based on Fe
DE19739959C2 (en) Hard magnetic material
EP0927479B1 (en) Pulse transformer for line interfaces operating according to the echo compensation principle
EP0046279B1 (en) Method of manufacturing annular tape cores for protective interrupters of fault currents
DE4135403C2 (en) SE-Fe-B permanent magnet and process for its manufacture
EP1710812B1 (en) Fault-current circuit breaker and magnetic core for a fault-current circuit breaker
DE2705384B2 (en) Permanent magnet material and process for its manufacture
EP0780854A1 (en) Current-compensated radio interference suppression choke
EP0392202B1 (en) Use of a fine crystalline iron-based alloy as a magnet core in an interface transformer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR IT LI

17P Request for examination filed

Effective date: 19920902

17Q First examination report despatched

Effective date: 19941026

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR IT LI

REF Corresponds to:

Ref document number: 145089

Country of ref document: AT

Date of ref document: 19961115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 59010553

Country of ref document: DE

Date of ref document: 19961212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2094125

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: IMPHY S.A. IMMEUBLE LA PACIFIC

Effective date: 19970726

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBL Opposition procedure terminated

Free format text: ORIGINAL CODE: EPIDOS OPPC

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 19990611

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DIPL.-ING. ETH H. R. WERFFELI PATENTANWALT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030326

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

BERE Be: lapsed

Owner name: *VACUUMSCHMELZE G.M.B.H.

Effective date: 20040331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080320

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080930

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090325

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090325

Year of fee payment: 20

Ref country code: DE

Payment date: 20090428

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090318

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20100315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100314